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INTRODUCTION

In 1959 Tennenbaum proved that if M is a nonstandard\model of
Peano arithmetic, (PA) then the addition and multiplication of M can
not be recursive. This result leads to several natural questions:

i) Given T a complete extension of Peano arithmetic what
Turing degrees code models of T?
" ii) Given a model M of T, what Turing degrees code M?
This™»thesis begins with a survey of known results in this area
including proofs of many folklore results. It also represents my
contributions to the study of these problems.

In Section 1 we introduce Scott sets, the basic combinatorial
tool used in studying degrees coding models of arithmetic, and begin
to study the relationships between a model, the degrees that code it,
its reals and its complete theory. Of the results in this section only
1.21 and 1.27 are new.

Section 2 is devoted to classification of degrees coding complete
extensions of PA.

In Section 3 we consider what degrees code nonstandard models of
Th{N). We survey the results which led up to Solovay's classification
theorem.

In Section 4 we give the proof of Theorem 3.5, which states that
if every arithmetic set is recursive in d then there is a nonstandard
model of Th@) recursive in d'. This is the main theorem of [M].

In Section 5 we give a classification of degrees coding S-satu-
rated structures. We also review the necessary model theoretic pre-

liminaries.




In Section 6 we apply the results of Section 5 to the study of
degrees coding certain reducts and definable substructﬁres of'models
of arithmetic.

In Section 7 we classify the degrees coding reducts and defin-
able substructures of a fixed completion of PA. We also give an im-

provement of Solovay's classification of degrees coding models of Th ()

‘and an application. Many of the results of Sections 5, 6 and 7 are

joint work with Angus Macintyre and will appear in [Mac-M].

In Section 8 we study the degrees coding nonstandard models of a
theory int?oduced to study the polynomial time hierarchy. We show that
any such degree must be above Q'.

Our model theoretic notation is standard. From recursion theory:
{e}'X denotes the eth partial recursive function with oracle X, Wé
denotes the domain of {e}ig and if d € o, é, denotes the Turing
degree of d. (Every Turing degree.will be thought of as g, where

d € ® is some cannonically chosen representative).




§1. SCOTT SETS

Tn this section we will lay the groundwork for our study of
degrees coding models of arithmetic by examining the relationship between
models of arithmetic and their associated Scott sets.

Throughout 2° will denote finite sequences of zeros and ones.

. . . ®
There is a natural recursive coding of elements of 2¥ as elements .

When no difficulties arise we will shamelessly confuse 2@, w, and o
. . . P w
when it is convenient to do so. Similarly we confuse . P(w) and 2.

Definition 1.1: T 5_2@ is a tree iff for any o € T if 7T C o, then

| 4 T € T. (Conforming to the above convention we will speak of X C w as

a tree if the subset of 2@ which codes it is a tree.)

‘Definition 1.2: S ¢ P(w) 1is a Scott set 1iff

. y < v e n
i) X ..,Xn €S and Y Sp Xl b X2 X X Xn’ then Y € S.

ii) If T € S is an infinite tree, then there is T € § an

1"

infinite path through T.

The next proposition gives us the most usefull property of Scott
sets for model theorists. Let L be some fixed recursive language.
We will identify L-sentence (or L-formulas) with elements of w via Gddel

codes.

Proposition 1.3: Let S be a Scott set, If T € 5 is an L-theory,

A
then T has a completion T ¢€ S.

Proof: Let LR be a listing of all L-sentences. Let
X = {o € 22: for any T C o, there is no proof of F( A ¢, A
T(i)=1 *
0 mi) from T with G8del code at most |[o] (|o| denotes the

T(i)=0
length of o). X is recursive in T so X € S. As S 1is a Scott

| : 3
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*
set there is an infinite path f € 2% N S. Clearly T = {q)i:f(i) = 1}

is a completion of T. //

Scott sets arise naturally when studying nonstandard models of

Pearo arithmetic (PA).

Definition 1.4:» Let M }= PA. If a €M we define the real coded by a

r(a) ={n €M ']= —pnla},— - whe—re Py denotes the - nth - prime number... We.

let Re(M) denote {r(a):a € M}.

Proposition 1.5: (Scott-Tennenbaum [Sc~T]). If M| PA is nonstandard,

then Re(M) is a Scott set.

Proof: Let d € M be some nonstandard element.

Claim 1: Suppose a,b € M. Let oM — M2 be the usual recursive
pairing function a #—><cro(a), o.l(a)>. As M is a model of arithmetic
M l= Y&v Jw Vi< d (pilw <=> (Pgo(i)?[u A Pcl(i)]v))' Thus there is
¢ € M such that for any n€w M l= pn]c‘ <=> (poo(n)]a A pcl(n)lb)' Thus
r(c) codes r(a) x r(b). '

(a)

Claim 2: Suppose a € M and A STr(a). Say {e}r is the
characteristic function of A. Let B = {b € M:M ]= pbla}. M Dbelieves
B 1is finite. In M we can run computations {e}B for d steps. If
we input a standard number n, then {e}B (nj will only make oracle
queries to B about standard numbers and B will give affirmative
answers iff pnla. So the computation {le}r(a) (n) will be identical to
the computation {e}*@(n). In particular, as {e}B(n) will halt at
some standard stage, n € A iff {e}B(n) converges in d steps and
outputs one. As C = {m € M\im =d and {e}B(m) halts in d steps and

outputs 17} is M-finite, there is b € M such that for n =d pn‘b

iff n € C, Clearly A = r(b).




Claim ?; Suppose r(a) 1is an infinite tree T. Consider

T' = {0 € Zuzpd‘a}. For every standard =n, there is o € T' such that
]o[ =n and if T <o, then T € T', By overspill there must be a
nonstandard c¢ and a‘c € ZM such that ‘c] =c, c € T" and every sub-

sequence of o is in T'. Every standard initial subsequence of o 1is

. @ . .
in 2% so it must be in T. Thus the standard initial subsequences of

o form an infinite path through T. In M we can find a b such that
for any sequence T € 2C, Ple iff T C o. Clearly r(b) dis a path

through T. /]

Proposition 1.5 is the key model theoretic step toward Tennenbaum's
result that no nonstandard model of arithmetic can be recursively present-
ed. The next lemma is the key recursion theoretic step. Recall that
two sets A and B are d-recursively inseparable iff A h B=¢@9 and
there is no d-recursive X such that A € X and B ﬁ X =@, Given any
set d the sets Ad = {n:{n}d(n) converges with output 1} and
Bd = {n:{n}d(n) converges with output 0} are d-recursively inseparable

d-r.e. . See Rogers [R] for details.

Lemma 1.6: If S is a Scott set and d € S, then there is X €8

such that X fT d.

Proof: Let T be the tree {o € 22: If n € dom o and {n}d(n)

converges within’ [Gl steps, then {n}d(n) o()}. Let f € S be an

il

infinite path through T. Let X = {n:f(n) 1}. Clearly X = £, so

=
X € S, As X separates Ad and Bd’ X iT d. !/

In particular, every Scott set contains a nonrecursive element,

Definition 1.7: If M is a countable model of arithmetic we can think

of M as (0,9,0). We define Diag(M) to. be the set of atomic sentences




true in M. We will let deg(M) denote the Turing degree of Diag(M).
Henceforth all models of arithmetic will be assumed countable and of the
form (w,®,0). It is usefull to note that deg(M) is not an isomorph-

ism invariant of M.
Lemma 1.8: If M F PA 1is nonstandard and a € M, then r(a) <TDiagCM).

- Proof: - First note-that = € r(@) - iff 3Fy y +e-+4+ vy =12a so
pn—times

r(a) is r.e. in Diag(M). Further n £ r(a) iff

w3y g +y +eeedky = a.
O<1<pn pn—times
Thus {n:n £ r@)} is r.e. in DiagM). Thus =r(a) ETDiag(M). As

Re(M) is a Scott set, by 1.6 r(a) <TDiagCM). //

For future use we note that the way of choosing an index for

r(a) in Diag(M) is uniform in a. Tennenbaum's theorem is now obvious.

Corollary 1.9: (Tennenbaum [T]). If M F PA is nonstandard, then

deg (1) # Q.

We do not need the full force of PA to prove Corollary 1.9.
McAloon [Mc] shows that 1.9 still holds if we Weakén the induction schema
to formulas with bounded quantifiers. Wilmers [W3] has strengthened this .
by showing we need only the induction schema for formulas which in prenex
form have only bounded existential quantifiers. On the other hand
Sheperdson [Sh] has shown that if we restrict the induction schema to
quantifier free formulas then we can find recursive nonstandard models.

After 1.8 we stated that r(a) is recursive in Diag(M) uniformly

in a, Let us make this more precise.
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Definition 1.10: Let S C P(a) such that [S] =& . Let Eco . E

is a d-enumeration of S iff E 5 d and S = {En:n € w}, where

=T
En = {m:(n,m) € E}.

It might seem more natural to only require E STd, but the next

lemma shows these notions are equivalent for all interesting S.

Proposition 1.1l: If S c P(w), |S| =&, {X € S:0 € X} is infinite
= 0

and co-infinite ele d and S has a d-enumeration E, then S has
i *
an e—-enumeration E .

Proof: Find h:w -+ o bijective such that O ¢ Eh(n) iff
* - *
n €e and h STd. Let (n,m) € E 4iff (h l(n),m} € E. Clearly E
*
is an enumeration of S. E STe and since n € e if O € En’ e STd. //
Our notion of enumeration is tied in with the notion of weak

uniform upper bound in recursion theory. See Hodes [Ho] for details

Enumerations arise in arithmetic in the following way.

Lemma 1.12: If M F PA is nonstandard, there is a Diag(M)-enumeration

of Re(M).

Proof: Let E.E‘wz be {(a,n):M pn]a}. The proof of 1.8
and the subsequent remarks show that E is an enumeration of S and

E STDiagCM), The result follows from 1.11. //

The following notion of Solovay's seems unnatural but is quite
usefull,

Definition 1.13: If S is a countable Scott set, a d-effective enumer-

ation of S 1is a collection E C mz, flzmz - W, fz:a)2 -+ w and f

y e > W

3
such that:




i) E = Td and fl’fz’f3 are d-recursive.
ii) § = {En:nge w}e
iii) Efl(m,n) = Em x En.
E E

W .

. n w -
iv) If {e} € 2 then Efz(e,n) o

v) If E is an infinite tree, E is an infinite path
n f3(n)

through T.

Surprisingly effective enumerations arise naturally.

Lemma 1.14: (Solovay [Sol]). If M F PA 1is nonstandard, then there

is a Diag(M)-effective enumeration of Re(M).

Proof: TLet E be as in the proof of 1.12 (we will eventually
have to use 1.11 to pad E, but we ignore this complication). We must
define fl,f2 and f3.

1) 1In Claim 1 of the proof of 1.5 we showed that M F
Vu,v Jw Ji < d (pilw <> (Pco(i)!u A pci(i)]v)). By Martijasevi;'s
theorem [D-M-R], there is a quantifier free formula w(u,v,w,x,z) such
that PA.F [Vi < x (pi[W <> (Pco(i)lu A pol(i)[v))] <=> 3z Y (u,v,w,x,z).

We define fl as follows. Given a,b we search for a ¢ and a
¢ such that ¢(a,b,c,d,3). This search can be carried out effectively
‘in Diag(M). We will eventually find such a c and Cc. The first time
we do we let fl(a,b) = c.

