Basic Proof Methods

Direct Proof: To prove an implication $P \Rightarrow Q$, assume P and derive Q.

$$\begin{array}{c|c} Assume & Goal \\ \hline P & Q \\ \end{array}$$

Proof by Cases: To prove $(P \text{ or } Q) \Rightarrow R$, prove $P \Rightarrow R$ and $Q \Rightarrow R$.

 $\underline{\text{case } 1}$:

1	Assume	Goal	1	Assume	Goal
	P	R		Q	R

case 2:

Proving "and" statements: To prove $P \Rightarrow (Q \text{ and } R)$, prove $P \Rightarrow Q$ and $P \Rightarrow R$.

Assume	Goal	Assume	Goal
P	Q	\overline{P}	R

Proving the Contraposotive: To prove $P \Rightarrow Q$, it is equivalent to prove the contrapositive ((not Q) \Rightarrow (not P)).

$$\begin{array}{c|c} Assume & Goal \\ \hline not \ Q & not P \\ \end{array}$$

Proof by Contradiction: To prove P, assume not P and prove any contradiction (Q and (not Q)).

Assume	Goal	
not P	contradiction	

Proving "or" statements: To prove $P \Rightarrow (Q \text{ or } R)$, proceede by contradiction. Assume P, not Q and not R and derive a contradiction.

Assume	Goal	
P, not Q , not R	contradiction	

Proofs of "if and only if"s: To prove $P \Leftrightarrow Q$. Prove both $P \Rightarrow Q$ and $Q \Rightarrow P$.