2) In Claim 2 of the proof of 1.5 we showed that Ml=
Yu,v Jw Vi < d (PiIW <=> {v}{b:pblu}(i) converges in d steps and out-
puts 1), where this is suitably formalized using the AO definition
of the Kleene T-predicate. As above we can replace the bounded quanti-
fier portion of this by an existential formula. We can effectively
r(a)

search for instantiations of the existential formulas and if {e} € 2

w

’
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the witnesses we find will give a ¢ coding Wz(a). Let fz(e,a) = c.
3) Given any u € M, Ml= "IJv,o € pa such that o is in the

finite subset of é& coded by {b ¢ M:pbiu}, and o is of maximal

length such that eﬁery initial subsequence of o 1is in the set coded

by {b € M:pb[u}, and Vi < lGl pilv <= oc(d) = 1." If r@) is a

tree and c¢ witnesses this, then ‘r(c) is an infinite path through

T. As in 1) and 2) above Werééﬁ"répléce'fhéfA04part of this by an

existential formula and effectively search for witnesses. We define

f3(a) to be the least such witness. //

At first d-effective enumerations seem much rarer than d-enu-
merations, but we will show in §7 that if there is a d-enumeration of
S, then there is a d-effective enumeration. From time to time we will

tacitly use the following fact.

Proposition 1.15: If there is a d-effective enumeration of S and

e = d, then there is an e-effective enumeration.
Proof: As in 1.11. ' /!

When studying models of arithmetic from a recursion theoretic
point of view, we are forced to look for invariants of M which have
a recursion theoretic character. One candidate is Re(M). Another is
Th@®), the complete first order theory of M. The remainder of this
section is devoted to the»relationship between Re(M), Th(M) and
deg(M). Our principle model theoretic tool is the following result

implicit in Friedman [Fr].

Lemma 1.16: Let M be a nonstandard model of PA. Let T(V,E) be a
recursive set of Zn—formulas in the free variable v and parameters

E‘; which is consistent with ThGﬂ,E). There is an a € M realizing
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T(v,c).

Proof: Let Satn be the Zn—predicate defining satisfaction

for Zn formulas (i.e., if ¢C§) is a Zn—formula and a €M,
M F Satn(fbﬂqgﬁﬁ <> o0(a) . Let TSR be a recursive listing

of T. Using the fact that recursive sets can be represented in arith-

metic, we can find a formula T (v,w) such that for any a € M,

M VeQh(a,m) <—>Satn(§-§(\0yi @) ). As T(v) is consistent, for
any n € MZF Tw ¢(n,w;j Thus, by overspill this must also be true
for some nonstandard a € M. Let b witness this. Then b realizes

T@). //

Corollary 1.17: If M[= PA is nonstandard, then for each n € ®

ThM) N Zn € Re(M).

Proof: Let T(v) be the type {p 0 v <=> ¢:¢p € Zn}. By 1.16

T(v) is realized in M. /1l

Corollary 1.18: (Fefferman [F]D. If M F Th(N) is nonstandard, then

Re(M) contains all arithmetic sets,

on
Knight showed that 1.17 gives the only restriction the complete

theory of a countable model of PA with a given Scott set.

Theorem 1.19: (Knight [K1]). If S is a countable Scott set and T

is a complete extension of PA such that every T N Zn € S, then there

is ME T with Re() = S.

We will show that for any countable Scott set S, there are
arbitrarily complex T such that for any n T (1 Zn € S. We will need

the following lemma used by Harrington [H].
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Lemma~l.20: There is a recursive sequence of sentences 02,03,04...
such that o is a. An sentence and o is independent of PA urT,

where T is any set of anl sentences consistent with PA.

Proof: Using Gddel's diagonalization lemma [Sml], we can find

a Rosser sentence oﬁ such that

quﬁr<f>>v1fqthere is a proof of o, from true Zn 1 sentences,

then there is a proof with smaller Godel code of 5oh from true i;—l
sentences." Here by proof we always mean proof from PA.

o, is easily seen to be Hn. Let o% be the sentence "Either
there is no proof of o, from true Zn—l sentences or there is a
proof of TOﬁ from true Zn—l sentences for which there is no proof

of o, from true sentences with a smaller Gbdel code." The

Zn—l

first disjunct of o' is II__,, the second is % . Thus o' is Z_.
n n-1 n n n

Further, PA | o, <> c&, so o is An.
Suppose T C 2 is consistent with PA and T U PA F O .
- — "n-1 ' n

Then there is a proof of PA from true sentences, so there is

Zn—l
a proof of 7o - Hence PA'UT F o, a contradiction. On the other
hand if T U PA } o then there is a proof of o, from true Zn—l

sentences. Hence T U PA F Oﬁ, a contradiction. Thus o is suffi-

ciently independent. /]

Theorem 1.21: If S is a countable Scott set and d € 0w, there is a

complete extension T 2 PA such that T 0 Zn €S for each n € @ and

<<
d _TT.

‘Proof: We will build T as a union of TO_E_Tl E.Tz.E"' such

that for n=1 TNZ CT C2 , each T €5 and T 1is a complete
n— "n— "2nt+2 n

extension of PA. let TO = @. Let 02,03,04... be as in Lemma 1.20.
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. ' *
Step n: Suppose we have Tn—l < 2y Let T = Tn—l UPAU {o}. Where

*
¢ is Ty 49 if n€d and 7o, .. if n £d. T 1is consistent and
* Kk
T" € S. Thus by 1.3 there is a complete T 2T in S. Let T =
xk 1
T n 22n+2' early, Tn € S.
Let T =U Tn. It is easily seen that each T ] Z‘.n is in S
. . < '
amdas €3 AfE oy €T dsE

Tn Theorem 1.27 we will show conditions sufficient to insure

there is T d and in Section 7 we will show these conditions are

=7

necessary.

Definition 1.22: Let T be a complete extension of PA. Wesay X Cow

is reEresented in T iff there is a parameter free formula ¢(v) such
that for each n € @ n € X iff o¢(@) € T. Rep(T) is the set of all

subsets of ® represented in T.

Lemma 1.23: If T is a complete extemsion of PA, T # Th(N) and M

is the minimal model of T, then Rep(T) = Re ).

Proof: First note that since PA has definable Skolem functiong
there is a pointwise defimable minimal model of T. Let o¢(v) be a
parameter free formula. Let T'(v) = {pnlv <->p(n):n € w}, By 1.16
T is realized in M by some element a. But then o) iff n € r(a),
so Rep(T) € Re(M).

Let a € M. As M is minimal there is a formula {lf(v) such
that ME ¥(@) A Vv @) »w = a), Let ¢(v) be the formula VW({[/(W) -
pvlw) A EW(_\.II(W) A pV[W). Then pn]a iff o) € T. So r(a) € Rep(T).

Thus Rep T = Re(M). //

Corollary 1.24: (Scott-Tennenbaum [Se-T]). If T is a complete exten-

sion of PA, then Rep(T) is a Scott set,
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Proof: If T # Th(W) this follows from 1.23. If T = ThlN),

then Rep(T) is just the arithmetic sets. /]
Scott [Sc] proved the converse of‘l.24.

Theorem 1.25: (Scott [Sc]). If S is a countable Scott set, there

is a complete T D> PA such that § = Rep (T).

" We will modify Scott's proof to obtain an effective version of
1.25. We use the following lemma.
Lemma 1.26: For each n > 2 there is a recursive sequence of An

n . n n
sentences Yg,YysYoess such that for any set of Zn—l formulas T,
which is consistent with PA, and any T ¢ 28 PAUTU { M\_Y? A
T(1)=1

M 7y2} is consistent.
T(i)=0

Proof: Using Godel's diagonalization lemma we can find Y?
such that Y? <-> "For any proof of Y? from PA, true Zn—l sent-
ences and the true assignment of Yg...yz_l, there is a shorter proof
of 1Y? from the same hypothesis.'" The verification that this sequence
works is similar to the verification in Lemma 1.20. We use heavily the

inductive assumption that Y;""’Y?—l are A_. //

Theorem 1.27: Suppose there is a d-effective enumeration of a Scott

set S. Then there is a complete T 2 PA such that Rep(T) = S and

T =.d.

T

Proof: Let E, fl’fz’fB be the d-effective enumeration of S.

Recursively in d, we-build T = U Tn where T, C T

0 ST, Ceeey T €5

1 n

TN Zn E-Tn.E~22n+2 and T is a complete extension of PA. Let TO = f.

Step n 2m: (We proceed as in the proof of 1.21). Let s be such
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that ES =T Using fl and f2 we can effectively find an o

n-1°
such that ESO = Tn—l UPA U {¢} where ¢ 1s o, .4 if n €d and
10, 41 if n £d (here <o _:in € w> is as in Lemma 1.20), and an s;
such that ES1 is a tree with every infinite path yielding a complet—
ion of ESO. Using f3 we can effectively find t so that Et is a
,”P?th throughESl.>Finally, us?ng ,?l,,a?ﬁ,,ﬁz Vwe can find t' such
that E#, = Et n Zo 40" Let Tn = E .

g’

). Let s code

Step n = 2mtl: (We try to code Em into T N 2ol

Tn' Using fl,f2 and f3 as above we can find a t so that t

%
codes T N Z2n+2’
2n+l

{Yl ic¢ ﬁm} U {7r

where T* is a completion of Tn-l Urpa U
AT

As our construction is recursive in d it is clear that T sTd.
Tt also follows that T is a complete extension of PA, T n Zn €S
for each n € w, and E@ ETT N Z4mf3. Since each T N Zn €S,

Rep(T) € S. But since each Em € S is recursive 'in some T Zn and

Rep(T) is a Scott set, S C Rep(T). Thus Rep(T) = S. //

Tn Section 7 we will sharpen this result to give a necessary
and sufficient condition.

Earlier we wondered what effect our choice of Re(M) has in
determining Th(). The next easy corollary shows it is very small.

2,

Corollary 1.28: Let S Dbe a Scott set. There are distinct {Ma:a < 2 '}

such that M = 1s minimal and Re(Mﬁ) = §. TIn particular, if a # B
Ma £ MB.
In fact, even after we have fixed iRe(M) and ThM) we are

a long way from characterizing M.
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Proposition 1.29: Let S be a Scott set and let T # Th(@N) be complete

('a.l
such that Rep(T) = S. There are {Ma:a < 2 O} such that for each

M kT, Re®) =5 and M| = @ but if a B M F Mg

Proposition 1.2 follows from a deep theorem of Gaifman via a

simple observation.

Lemma 1.30: If M,N|F PA and N is an end extension of - -M--then .. -

Re(M) = Re(N).

Propf: let a € N and let b € M. Consider the type T(v) =
{pn]v <—> pn[a:n € o} U {v < b}. This is consistent and hence realized
by a ¢ € M. Then r(a) = r(e). /!

&
Theorem 1.31: (Gaifman [G]). If M} PA 1is minimal, there are 2 0

nonisomorphic countable elementary end extensions of M.

In Section 5 we will restrict our considerations to recursively

saturated models. Here Re(M) and Th(M) determine M up to. ispmorphism.




of _effectively inseparable x.e. sets,

§2. DEGREES CODING COMPLETE EXTENSIONS OF PA.

In this section we will survey some of the known results on
degrees coding models of arithmetic., Tennenbaum's theorem (Corollary
1.9) shows that if M is a nonstandard model of PA, then degM) £ Q.
More precisely, there is X STDiag M such that X separates a pair

,,,,, (Recall r.e, sets A and

B are effectively inseparable if there is a partial recursive funct-—

'ion v(x,y) so that if A.E_WX, B E_W& and WX N W& = ¢, then

V(x,y) € ® (W% U Wy). The sets A¢ and B¢ used in 1.6 are effect—
ively inseparable as are the sets {rmszAl— ¢} and {rmj:PA F T},
See Rogers [R] or Smullyan [Smt] for more information.) We have also

shown that Diag(M) enumerates a Scott set. The following theorem

gives a complete classification of degrees coding nonstandard models

of PA. It appears (with the exception of iv) in Simpson [Si] where
it is attributed to a combination of Scott and Tennenbaum [Sc-T],

Solovay and Jockusch and Soage [J-S].

Theorem 2.1: The following are equivalent.

i) There is a nonstandard M k PA  such that Diag() ;Td.

ii) There is a complete extemsion T of PA such that T = d.

=T

iii) There is X sTd which separates a pair of effectively
inseparable r.e. sets.

iv) There is a d effective enumeration of some Scott set S.

Before embarking on the proof of 2.1 we prove a usefull padding

lemma.

Lemma 2,2: If M‘= PA  and er > Diag(M), then there is N =M with

Diag (N) =pee
16




17

Proof: Let M = (0,®,0). We can find an e-recursive bijection
fiw - @ such that for any n € @ n € e iff M F "f(m) is even."

Define &' and ©' so that

B

Gi

8
1l

m, iff f(mo) ® f(ml) = f(mz)

2

1 ™

=

Q‘

B
I

if f(mo) 0 f(ml) = f(mz).
Let N = (0,®',0'). Clearly, f:N - M is an isomorphism and

Diag (M) =€ /!

We can now prove the equivalence of i), ii) and iv).
i) = iv) This is Solovay's Lemma 1.14,
iv) = ii) Thislfollows from Theorem 1.27.
ii) = i) Given any T by an effective‘Henkin argument we can find
M % T such that the full diagram (Diag*Gﬂ)) of M dis recursive in
T. By Lemma 2.2 we can pad M to N F T witﬁ Diag (N) ETT.

A corollary to this equivalence is the following unpublished

result of Solovay.

Corollary 2.3: If T is a complete extension of PA and en > T,

there is another complete extension T' where T' ETe.

Proof: This follows from 2.2 and the i) = ii) portiom of 2.1.
(For the sake of completeness we would like to sketch Solovay's original
proof) Let PPy sPye - list all sentences in the language of PA. At

any stage s we will have formed a sentence Ws a conjunction of ¢

or Twi i < s, Assume at stage s = 2m ¢s—l is consistent with PA.
. . . . ' i Ly |
Ask T if Ws—l Ao~ is consistent with PA. If T} Con( Vo_q Aoy )

' . . . 0
then Ws is consistent with PA as Hl sentences are preserved under
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initial segments. If T I Condrws_l A @mj), ask if T} Con(r{lxs_l A
7¢mj). If it does, let vs = Ws—l A TQ Suppose T |- TCon(rws_l A
wmﬂ) A 7Congiws_l A 7¢m1). In T we can prove there are x and ¥y
such that x and y are the least Godel codes of a proof of 0 =1
from ¢s—l Aoy and ws—l A 7¢m, respectively. As ws is consist-
ent with PA at most onme of x and y may be standard. Thus if we
add i@m; to sz_l ‘to maximize the code of the shortest proof of a
contradiction, we maintain consistency. This step can be done recur-
sively in T.

At stage s = 2mtl we use the independent sentences from 1.20

as we did in 1.21 to code e into T. (The entire construction can

be dome recursively in e.) ‘ //

Another corollary to the equivalenceé we have preved so far is
the following corollary which generalizes the Scott-Tennenbaum result
that no complete extension of PA has minimal degree. (Jockusch
and Soare [J-S] have shown that any countable partial ordering can be

embedded in the Turing degrees below a complete extension of PA.)

Corollary 2.4: If T is a complete extension of PA, then there is

another complete extemsion T' such that T' <TT.

Proof: By ii) = iv) there is a Scott set S with a T effect-
ive enumeration. But by 1.3 S contains T' a complete extension of
PA. By 1.6 T <TT. !/

Continuing the proof of 2.1, we notice that our proof of 1.9

shows i) = iii). We will finish the proof by showing iii) = iv). We

use the following theorem of Smullyan.
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Theorem 2.5: (Smullyan [Smul]). Suppose (A,B) and (c,D) are two
pairs of effecﬁively inseparable r.e, sets. Then there is a recut=
sive bijection f:w - ® such that £(A) = C and £(B) = D. More-
over, given indices for A,B,C,D and the functions witnessing effect-

ive inseparability, we can effectively find an index for f£.

_ Proof of iii) = i): Let 912092 Pg" ~ s list all sentences in the

language of PA. Let (A,B) be a pair of effectively separable r.e.

sets. Let WO(x,y) witness this. Let X sTd be such that A c X
and BN X=0. Let Py = {p:PA] ¢} and Ry = {p:PA F o} As
noted above PO and RO are effectively inseparable. Let wl(x,y)
witness this.

We build a complete theory recursively in X. At each step s
we build GS a finite conjunction of i@i i<s, and r.e. sets
Ps = {@?PA.F GS >0} , RS = {m:PA.F GS -+ 1p}. As long as 95' is
consistent with PA, PS and RS are effectively inseparable r.e.
sets. Note that wl(x,y) is still a witness for the inseparability
of . PS and RS. Thus by 1.4 we can effectively find a recursive bijec-

tion f:w - @ such that £(A) = PS and f£(B) = RS. Look at P

Recursively in X we can decide if Py ¢ £f(X). 1If it is, let

es+l = es NOyq As f(X) separates PS and RS, PA V OS > 19
so 0_.q is consistent with PA. If i1 £EX), let 6, =6 A
04 q- As GS+1 £ £(X), PA V GS 4-¢;+l. Thus es+l is consistent.
let T = {Gs:s € w}. T is a complete extension of PA and T EDd, By
Corollary 2.3 we can find another complete T* such that T* sTd.

This concludes the proof of Theorem 2.1. //

Theorem 2.1 can be extended in several ways.
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*
Definition 2,6: If M= (0,9,0) F PA, let Diag (M) denote the full

* *
diagram of M. Let deg (M) be the Turing degree of Diag (M).

Tt is easily seen that the ii) = i) proof of 2.1 gives M[= PA
*
with Diag (M) ETd- Further, 2.2 shows that if there is M F PA with
* .
Diag (M) sTd, there is N =M with Diag(M) sTd. Thus we could add
to 2.1 the equivalence, v). There is a nonstandard M F PA with
*
Diag (M) =, d.
T
We will show in Section 7 that we may also add the equivalence

vi). There is a Scott set S with a d-enumeration.




§3. DEGREES OF MODELS OF Th (W) -

Tn 2.1 we characterized the degrees coding some nonstandard
model of Th(@®). Suppose we fix T a completion of PA. What de-
grees code nonstandard models of T? One negative restriction is

apparent.

proposition 3.1: If ME PA, then deg(M) (m)}:t? Th@®). =

Proof: This is clear since Thﬁ ) ST (ThZ M))' uniform—

. n+1 n
ly in 0. //

This bound seems somewhat loose as we know that if M is non—
standard each ThZ ™) ETdegGﬂ). But Harrington [H] showed that it is
n

the best possible.

Theorem: (Harrington [H]). There is a nonstandard M F PA. such that

Diag(M) =< 0', while ThQ@®0) ETO(@).

On the positive side, if T # Th@) and e Tz T, then the
usual Henkin arguments and Lemma 2.2 guarantee the existence of a non—
standard Ml T with Diag(M) Spe. This is still true for Th(@)
though we must excercise some care to insure that the model produced is
nonstandard. Knight showed that this condition is unnecessary for '
Th (V).

Theorem 3.3: (Knight [K2]). There is a nonstandard MLF Th(@) with
Diag (1) <T0(°°) )

Proof: Let C = {Ck:k € w} be a set of Henkin constants. We

will build M from the comstants C. Our construction of M will be
(@)

recursive in 0 7. Let T, = Th@) U {co > n:n € w}. Note that, by

21
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overspill, a sentence @(;O,...cn) is consistent with TO iff

Yy 3x0 >y 3Xl...3xn m(xo,...xn) ¢ Th(). Thus we can test consist~
(@)

ency with TO recursively in O We will build consistent theor-

jes T, CcT. T, 6 C... such that

. T . .. . T .
i) oL is a finite extension of 0

iii) For each e € ® there is a finite set of basic sentences

X and an m € o such that X E_Tm and for some k € w either:

2) {eF(k) =1 and" k £ 0@,

(w)

b) {efKCk) 0 and k €0 ; or

\
¢) for all X' 2 X included in any Tn {e}X (k) does mnot

converge.

Requirement ii) is handled in the usual manner. Suppose at
stage n we want to handle requirement iii). Suppose this cannot

be done. Then there is a finite set of basic sentences X' such that

(@)

for any k € w, k €0 iff there is a finite set of sentences

X 2 X' such that Tn U X is consistent and {e}X(k) = 1. We see

from this that there is a formula ¢(v) in the language of arithmetic

(w) (w)

such that k €0 iff N} ¢(k). But then O is arithmetic, a

contradiction. Thus we can always find an X and k to satisfy iii).

Let Tn+l = Tn U X.
Let M be the Henkin model of UTn' Condition iii) insures
o) #, Diag(Qf). Hence o(-‘”)T> Diag (). /]

Fefferman's result (1.18) shows that if Ml= Th(N) is nonstand-
ard, then deg() 1is greater than every arithmetic degree. Jockusch

asked what other restrictions could be placed on deg() and Knight
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conjectured there were none.

Knight's Conjecture: If for all n € », d Tz O(H), then there is

M| Th@®) such that Diag(¥) =.d.

In [K-L-S], Knight-Lachlan—Soare shows that Knight's conjecture

is false, by producing a degree d above all the arithmetic degrees

2
~such that if E Cw and E =d, the {En:n ¢ o} does not contain

all the arithmetic sets. (In the language of recursion theory 4 1is
not a subuniform upperbound for the arithmetic degrees.) By 1.17 this
shows there is no nonstandard M F Th() with deg(M) = d. Recently
Lerman [L] has shown that there is a degree d above all the arith—
metic degrees such that d is not a subuniform upperbound for the
arithmetic degrees and d' = Qﬁm). (The Knight-Lachlon-Soare example
has 4" = O(m)). This refuteé a conjecture of the author from [M].
Before Knight's conjecture was refuted, there were se&eral

positive results. Before sﬁating them let us recall some facts about

(w)

the degrees below 0 . For proofs see [E].

Theorem 3.4: i) (Enderton—Putnam). If for all n € ® d = O(H),

then 4" Tz OQw).
ii) (Sacks). There is a d such that for all n € 42 O(n)
and a" = 0@,

Theorem 3.5: (Marker [M]). If for all n € o 4d Tz O(n), then there

is a nonstandard Ml= Th(@) such that Diag() sTd'.

Section 4 is devoted to the proof of 3.5. Theorem 3.5 and 3.4 ii) -

give the following immediate corollary.

~Corollary 3.6: There is a nonstandard M= Th@®) such that (Diag())'

(w)
©
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Corollary 3.6 can be thought of as an analog of the Jockusch
and Sogre result that there are nonstandard M|= PA with (Diag(Q))'

=r 0'. Theorem 3.5 and Corollary 3.6 were strengthened by Knight-

Lachlan—Soare.

Theorem 3.7: (Knight-Lachlan—Soare [K-L~S]). If for any n €

d 2 Q(n),” then there is a nonstandard M | Th@) with (Diag())'

_aqt
=Td .

Corollary 3.8: There is a nonstandard M|z Th(@®) such that Diag(D"
(@) '
TO .

These results still shed little light on Jockusch's problem.

Solovay provided the final solution.

Theorem 3.9: (Solovay [So]). Let S be a Scott set containing all

the arithmetic sets. There is M F Th@®) with Re(M) = S and

Diag (M) sTd iff there is a d effective enumeration of S.

This will be simplified in Section 7.




84, THE PROOF OF THEOREM 3.5

This section is devoted to the proof of Theorem 3.5. This
proof uses a construction first used by Harrington in his proof of
3.2. We will actually show that if for every n € o d Tz O(n), then
there is a nonstandard M F Th(®) such that Diag(M) STd'. Theorem
3.5 follows from this using Lemma 2.2.

We will describe a three worker construction Which produces é -
complete, consistent, Henkinized theory T such that M is the canon-
ical model of T. Worker 1 will use oracle d' and produce the
Zl—diagram of M. Worker 2 Will use oracle d" and build the Zz—dia—
gram of M. Worker 3 uses oracle d"' and constructs the full diagram
of M. As every arithmetic set is recursive in d, O(w) STd" by
3.4 i). Thus workers 2 and 3 each have access to Th(N).

| Let L be the language of Peano Arithmetic. Let C = {ci:i € w}
be a set of Henkin constants. For i = 1,2, let {@§:j € w} be a
recursive listing of all Zi—sentences in L(C). Let {¢§:j € w} be
a recursive listing of all L(C) sentences, We denote the set of
Boolean combinations of Zn—formulas as bZn. Bn(S) will denote all
bZn consequences of S allowing no constants from C mnot already
mentioned in S. For i = 1,2, let {r?(v):j € w}  list all sets f
of bZi formulas allowing one free variable v and finitely many con-
stants from C such that r is r.e. in d.

We will assume, via the recursion theorem, that each worker
knows the others' strategies. That is, we actually describe a recursive
function g such that if x 1is an index for the strategy used by work-

er ntl, g(x) will be an index for the strategy used by worker n.

25
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By the recursion theorem there is a natural number e s.t. for any
oracle A Wé = Wg(g). We use the strategy given by index e.

By any stage s worker Jj will have committed himself to a

finite conjunction Ti chosen from {@i,qwi:i < s}. T will denote

{Ti:s € w}., We will arrange things so that Tl EbTZ_E T3, Th(N) c T3

3 . .
and T is complete, consistent and Henkinized,

n+l o S SR
As d( ) is r.e. in d(n), worker n may enumerate worker

ntl's oracle and approximate the actions of worker ntl, For =n = 1,2

nt+l . . . +
let K, , i =3 denote worker n's approximation to T? 1 based on

1,]
: .
the j h approximation to d(n+l)

n+l , . n+l
K converges we continue enumerating d( )

i,]
d(n+l).

.. To insure our computation of
and dovetail computa-

tions using better approximations to As worker n+l's comp-
. o+l | . . .
utations of Ti i =j converge, we will eventually find a convergent

+
computation of KP 1

i,]
(n+l) ' .
d to correctly answer all of worker n+l's stage i oracle

1 =j. In time we will have enumerated enough of

queries. Thus, for each .i there is an s such that, for any s' > s

I L
i,s i

For any s and i < s, worker 2 will form a set Ui(s) which
is r.e. in d. (To be perfectly correct, worker 2 will find ui(s) € w
which is an index for Ui(s) in d. We will not distinguish between
Ui(s) and ui(s) unless significant confusion arises.) Ui(s) will

contain BZ(ThGN) U Ki S). Note that for some m € w Ki < is a set of

b

2. —sentences. Thus B, (Th(N) U K? ) = {¢ € bZ,: all constants in ¢
m 2 i,s 2

)

are contained in K? and Th GN)]— VE(K? - ¢)}. As Th
L 158 w4

3 »S Zm+4
=d, BZ(ThGN) U Ki S) is r.e. in d,

Z
T
If Pi(v) ends up consistent with the full diagram of M, there

will be a large s' and c¢ € C such that for any s = s' Ui(s} 3~Fi(c).
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and worker 2 has oracle d", worker 2 could maintain consistency of
Tl U Th@) U Ti. (Note that as Tl E'Zl and Tl‘U ThZ (N) dis consist-
ent, Tl‘U Th(@) is consistent.) Similarly, worker 3 iould insure
Th(@N) U Tl 8] TZL) T3 is consistent, while completing TS.

The difficulty arises in insuring‘that T3 is Henkinized. For
example, suppose worker 2 writes down 3Ix Vy wa,y,E) where _¢ 1is
quantifier free. Tn order to provide a witmess for Vy o(x,y,c) we
must insure worker 1 has set aside a comstant ¢, such that Hy(co,y,z)
is not in Tl. Similarly, if worker 3 writes down Ix Yy Iz @(x,y,z,E),
worker 2 must set aside a CO

2

T~ and for any N worker 1 must insure 3Jz @(co,cl,z,z) is in Tl.

such that Iy Vz @(co,y,z,E) is not in

This difficulty is overcome by our approximation procedures. If
worker 2 writes down 3Ix Vy ¢(x,y,c)? there will be a later stage where
worker 1 realizes that worker 2 wants a witness to Yy @(x,y,z). At this
point worker 1 will find a ¢ such that none of the workers could have

0

by this point and set c, aside as a witness (i.e.,

considered c 0

0
worker 1 will not write down 3y w(co,y,z)). As worker 2 will realize
that worker 1 has done this, worker 2 may at some point write down
Yy Q(co,y,z). From this point on everyone is committed to this choice.

Providing a witness for a Zg—sentence EXQ(X) where n > 2, is
a bit more complex, First, worker 2 must provide a witness for the

%.-consequences of VY(x). Secondly, this witness must also have been

2
provided by worker 1 as a witness to the Zl—consequences of ¥&x). To
insure this occurs, workers 1 and 2 attempt to partially saturate the

model. Namely, if they believe it is consistent with the actions of

higher level workers, they will set aside a witness for Ti(v).
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We will arrange things so that for each i, there is a t such that
if s =2t Uz(s) = Uz(t) (in fact uz(s) = uz(t)) U2 will denote
- i~ i ’ i i : i
Ui(s) for such an s).

Worker 1 will calculate Ki s approximating Ti. He will also
3

calculate 6j(s,t), an approximation to u?(s) based on the tth

approximation to df.W7Aj§s?t) will be Fhe set r.e. in d with
index ﬁj(s,t). At some stage t, worker 1 will have enﬁmefatéd arﬁﬂ
sufficient portion of d" to guarantee that for any t' =t Gj(s,t‘)
= u?(s). As above, whenever possible we suppress Sj(s,t) and con-
centrate on Aj(s,t).

For i < s, worker 1 will form a set Ui(s) r.e, in d
(again, we really find an index ui(s) for Ui(s)). Ui(s) Wiil
contain Bl(ThGN) U Ki,s U Al(i,s) UeeoU Ai_l(i,s)). Note that, as
above, this is r,e. in d and in fact, given indices for

. . 2 .
Al(l,s)...Ai_l(l,s) and Ki,s’ we can compute an index for Bl(ThGN)

§] Ki < U Al(i,s) U.--U Ai_l(i,s)) effectively in d'. 1If rin) is

’

eventually consistent with the full diagram of M, there will be a

constant ¢ € C and a stage s such that if s' = s, then Ui(s')

1

E_Ti(c). Again we will arrange things so that lim ui(s) exists. Ui

s

will denote 1im Ui(s).

S

The basic ideas:

Before detailing the construction, we should outline some of the
ideas behind it.

There would be no difficulties involved if we only had to maintain

the consistency of Tl, T2 and T3 while completing T3. Worker 1

would make sure ThZ @) U Ti is consistent for each s. As Tl ETd‘,

4
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Witnessing Fi(v) is given priority over witnessing Ti(v) for
i < k, to make sure all guesses settle down. If it is comsistent for
worker 2 to realize Fi(v), then it must be consistent for worker 1 to
realize Bl(Fin)) so worker 1 will have done so. Thus, worker 2 will
be able to choose a witness. Similarly, if it is consistent for worker
3 t? write down 3x $Cx), then it must have been consistent for worker
2 to realize BZCWCV)). Hence, Workefréwéﬁéf ﬁave done so;

One final point should be made. As worker 1 does not have access
to all of Th(N), he can not uniformly compute the consequences of for-
mulas of arbitrary complexity. For this reason we have the intermediate
worker 2, which, while it could maintain consistency with Th@), res-
tricts itself to producing the Zz—theory to keep worker 1 happy. Worker
3 may produce sentences of arbitrary complexity, since worker 2 has

the resources to compute their consequences.

The construction:

Worker 1: Stage s.

Worker 1 first enumerates a bit more of d'". As worker 1 knowsg
worker 2 will be maintaining consistency, worker 1 will enumerate enough
of d" to insure that the computations of K% < and Al(i,s)...Ai_l(i,s)

b

. 2 . . .
converge for i = s, and that Ki,s U Al(l,s) U...U Ai_l(l,s) is con

sistent for i = s. Here, by consistent, we mean consistent with Th ().
At first it may seem that this task is beyond worker 1's abilities as

he only has d' as an oracle. But if X E‘bZ then X U Th®) is

2

consistent iff X U ThZ (M) is consistent. As ThZ ) <Td’ this can
4 4

be checked effectively in d'.
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If ¢i is quantifier free, worker 1 sets Ti = Ts—l Aoy OF

T:L = Tl A 1@1 to maintain consisﬁency of
s s-1 S
2
X i “en i
*) ThZ4GN) U Ki,s U Al(l,s) Ue--U Ai_l(l,s) U

1 1 1
Ul(s—l) Ue.-U Ui_l(s—l) U Ts’

for all 1 ﬁ j < s for the largest possible j. If ¢i is mnot quanti-

fier free, worker 1 sets Tl = Tl A Ql or Tl = Tl to maintain
S 1 s s s-1

o
consistency of (*) for all 1 = for the largest possible Jj = s.

We next define U%(s), i < s. Let x5  denote K? U A, (d,s) U
i i i,s 1
1

1
i—l(s) 8] Ti.

3 l a o
<. U Ai_l(l,s) U Th24 @®™) U Ul(s) g---uu

Case 1: i < s-1 and Ti U Xi U Fi(v) U Ui(s—l) is consistent.

a) 1If Ui(s—l) contains a realization of Ti(v), then the set
1 _ s 1
Ui(s) = Bl(xi 8] Ui(s 1)).
b) If Ui(s—l) does not realize Ti(v), find a constant c

which no worker could not.havé used by this stage. Let

1 s 1 1
Ui(s) = Bl(Xi 8] Ui(s—l) U Ti(c?).

Case 2: 1i < s-1, Tl ux®u T%(v) is consistent and Tl uxSu f%(v)
—_— s i i s i~ i

U Ui(s—l) is inconsistent. Let Ui(s) = BlCXi U Ti(c)), where c¢ 1is

a constant which no worker could have used by this stage.

Case 3: i< s-1 and Ti U Xi U Ti(v) is inconsistent.

1 s 1 . . 1 _ s 1
If TS U Xi U’Ui(swl) is consistent, let Ui(s) = BlCXi U Ui(s—l)).

A 1 _ s
Otherwise let Ui(s) = Bl(Xi).

Case 4: i s-1. (In this case Ui_l(s—l) is not defined). a) If

1
TS U Xi U Fin) is consistent, let c¢ be a new constant and let
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1 _ s 1
Ui(s—l) = BlO(i U Ti(c)).

1 s 1 . s . 1 = 8
b) If TS U Xi U Fin) is inconsistent, let Ui(s) = Bl(xi).

This concludes worker 1's construction.
There are several things to notice.

-Our program is to maintain consistency, while, if at all possible, |

lower index. We also give priority to our earlier witnesses.

1
-By induction it is easily seen that each Ui(s) is r.e. in d.

1 1

—Suppose at stage sg, Ul""Ui—l have settled down and for
2 2 ' 2.\ _ . . .
s Z 8> Kj,s = Tj and Uk(j) = Ak(j,s) for all k< j <i. Then from

this stage onward Xi is fixed. Since for s > 50 Ti will be chosen
to maintain consistency with Ui(so), once we maké the decision to omit
Tin) or realize it with ¢, we will never be forced to back down from
this choice. Thus for s = sov+ 1, Ui(s) = Ui(so+l). Thus 1lim Ui(s)

s
exists.

Worker 2: At stage s worker 2 will be in either the "active' mode or

the "waiting' mode.
Worker 2 knows that for each 1 there is an s such that if

s' =2 s ui(s') = ui(s). The condition Vs' = s ui(s‘) = ui(s) is

. . g s 1 1
recursive in d" so worker 2 may calculate indicies for Ul""Us—l'

3 .
Worker 2 enumerates more of d"' and calculates Ki o0 1 < s.
H

As worker 3 is maintaining consistency, worker 2 may enumerate enough

I our® v

1 1
ut i i e
of d to insure the consistency of T U U] U..-U U, 91

K? . U Th@®) - for i = s.

>

Case I: Worker 2 is in the active mode.
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Worker 2 considers the next ¢i which has not been attended to

2 2 2 2 , 1 2

o1 A ¢; or Ts = Ts—l to keep Th@®) U T U TS U

U1 Yool U1 8] K3 U Uz(s—l) Us.oU U2 (s-1), 1 = j cansistent for
1 i,s 1 D 4=l -2 -

2
and sets TS =T

1 s—
as large a j <= s as is possible.

3

We must define U?(s) for i< s. Let X? denote T? U K, U
i i i i,s
2 2 1 1 1 2
Ul(S),U ,Hq ?if;gé)' Fet WS qenote T ,U‘Ul §) W,U,vs_l U T -

Case 1: i < s-1 and Ws U Xi U Fi(v) U Ui(s-l) is consistent.

a) 1If Ui(s—l) contains a witness for Ti(v), then set

2

U, =
i

s 2
BZCXi U Ui(s—l)).
b) If Ui(s—l) contains no realization of Ti(v), we calculate

2 2 2 2 .. .
Bl(Ts—l U Fi(v) U Ul(s) Ue--u Ui_l(s)). This is r.e. in d and thus

is F%Cﬂ) for some & € w. In d" we may calculate £. Worker 2 sets

2
Uj(s) = B2(X§) for i <3j < s and goes into the waiting mode to find

a witness for Pi.

Case 2: i < s-1, QS U Xi 8] Ti(v) is consistent while Ws U Xi U Ti(v)

2 . . . .
u Ui(s—l) is inconsistent. In this case we act as in 1b.

Case 3: Ws U Xz U Ti(v) is inconsistent.

a) if i < s-1 and WS U Xi Uf’i(s—l) is consistent, let

2 s 2
Ui(s) = Bz(_Xi U Ui(s—l)).

. A 2 _ s
b) otherwise let Ui(s) = Bz(Xi).

Case 4: If Ws U Xi U Ti(v) is consistent and i = s-1, proceed as

in case 1b.

Case ITI: Player 2 is waiting for a witness to T%(v) which was

demanded at stage 5o
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2 2 2 2
< = = 1
If s =< £, then set TS TSO, Uj(s) Uj(so) for j < S0 and

2
Ui(s) =@ for S0 <i<s. If s > 42, we look at Ui to see if it
s

) ;

contains a witness c¢ for T£Cv). If it does, we set U?(s) = Bl(XiO U

Fi(c)) for i <j < s and return to the active mode. If Ui contains
2

no witness we set U?(s) = Uj(so) for j < 5o and Ui(s) = @ for

s. <1i<s, and return to the active mode.

0

This concludes worker 2's construction.
Several observations: —Again we maintain consistency while trying
to realize any consistent type.
~Tf we shift into the waiting mode we will eventually shift out
of it.
' 2 2 3 2 ,
-As before, once U ,...U, and K, settle down, U, will
1 i~1 i,s i

’

settle down.

1 1

-At stage s worker 2 need only know about Ul""’U . As these

s-1

. 2 . . . .
are computed without reference to Ui(s) i < s we avoid circularity
in our use of the recursion theorem.

—Workers 1 and 2 have guaranteed that for i = 1,2 if P;(v) is

consistent with the full diagram of M, then it is realized.

Worker 3:

Worker 3 will be in either the "active" mode, the "waiting" mode
or the "passive' mode.

If worker 3 is active or waiting and worker 2 shifts from the
active to the waiting mode, worker 3 becomes passive.

When worker 2 becomes active again, worker 3 returns to the state

he was previously in.




Case 1l: Worker 3 is passive.

3

Worker 3 sets T3 =T .
s s-1

Case 2: Worker 3 is active.

3
Worker 3 considers the first o which has not yet been consid-

2 2 3 2 3 . .
ered and sets IS = Ts—l Ao, or TS Ts—l A0, to maintain con-

} o 2 :
sistency of Th() U T2 U Tz U'Ul”U“'U'Ui_l. If we add 3Ix Y(x) we

switch to the waiting mode to find a witness for VY (x).

Case 3: Worker 3 is waiting for a witness to V{(x), where 1x w(x)

was added at stage s

0
Worker 3 calculates £ s.t. Fi = BZ(Tz Uvyw)). If s =4,
0
let Tz = Tz . If s> 4%, by our construction there is a witness ¢
0
2 X 2 3 .3
to Tz(v) in Ug. Let Ts = Ts—l A Y(c).

This concludes worker 3's construction.

We observe that: -The passive mode insures that worker 3 remains
inactive during the period When worker 2 is not payimg attention to its
actions. |

-As worker 2 always leaves the waiting mode, worker 3 will event-
ually leave the passive mode.

—Worker 3 will always return from the waiting mode to the active

mode,
~Player 3 insures that T3 is complete, consistent and Henkinized.
From Tl we pass to M, the canonical model of T3, effectively
\
in d'. Thus Diag() STd'. To see that M is nonstandard, we need
only observe that T(v) = {v % n:n € w} is consistent and thus realized

in M. This concludes the proof of Theorem 3.5. //




§5. S—SATURATION AND EFFECTIVE MODEL THEORY

In this section we state the basic results about recursively
saturated structures which will be used in the following sectiomns.
The preliminary material in this section is due primarily to Wilmers
[Wi],[W2], and Knight and Nadel [KN1],[KN2]. We also prove the main
theorem of recursive model theory that we will be using. . Throughout.
we assume all structures are countable, and are not necessarily models

of arithmetic,

Definition 5.l: Suppose S C P(w). M 1is S-saturated iff

i) every pure type realized in M is recursive in some
s €S and

1i) if p(x,y) 1is a pure type recursive in some s € S, m € M

and p(ﬁ,ﬁ) is consistent, then p(x,m) is realized in M.

The following lemma summarizes the facts we will be using about
S-saturation and Scott sets.
if M is an L-structure Typ(M) denotes the set of (codes of) pure

'types realized in M.

Lemma 5.2: i) If M is S-saturated, then TypM) € S and Th(M) € S.
ii) M is recursively saturated iff M is S—saturated for some
Scott set S.
iii) If S dis a countable Scott set and T is a complete theory
recursive in some s € S, then T has a countable S—saturated model.
iy) If M is countable and S—saturated, then M is determined

up to isomorphism by S and ThM).

35
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Proof: 1) is immediate from our definitions.

ii) Clearly if M is S-saturated, then M 1is recursively
saturated. TFor the converse let S = {d ¢ w: if m €M, I'(v,m) is
consistent with Th(M) and T is recursive in d, then T'(v,m) is
realized in M}. Then M is S-saturated and S is a Scott set. See
[KN1] for details. )

iii) This is proved by a Henkin argument similar to the one
used by Scott [Sc].

iv) Any two S-saturated models of a complete theory are

w—-homogeneous and realize the same types. //
For many theories 5.2 iii) may be significantly strengthened.

Definition 5.3: T 1is effectively perfecf if for some n € w there is

. @ . . .
a recursive map ¢:2° - consistent formulas in n—-variables s.t.

i) if oc T, then T F p(t) > (o) and

A

ii) ¢( ~ 0) and ¢ (o A 1) are incompatible.

Examples: 1) If T dis a complete extension of Pressburger arithmetic

in any suitable recursive language, then T is effectively perfect.

The function ¢ may be given by ¢(a) = Avbﬁ}vza(n) =13} A Mv@n{%:a(n) = 0}.

ii) Macintyre [Macl] has shown that, with the possible exception
of some bizarre cases not known to exist, all theories of infinite fields
which are not algebraically closed are effectively perféct.

iii) Wilmers [W2] and Knight-Nadel [K-N1] show that if T is
not atomic, then T is T-effectively perfect.

iv) Knight-Nadel [K-N1] show that if T has an infinite recur-
sive sequence of independent formulas in n free variables, then T is

effectively perfect.
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Theorem 5.4: ([K-N11,[N],[W2]). If T 4is effectively perfect and
M F T is recursively saturated, then M is S-saturated for a unique

Scott set S.

Proof: Fix n and ¢ witnessing the perfection T. Let
m €M, Wesay m codes f €2° iff Mf g(a) @) for all a cC £.
Let S = {X C w: some m € M" codes the characteristic function

of X}.
Claim: S dis a Scott set and M dis S-saturated.

(We will show only that S is closed under Turing reducability. The

rest of the proof is similar.) Suppose m codes f and fl STf.

{pB)(@):B < £,}. By 5.2 i) and ii) M must

1

Consider the type T()
realize T(v) by some n, This n codes fl. Lemma 5.2 also implies
M 1is S—saturated.

Suppose M 1is also S'-saturated. Then S' D S. Let s' € 8',

1

Coding arguments similar to the above show s is coded by some

m €M'. Thus S' = S. /]

Knight-Ngdel show that the conclusion of 5.4 also holds if T
has pure types of every degree. Some condition on T is evidently
necessary as any countable saturated model is S-saturated for all suf-
ficiently large S.

We devote the remainder of this section to the effective model
theory needed to study recursively saturated models of arithmetic. In
what follows let L be a fixed recursive language. If OC= (w0,...)
is an L-structure with universe w, Diag@() denotes the atomic diagram

*
of, and Diag (&) denotes the full diagram of &«. We let deg@) and
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* %
deg (@) denote the Turing degrees of Diag(®) and Diag (@) respect-
ively. If ¢t is a structure, Typ (@) denotes the set of pure types

realized in &%.

Lemma 5.5: If @dt= (w,...) is an L-structure, then there is a

*
Diag (@0-enumeration of Typ @D .

o . .
Proof: Let oiw —» @~ and Tiw -~ I~formulas be recursive bi-

2
jections. Define E C o by (n,m) € E iff M cp(i,...ik) where

> and Tm) = ¢(¥). /1l

on) = <i,e.. ’ik

Our main goal is to prove the converse of 5.5 for recursively
saturated structures. This will require ideas of Goncharov [Go] and

Peretyat'kin [P] which are

Definition 5.6: Let S be a set of types. A d-enumeration E of S

has the d-effective extension property iff there is a d-recursive

9 4
g:w —+w s.t. if p(xo,...,xn_l) €S, say p = {\Lr:(m,r\Lr") € E},
and (p(xo, .. .Xn) is consistent with p, then {¥:(g m," o™ ,r\]/_') € E}

is an extension of p in the variables xo,...xn containing

cp(xo,. . 'Xn)'

Theorem 5.7: (Goncharov [Go] and Peretyat'kin [P]). Let 81 be

w-homogeneous. Let E C a)2 be a d-enumeration of Typ®) with the
d—effective extension property. Then there is H= (@,...) s.t.

X
fo=r &{and Diag (R =d.

We will show that the hypothesis of 5.7 holds reasonably often,

Fix T a complete L-theory.

Definition 5.8: A set S of types over T is Turing closed iff for

any p € S if q 1is a type over T and qSTp, then g € S.
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Let X € P(w) with T coded by some x € X. Let Typ(X) be
the set of complete types which are coded in X. Typn(X) will denote

the complete n-types coded in X.

Lemma 5.9: If Typ(X) is Turing closed and E is an enumeration of

X, then Typ(X) has an enumeration recursive in E.

- Proof: For notational simplicity we will consider only Typl(X).
We dovetail over wz to decide larger and larger parts of each Em.

We say m 1is active at stage s of our construction iff

i) m is active at each stage s' < s,
ii) {n = s:n € Em} codes a set of formulas in one variable
consistent with T, and
iii) there is no formula ¢(v) s.t. o)~ < s, T1o(v) 1= s

and neither vr@(v)j or r7@Cv)7 are in Em.

These conditions are all recursive in T and as T is coded
in X, they‘can be ;ﬁéwére& recﬁrsively in E.

If m dis not active at stage s, there is a greatest t < s
such that m was active at stage t. Thus T = {q)(v):r(p-r <=t and
To € Em} U@ :To7 =t and "¢ ¢ Em} codes a consistent set of
formulas. We may now uniformly, and effectively in T, complete T
by a Henkin process.

We define E* E‘mz as follows: (m,n) € E* iff

i) m is active at stage n and (m,n) € E, or
ii) the Henkin process puts the formula with Godel code n into

the extension of T,

* * :
Clearly E STE . If p is a type in one variable coded in X

T = [ e |

*
and ¢ € p 1if o ¢ Em’ then ¢ € p iff ‘¢ € Em. Also if
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q = {q;:’-(p—'7 € En}, then either i) n 1is active at every stage S,
in which case q 1is in Typl(X) or ii) n is deactivated at some.
stage s. In this case ¢ STT and since Ty%(X) is Turing closed,

&
q € Ty%(x).‘ Thus E is an enumeration of Ty%(X).

Similar proofs work for each TyB(X). Putting these enumera-

tions together gives an enumeration of Typ(X); 7 /1

Lemma 5.10: Let T be a complete theory. There is a uniform recur-

sive operator Y such that if p is a type over T in the variables
Xys e X and ¢Cxo,...xn) is a formula consistent with p, then

Y(p,p) 1is a type in the variables x Q,xn s.t. Y(p,p) 2 P,

07"
¢ € ¥(p,9) and Y(p,p) =.P.

Proof: ¥ is just the usual Henkin procedure for finding a

complete extension of p containing o. /]

Theorem 5.11: If S ¢ P(w) 1is closed under Turing reducibility, E

is an enumeration of S and E STd, then Typ(S) has an enumeration

G with the d-effective extension property.

Proof: We inductively define a set I of indices by the fol-
lowing rules:

i) if =n € é, then n € I, and

ii) 4if 1 € I and @(XO,...xn) is a formula, then '<i,¢> €I,

Let E* E:mz be the enumeration of Typ(X) given by 5.9. Let
o:w - I be a recursive bijection. We define G E_mz inductively on
indices as follows:

*

i) if o(m) € o, Gm = Em’

ii) 4if o(m) =‘<i,@(x0,...xn)>, c@no) =41 and q = {6:767 € G

X
0
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is a type in the variables XgransX 4 consistent with q)(xo,. ..xn),

then Gm codes Y(q,(p(xo, .o .xn)) R
*

iii) otherwise G_ = E_..
m 0

Clearly G is an enumeration of Typ(X). Let h:oo2 -+ w be
defined by h(m,rcp_') = o—l(<0(m),¢>). h witnesses the d-effective

extension property, T o ' o ' ' ' o //

We may now state our partial converse to 5.5.

Theorem 5.12: If OY is w-homogeneous, S is the set of degrees of

pure types realized in gr, Typ@) is Turing closed and E is an

. *
'enumeration of S, then there is &= @1 with Diag @& ETE.,

Proof: Clear from 5.7 and 5.11. [/

Goncharov [Go] and Peretyat'kin [P] have examples which show

that we cannot omit the assumption that Typ(M) is Turing closed. We

»will be using only the following corollary:

Corollary 5.13: If (X is S-saturated and E is an enumeration of 35,

*
then there is @At with Diag @) S,lE




§6. APPLICATIONS TO ARITHMETIC

In this section we will give applications of 5.13 to the study
of structures arising in arithmetic. We begin by fixing some notation.
If 1 4is a recursive language and & = (®,...) is an L-structure,
then Diag@) denotes atomic diagram of ¢t and deg@) 1is the Turing
degree of Diag@(), D@D = {deg @) :4t = I}, and ,D* @) = {deg*dn)_:
6t~ Lo}, If S C P(w) is éountable, D(S) = {d: there is a d-enumera-

tion of S}-

a) Pressburger arithmetic.
Let T be a complete theory in a language extending L = {+,0,1}
such that T 3Th®o,+,0,l). For M!= T, M+ denotes the reduct of
M to L. If a €M, we deﬁine the real coded by a r(a) = {n € w:
M ]= pn]a} and let Re) = {r(a):a € M}. We state several facts

about Re(M) which were proved in §1 for M E PA.

Lemma 6.1: If a €M, x(a) ETdeg(M). Moreover, there is a Diag(M)- -

enumeration of Re(M).
Proof: The proofs of 1.8 and 1.11 work for any MF Th(w,+). //

We recall from Section 5 that T 1is effectively perfect. Thus
by 5.4, if Ml= T is recursively saturated, then M is S—saturated
for a unique Scott set S. We will often refer to such an S as the

Scott set of M.

Lemma 6,2: If M| T is recursively saturated and S is the Scott

set of M, then S = Re().

42 .
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Proof: We need only show M is Re(M)-saturated. Let a €M
and let T(v) = {pr(p-;[v <-> ¢p(a):p(v) on Leformula}. As M, is
recursively saturated, T is realized by some element of M. Thus
every pure type realized is recursive in some element of Re(M). Let
T'(v,w) be a type coded in Re(M), i.e., there is a € M s.t.

q)(*:-r,v?r) €T iff prq)-.la. Then for any m €M, M must realize

{o v,m) <> prq}—.la:q) on L-formula}. Hence M is Re(M)-saturated. //

Lemma 6.3: If M| T, d € D), and g=d, then g € DM). Simi-

~o

* *
larly, if d € D M), ¢ € D (M).

Proof: The proof of 2.2 works for M T. !/

d € D(M) we can only conclude g

*
Corollary 6.4: If M[E T is S-saturated, then D(M) =D (1) = D(S).

%
Proof: Corollary 5.13 shows D (M) is dense in D(S). Clearly
* %
D(M) is dense in D (M). As S = Re(M), D(S) is demse in D (M).

Lemmas 6.3 and 1.12.ghow that D(M) = D*(M) = D(S). » !/

We note that the conclusion DM) = D*(M) uses both recursive
saturation and the coding powef of arithmetic. 1In general, if we know
q @) € D*(M). Harrington's theorem
(3.2) shows that this is all we can expect. The following proposition

*
gives an example showing that D@ =D @) is not a general property

of recursively saturated models.

Proposition 6.5: There is a complete undecidable ml—categorical theory

T with a recursively presented w-saturated model ¢¢. (Thus JQ € D),

but Q £ D*@z).)




I

Proof: If {n}(m)} , let u = 2s’ where s{n}(m) halts

exactly at step s, For all n let

fu} if {n}@)+
n 0 otherwise.

Let & = (m,Un:n € w) -and let L =,{Ui:i € w}. Th{ isvundecidable
as {n})y iff v UnCV) € Th(¥1). The predicate 'm ¢ Un" is re-
cursive uniformly in m and n so 6t is recursively presented.
Suppose ¥ | Th®). Let XA>= {b €B:In € 0w pF Un(b)}. If
G}= Th (6D X»”E Xe. Thus the isomorphism type of So is determined by
iAXéf As no relations hold on Aw\X)f the isomorphism type of g is

determined by" I;&\x»] As IM\XM! = 'Rfo, Ul is we-saturated. /]

b) Skolem arithmetic.

Let T be a complete extension of Th(w,*) is some recursive
language extending {:,0,1}. Let M| T and let b € M be an infinite
power of 2. If a €M and a|b we define G‘.‘;(a) = {n:3x xpn = a}.

% *
Let Reb(M) denote {rb(a):alb}.
*
Lemma 6.6: If 4 € D(M), then for all alb, rb(a) ETd, uniformly
' *
in a,b. Further, there is a d-enumeration of Reb ™).

*
Proof: Clearly rb(a) is r.e. in d, so we need only show
P

{n:Zx x o= a} is r.e. in d, As a 1is a power of 2 there is an
P P
m s.t. a=2" Thus Zxx " =a iff pn"[\m. Thus ZAx x U= a iff
Pn i n
IJx W x .27 = a. Hence, {m:idxx =a} is r.e. in d. To obtain
i<p -
<P, .

a d enumeration of IReb(M) we begin a list aysdysagees of all

*
elements of M which divide b. Our enumeration is E = {(n,m):m € rb(an)}.

[/
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Lemma 6,7: T is effectively rich and if M ]= T is S—-saturated then

*
S = Reb (M), where b is any nonstandard power of 2.

P
Proof: The function ¢(a) = m {3x x oo vig(m) = 1} A
P
M {2x x = via(n) = 0} shows that T is effectively perfect. The

second part of the proof is done as in 6.2. //

*
In particular, for recursively saturated M l= T, 'Reb (M) does

*
not depend on our choice of b, so we may denote S as Re (M).

Corollary 6.8: If M| T dis S-saturated and d € D(M), then g € D(S).

Proof: Let b be an infinite power of 2. Let MMy 5 My e e s
be a listing of M, We begin dovetailing searches for x such that
xm, = b and list as noshysee s all m, for which such an x- is
found. This can be done d-effectively. Let E = {(i,j):j € r:(ni)}.
E STd, since the decision j € r:(ni) is d—-recurgive uniformly in 1.
By 6.7 E 1is an enumeration of S. By 1.12 d ¢ D(S). //
In order to classify degrees coding recursively saturated models

of T we need a padding lemma analogous to 6.3. This was noticed by

Julia Knight.

Lemma 6.9: Let M ]= Th(w,*). Suppose a,b €M s,t., a is an infinite
power of 2 and b dis an infinite pc;wer of 3. Let ,glJ € DM), if
e Tz d, then g € D(M).

Proof: Let M = (w,0) with © STd. Pick a and b out of

M. We can find a function f:o »® a bijection such that

ii) if n € e, MF £(2n)la,

iii) if n fe, M[E £(2n)]|b.
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Define ® by nem =p iff f@ef@m) = £(p). M~ (v,=),
ol 5Te and as n € e iff Zmme2n = a and n £ e iff Im me2n = b,
e STB.' /1
Knight has shown that we do not really need a and b to
prove 6.9, but as we are only considering recursively saturated struct-

ures, this assumption is harmless. We may now prove the desired class-

ification result.

%
Corollary 6.10: If M F T is S-saturated, them D(M) =D (M) = D(S).

Proof: As in 6.4. /!

c) Subsystems of PA,

IZn will denote the subsystem of PA obtained by restricting

the induction schema to Zn formulas. EXP will denote IX, + Vx,

0

y dz X = z, where this dis suitably formalized. It can be shown that

12, 2 gxp 2 1z, 2 (Th(w,+) U Th(w,-)).

If M isa {+,-,0,1}, M+ will denote the reduct of M to
{+,0,1} and M will denote the reduct of M to {+,0,1}. Putting

together 6.2, 6.4, 6,7, and 6.10, we get the following corollary.

) *
Corollary 6.11: If M} I7. is S-saturated, then S = Re() = Re (M)
0

and D) =D (M) = D(S) = DOL,) = D*(M+) =DM ) = D*(M.)'.

Some of our results may be extended to models which are not
recursively saturated. We will require the following results of

Cegielski-McAloon and Wilmers. chrasseen.
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Theorem 6.12: (Cegielski-McAloon-Wilmers [C-M-W]).

i) Let ME I2,, then M is recursively saturated.

ii) Let M [ EXP, then MO is recursively saturated.

Theorem 6.14 extends results of Lipshitz and Nadel [L-N] for
PA. Cegielski, McAloon and Wilmers point out that EXP cannot be

weakened to - IZO in ii).

Lemma 6.13: Let M F IZO be nonstandard and let b € M be an infi-

%
nite power of 2. Then Re(M) = Re (M).

Proof: Let r(a) € ReM). For n €@ ME Iv=a ¥Vm< n(pmlv

p .
<> Az < v z M = ¥)). By Z.,-overspill this must also hold for some

0

*
nonstandard N. If ¢ witnesses this, then r(a) = r (c). Thus,

*
Re(M) € Re (M). The proof of the reverse inclusion is similar. [/

Corollary 6.14: If M[ IZO is nonstandard, then DCM+) = D*(M+) =
D@ReM)).
Proof: Clear from 6.12, 6,13, and 6,4, //
’ k3
\Qprollary 6.15: 1If MZF EXP is nonstandard, themn DM ) =D M) =
D(Re(®)).
Proof: Clear from 6.12, 6.13 and 6.11. //
d) Tnitial segments.
Let M[E IZ Let a be a nonstandard element of M. We

0
define a structure [0,a] with universe {x € M:x < a} and functions

+ and -+ defined by:
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x+y if MEx+y=<a
X+y=
a if MEx+y>a
x +y if M F Xy < a
X4 y=

a if ME x'y > a.
Tf b € [0,a], we define r*(b) = {n:pn]b}‘

Lemma 6.16: Re() = {r*Cb):b < a}.

Proof: This follows from the fact that reals are coded by

arbitrarily small nonstandard numbers, which we proved in 1.31. !/

Corollary 6.17: D([0,a]) € D(Re(D).

*
Lemma 6.18: D([0,a]) and D ([0,a]) are closed upward in the Turing

degrees.

Proof: Similar to 2.2, /1l

Corollary 6.19: If M F IZO and [0,a] is Re()-saturated, then

*
D([0,a]) = D ([0,a]) = DRe (D).

The following result shows the hypothesis of 6.19 holds reasonably
often.
Lemma 6.20: (Lessan [Le]). If MfF EXP and a € M is nonstandard,
then [0,a] is recursively saturated.

We will show in the appendix that the hypothesis of 6.20 can

not be weakened to M F IZO.

Corollary 6.21: If M F EXP and a,b € M are nonstandard then

D([0,a]) = D([0,b]) = DRe(M)).
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Proof: Clear from 6.19 and 6,20, //

Stronger results are possible if we look at [O,a]+, the

reduct of [0,a] to addition. Clearly, Re([0,a]) = Re([O,a]+).

Lemma 6.22: (Cegielski-McAloon-Wilmers [C~-M-W]). If M[= IZO, then

[O,a]+ is recursively saturated,

Corollary 6.23: If M F IZO and a,b € M are nonstandard, then

D([0,a],) = D([0,b],) = D®e (D).

e) Residue Fields.
Suppose M]= PA and p € M is an infinite prime. Then M/p

is a field of characteristic O.

Lemma 6.24: (Macintyre [Mac2]).

1) M/p is a pseudofinite field (in the sense of Ax[A]),
M/p is recursively saturated and every recursively saturated pseudo-
finite field is of the form M/p.

2) If T 4is a complete theory of pseudofinite fields, then

T is effectively perfect.

Proof: 1) See Macintyre [Mac2].

2) Let ¢ be the map o(a) = M {Ix(vtn = xz):a(n) =1} A
M AxGHn = xz):a(n) = 0}. Macintyre [Macl] shows that ¢ witnesses
the perfection of T, //

Let T be a complete theory of pseudofinite fields of character-

2
X

istiec 0O, Suppose K F T. If & € K 1is a nonsquare then 2x vin

Il

iff 3x (vin = 6'X2). Suppose a € K. Let rK(a) = {n € w:3Ix(am Xz)}.
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The above remark shows that rKCal is recursive in deg(K) uniformly

in a. Let Re(X) = {rK(a):a € K}, The following lemma is then clear,

Lemma 6,25: 1) There is a deg(K) enumeration of Re(K).

2) If K is S-saturated, then S = Re(X).

Lemma 6.26: Suppose K = M/p and K 1is S-saturated., Then S = Re(M).

Proof: As M/p is definable in M, Re(X) c Re(M). Thus by
6.25 S C Re(M).

Suppose a € M, Consider the type {3x v+n = XZCmod P) <—
pn]a:n € w}. This is recursive and of bounded complexity. Thus, by
1.16, it is realized in M. Thus r(é) € ReM/p). So S = ReM/p)

\ifKe@Qa : ' //

As usual we must prove a padding lemma for pseudofinite fields.

Lemma 6.27: If d € D(K) and e = d, then g € D(K). (Similarly

%
D (K) dis closed upwards.)

Proof: Let K = (m,@p,@p) have degree d, We can find
fi:w > ® a bijection such that f is recursive in e and £(n) is
a square iff n € e. Let K' be the field induced by f. Then

K' 2K and deg(X') = e, /!

Corollary 6.28: Let M F PA and let p € M be a nonstandard prime,

*
then DM/p) =D (M/p) = D@Re(®)). In particular, if b is also a

nonstandard prime, D([0,a]) = D([0,b]).
Proof: As in 6.4. //

Let M/p = (@,@ﬁ,Op). (m,@?) is a divisible abelian group.

In fact, Qn,@p)éé Q(m). It follows from the next proposition that
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D((@,@b)) is the set of all Turing degreés,

Proposition 6.29: Q(M) has presentations of every degree.
Proof: Let b be a nonzero element of ch) and write
QCQ) = <b> ® D, where <b> is the span of b and D = Q(m). D

has a recursive presentation (w,m). Let g:D - @ be a recursive

2%

isomorphism. Any x € @ has a unique representation x = rb + d,

where d € D and r € Q.
(@)

Let h:Q - o be a bijection. We define £:Q -+ o as fol-

lows. f(rb+d) = <h(r),g(d)>, where <,> is some fixed recursive

It

pairing function. For i = 0,1,2 let f(rib d,) = n, . Then Q(w) [

1

n, + n1 = n2 iff d0 + dl = d2 and r0 + rl

the group induced by £, @ is recursive in h.

T,e Thus if (&,®) is

On the other hand,

R =k = (@,8) | TE(k) = <k,5(0)>

e (0,8) F mf (b) = n <k,g(0)>.

Thus, given the diagram of (w,®) we can compute h. As h

Q (@)

may be chosen of arbitrary complexity, has presentations in

every degree. //

The situation for (m,@P) is more delicate. Macintyre has
shown that in any M| PA there are nonstandard primes s.t. D(m,@P)
is the set of all Turing degrees. On_the other hand there are primes
such that D(@,@p) is not the set of all Turing degrees. Macintyre's

precise result is that D(m,@p) = {d:d = the degree of Th(@p)}.




The results of this section are true if instead of having

M| PA we have M} Iz, .
is enough. As for IZO,
algebraically closed!

It is reasonable to conjecture that EXP

it is not even known that M/p cannot be
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§7. CLASSIFICATION RESULTS

Let T be a complete extension of PA. 1In this section we
classify degrees coding structures related to models of T. We also
discuss the relationship between enumerations of Scott sets and effect-

iver enumerations of Scott sets. The easiest result is the following.

Proposition 7.1: d codes a recursively saturated model of T iff

d enumerates a Scott set containing T.

Proof: Clear from 5.2 i and 5,13. !/

Corollary 7.2: d codes a recursively saturated model of T iff d

(w)

enumerates a Scott set containing O .

Our main tool is the following theorem of Knight [K1].

Theorem 7.3: (Knight [Kl]). Let S be a countable Scott set. S

occurs as ReM) for some M != T 4iff for all n € w, TN Zn € S.

Corollary 7.4: (Knight [K1]). M I= T(w,+) is expandable to a model

of T iff M is recursively saturated and for all n € w, TN Z‘.n

€ Re(M).

Proof: Let N[ T with Re(N) = Re(M). Then N,_ is Re(D)-

saturated, so N, ~M by 5.2 iv). /1l

Corollary 7.5: d codes the additive structure of a model of T iff

d enumerates a Scott set S containing all T N Zn'

Proof: (=) 1is clear.
®) Let d enumerate S. By 5.13 we can find N | Th(w,+)

with Re(X) = S such that N is recursively saturated and deg(N) = d.
53
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But if M} T with Re({) = S, then M = N. Thus d codes the

additive structure of a model of T, [/

Similar results hold for Th{w,"*).

Corollaxry 7,6: i) Let Ml= Th(w,*). M is expandable to a model of
T iff M is recursively saturated and for each mn € @, T N Zn € Re(M).
ii) d codes the additive structure of a model of T iff d

enumerates a Scott set S containing all T Z -
Proof: As in 7.4 and 7.5, //

Using the following result of Friedman's we can classify degrees

coding initial segments and residue fields.

Theorem 7,7: Let M and N be countable models of PA. M can be

embedded as an initial segment of N iff Re(M) = Re(N) and

Th, (M) € Th, (N).
]

“Proof: See [sm2]. : //

Corollary 7.8: d codes [0,a] where a ¢ M is a nonstandard model

of T 1iff d enumerates a Scott set containing each T N Zn.

Proof: (=) Clear.

() Let d enumerate S. Let T* € S be a completion of
PAU (TN Zg) and let N F T* be recursively saturated with deg(N) =‘é.
By 6.7 there is M o N such that M F T. Thus, there is a € M such

that deg([0,a]) =d. By 6.18, 4 € D([0,al). /!

~J

Corollary 7.9: d codes M/p where M F T and p € M is a nonstand-

ard prime iff d enumerates a Scott set containing all T N Zn.
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Proof: As in 7.8. | /!

The next proposition is the surprising result that effectively

enumerating a Scott set is no stronger than enumerating it.

Proposition 7.10: If d enumerates a Scott set S, then d effect-

ively enumerates S.

Proof: Let T € S be a complete extension of PA, By 5.13,
there is a recursively saturated N]= T such that Re(N) = S and

deg(N) = d. By 1,14, there is a d effective enumeration of S. //

7.10 has several corollaries which were hinted at earlier. The

most important is the classification of degrees coding models of Th(W).

Corollary 7.11: Let S be a Scott set containing the arithmetic sets.

There is M|z Th@) with Re(M) = S and deg(M) = d iff d enumer-

ates S.

We can strengthen one of the Knight-Lachlan-Soare results using

7.11 and the following theorem of Hodes [Ho].

Theorem 7.12: (Hodes [Ho]). There is an enumeration E of the arith-

metic sets such that E" ETOQw2.

Corollary 7.13: There is M]= Th@) s,t. Re(M) is the set of arith=

metic sets and deg()" ETO(m).

7.10 may also be used to strengthen 1.27 and 2.1.

Corollary 7.14: The following are equivalent for any Scott set S.

i) There is a d-effective enumeration of S.

ii) There is a d enumeration of S.
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iii) There is a complete extension T of PA s.t. i =d
and Rep(T) = S.
iv) For any T € S a complete extension, there is a recur-—

sively saturated M F T with Re®) =S and deg(M) =d.

Corollary 7/.15: d enumerates a Scott set iff d separates a pair

of effectively inseparable r.e, sets,




§8. DEGREES CODING MODELS OF PT

In this section we shift gears and examine degrees coding
models of PT, . a theory introduced by DeMillo and Lipton to study

the polynomial time hierarchy.

Definition 8.1: Let L be the usual language of arithmetic augmented

by function symbols for all polynomial time computable functions and
relation symbols for all polynomial time decidable relationmns.

Let PT be the set of all 3JY sentences true in the standard
model.

In [D-L], DeMillo and Liptoh relate classical questions about
the polynomial time hierarchy to questions of provability in PT, For
example: Sup?ose S € NP N coNP, then there are polynomial time
recognizable predicates A(x,y) and B(x,y) such that x € F iff
Jy A(x,y) and x £S5 iff 3y B(x,y). We say A and B represent

S. Let AS(A,B) be the sentence VYx(dy A(x,y) ¥ Iz B(x,z)).

Theorem 8.2: (DeMillo-Lipton [D-L]). Let S € NP Nl coNP. Then

S €pP iff PT F ASCA,B) for some A,B representing 8.

Proof: (=) If S € P, there are A(x) and B(&x) in L such

that x € S iff AX) and x ¢S if B(xx). Clearly PT F Vx Gy Ax)
v 3z B(x)).

(=) Suppose PT | AS(A,B)-

Claim: For some f £ function symbols in L,

l’--- m

m .
PT | ¥x W QAG,f, (x)) Vv B(x,£f, (x))).
i=1 * *
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Suppose not, Then  T(v) = {7A(,f(v)) A B, EW)):f € L} is
consistent with PT. TLet M % PT with c € M realizing T(v). Let
M' be the substructure of M generated by c¢. PT is essentially a
universal theory (all existential sentences are witnessed in the stan-
dard part and hence by terms in the language), so M!' F PT. But
M! F Ey(A(q,y) vV B(c,y)), a contradiction.

Thus, x € § iff $/QACx,fi(x)) Y B(x,fi(x))), but this is

i=1
polynomial time decidable. /]

Similar arguments allow you to prove that for S € NP,
PT | "S € cO-NP" if P = NP.

DeMillo and Lipton hoped that the model theory for PT would
be sufficiently tractable to produce nonstandard models. Solovay
destroyed these hopes by showing that PT has no recursive nonstandard
models. This forced DeMillo and Lipton to conclude that "PT is
almost as strong as PA". McAloon conjectured that models of PT are
much harder to produce than models of PA. We confirm this below by
showing that if M is a nonstandard model of PT then the atomic dia-
gram of the reduct of M to the language of arithmetic has Turing degree
above Qf. We begin by showing that Re(M) is a Scott set. We do this
by producing nonstandard initial segments of M which are models of
PA.

Fix M a nonstandard model of PT. Let log(x) be the poly-
nomial time computable function log(x) = max{y:Zy = x}. We think of
log as a function from M -~ M by taking the interpretation of the
function symbol in L for log. Let ¢ € M be nonstandard. Let

(n) (n)

N={m € M: for every n € o log c 2 m}, where log x denotes




59

Log (log(log (. .. log(x)).

n times

Lemma 8.3: (Solovay [D-L]). i) N 2 w and N is an initial segment
of M.

ii) N 4is closed under the function x - 27,

iii) N is closed under all polynomial time computable functions.

Hence N'F PT.

Proof: i) Clearly N is an initial segment of M and N 2 w.
So we need only show N contains a nonstandard element. If =x € M,
let ]xl denote thé length of a binary representation of =x, Define
a function
x if n=20

£(n,x) =
|£(n-1,x)] if n > 0.

Define Z*(n,x) = B(lnl,x), E*(n,x) is polynomial time computable.
As ¢ £ o, for every n € w, 8*(n,c) > 1. Define R(x;y) <> B*(x,y)
= 1. It is easily seen that Vy R(lyl,y). Thus Vy Ix = v R(E,v).
Define fR(y) to be the least v < ly] so that R(v,y), fR is poly-
nomial time computable. Let 6 be the sentence VxVy(R(fR(y),y) A

(x < fR(y) + -R(x,y))). As N[ 6, M F 8. Let fR(c) = d. Note

d > w, We see that ¢ is of the order

-d times.

(@)

So log ¢ 1s of the order

—-d-n times.
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As d 1is nonstandard [d/2] < d-n for n € w, where '[x] is the

.

(n)

greatest integer less than x.. Thus for each n, [d/2] < d-n < log' ’c.
So [d/2] € N\ow .

(n)

(n+l)c, 2% < log™ ’c. So if a € N, then

ii) If a < log
22 ¢ . (Note: 1) We are implicitly using the fact that {(x,y):x = 2y}
is polynomial time decidable. 2) In general, models of PT are not
closed under exponentiation (the model M' wused in the proof of 8.2
gives an example of one which is not).)

iii) Let £ be computable in time nk. Then for any x,

k = =l =]

[f&x)] = |x]7. so f(&x) =2 =x . As x is dominated by

ZX, for any nonstandard a, f(a) < 2%, Thus by ii), if a € N,

f(a) € N. //

A *
Lemma 8.4: N F IZO, where IZO denotes the theory with an induction

schema for bounded formulas in the language L.

\gzggg; We begin with an illustrative example which avoids the
notation obscurities of the general case, Let P(x,y,z) be a poly-
nomial time decidable predicate. Let a € N and suppose N F3x ¥y < x
P(x,y,a). Let b € N such that Vy < b P(b,y,a). We claim there is a
least d with this property.

We define a new predicate R(w,z) by Vy'<f|m] P(lWl,y,E).
R(w,z) 1is polynomial time decidable and N F R(Zb,g). Define Q(v,z)
by 3s < ]V] R(s,z). Q is polynomial time decidable and N [ Q(22b,§)!
Define f£(u,z) = 0 7Q (u,z)
least s R(s,E) Q(u,E).

f is polynomial time computable,
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Let 6 be the sentence Vu,z,x(vQ(u,E) v (QCu,z) A R(f (u,z),z)
b
A (x < f(u,z) + 9R(x,z)). Then M'F O, so N[f 6. Let 4 = f(22 ,a) .

Then d is least such that ¥y < |d] P(]d],y,g). So |d| is the least
x such that VYy < x P(x,y,z).
We now extend these ideas to the general case. Suppose N |

Ix ¢(x,£), where @(x,;) is ZO in the language L. Let b € N

such that ¢(b,a). We will show there is a least d such that o(d,a).

) - < - - -
We write ¢(x,z) as QOVO = to...ann = tn’ P(x,v,zo,zl), where
Z4o z, and z; are disjoint

with union z and P(X’;’EO’El) is polynomial time decidable. Break

rd
each ti is either x or an element of

a up into 50 and El in the obvious way.

Define RQ”V—;’Z].) by QOVO = ]SOI- an = !Snl, P([Yls;’l‘;]lzl)

~, B

W, .

where, if t, = x, then s, = y and if ¢, = .
i i 1 J
0

ZO)j’ then 4
9

1
l

o
[

R 1is polynomial time decidable and N F R(2b,2
i i i

denotes <2 0,2 l...2 h> where a

,ai), where 2

o 18 <igs...ip>. Define Q(v,w,zl)

by ds < ]Vf R(s,a;zl). Q is polynomial time computable and N F

a
2 -
Q" ,2 O,al). Define a Skolem function

_fo 70(u,w,7, )

f(u,ﬁ;zl) o o
the least s s,.t. R(s,w,zl) Qu,w,z).

f 1is polynomial time computable. Let 6 be the sentence

Y,z 50,% [4Q(u,w,2,) v Q,w,2,) A R(E(a,7,2,),7,2))

A (X < f(U,Y—A},El) g '7R(Xa€"-7’-z-l)))1'

2® 3

N9, so NE 6. Let d=f(2° ,a ,a

20

that R(d,2
’ I'*

N = IZ,. /1l

l). Then " d is minimal such

_,El). So |d| is minimal such that ¢(|d|,a). Thus




62

In particulaxr, N the reduct of N to the language of arithmetic
is a model of IZ‘,O. This will allow us to use the following theorem of

McAloon.

Theorem 8.5: (McAloon [Mc]). If M [= 5 is nonstandard, there is a

0
f nonstandard initial segment of M modeling PA.
Fix an initial segment T of M such that I ]= PA. We show

Re(M) idis a Scott set by showing Re(M) = Re(I).

~Lemma 8.6: If a € M and b ¢ M is nonstandard, there is d < b such

that r(a) = r(d).

Proof: Let F(n) = max{x:x! = n}. Let ¢(x,y) be the formﬁla
Xx<y~-3z< |x] Ww< F([x[J¥vv < w (v prime + (v]y <-> v|z)). It is
easily verified that ¢(x,y) is polynomial time computable, As
N[ vx,y o(x,y), so does M. In particular, M= ¢(b,a). Thus, there

s d < [b]| such that Yw < F([b[)Vv < w (v prime — (v]a <=> v|d)).

As F(]b]) is nonstandard, for n € « pn]d <> pn]a. So r(a) = r(d). //

Corollary 8.7: Re(M) = Re(I), so Re(M) is a Scott set.

Corollary 8.8: (Solovay). If M| PT is nonstandard, Diag(M) 7~ 0.

Here we use the fact that r(a) STDiag (M) because the Euclidean

algorithm works for sufficiently small numbers.

Lemma 8,9: 0' € Re(M).

Proof: Let f(X) =0 be a Diophantine equation, M ]= 3§f(2_<) =0
iff N[ 3xf(x) = 0. Further, if N Jxf() = 0, then I Fo3xf(x) = 0

and if T ]= Ixf (%)

0, then M 3xf(x) = 0, so N[ 3RF(X) = 0. Hence
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I and N have the same Diophantine theory. By Martijasevic's theorem
[D-M-R], Th, (I) = Th, N). By 1.17, Th, (I) €Re(I) = Re(M). But
2y 4 )
- 1
Thy (N) =0'. /1l
1
Putting everything together we get the following theorem which

proves McAloon's conjecture,

Theorem 8,10: If M [ PT is nonstandard and M is the reduct of M

to the language of arithmetic, then there is a Diag(M) enumeration of

a Scott set containing O'.
We can prove a converse to 8,10.

Lemma 8,11: Let S be a Scott set containing O'. There is a'wacurx

sively saturated M F PT with Re(M) = S.

Proof: Let T, = {3x PG F 3x PG} U {¥x:PG):N | PGx)J.

T - e
Clearly, T, STO'. Suppose M T, and PT F Ix Vy P(x,y). Then

there is n € @ such that N F Yy P(a,y). Then Yy P(n,y) €T So

0
ME 3% ¥y P(x,y). Hence M| PT.

Let C = {co,cl,cz,...}' be a set of Henkin constants, Let

vTi(G);TZCG)... list all partial types with finitely.many constants from

C which are coded in S. Let ¢0’¢l’@é"' list all L(C) sentences.

We build T, C T

finitely many constants.

C T, Ceu so that each T, € S and each T. has
1 - 72— i i

Step 0: T, = T..

Step s = én+1: Let T_ = Tssl U {i@n}- to maintain consistency,
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Step s = 4n+2: If we have added 3x y(x) at step s-1 pick a new

constant ¢ and let T_ = Ts—l U {w(c)}.

Step s = 4n+3: If Tn(G) is consistent with Ts—l’ pick a new c¢ and

let TS = Ts—l U Tn(c).

Step s = énféz Let TS be a completion of TS inside S, adding no

-1

new constants.

Let M be the Henkin model of UTn' Step 4n+3 insures M is

recursively saturated and Re(M) D S. Step 4n+4 insures Re®) < S. //

Theorem 8.12: If d enumerates a Scott set S containing O, then

there is a recursively saturated M F PT with Re®) =S and Diag®) =_d.

Proof: Clear from 8.11 and 5.13. [/




APPENDIX

Proposition Al: There is M F IZO and a nonstandard a € M such that

[0,a] is not recursively saturated.
) y

We define a theory PtOP in the language of arithmetic, with

the following axioms.

Vx s(x) # 0

Ix s(x) = x (we denote this as «)

Vx Wy(x # a Ay #aAs®) =s(F)) >x=1y)

Vx (x+0

X) ¥z Yy (xt+s(y)

s (x+y))

Vx(x+0

il

0) x Yy x-s(y)

Xy + X)

7x((0(0,x) A ¥y (@(F,x) > oG+L,x)) > ¥y 0(y,%)).

Ptop is the natural thoyy of structures [0,a] where a € M

and M dis a model of a reasonably rich arithmetic theory, like IZO.

Paris showed that in fact, every model of Ptop arises this way.

Lemma A2: (Paris [G-M-W]). Every model O¢ of Ptop admits an end

extension :;'to a model of IZO.

s is obtained in a natural way by considering polynomials over

To prove Al then, it is sufficient to show that Ptop has a

nonrecursively saturated model. But this is easy. The induction axioms

of Ptop guarantee that every model has definable Skolem functions.

Thus, if & ‘= Pto » Wwe can take 52 ¢ pointwise definable. J cannot

%
be recursively saturated as we omit the type T (v) = {o(v) = 3w # ve(w):¢@}.

Thus, by Paris's lemma, there is M F IZO with a € M such that

b [0,a]. 65
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