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These lecture notes are based on a course given at the University of Illinois
at Chicago in Fall 2018. The goal was to cover some of the classic material on
the model theory of valued fields: the Ax–Kochen/Eršov Theorem, the model
theory of Qp and Denef’s work on rationality of Poincaré series. The lectures
assumed a basic knowledge of model theory (quantifier elimination tests, satu-
rated models...) and graduate level algebra, but most results on the algebra of
valuations were presented from scratch.

Parts of my lectures closely follow the notes of Zoé Chatzidakis [4], Lou van
den Dries [12] and the book Valued Fields by Engler and Prestel [17].

Conventions and Notation

• In these notes ring will always mean commutative ring with identity and
domain means an integral domain, i.e., a commutative ring with identity
and no zero divisors.

• A ⊆ B means that A is a subset of B and allows the possibility A = B,
while A ⊂ B means A ⊆ B but A 6= B.

• AX is the set of all functions f : X → A. In particular, AN is the set of
all infinite sequences a0, a1, . . . . We sometimes write (an) for a0, a1, . . . .

• A<N is the set of all finite sequence (a1, . . . , an) where a1, . . . , an ∈ A.

• When studying a structure M = (M, . . . ), we say X is definable if it
is definable with parameters. If we wish to specify that it is definable
without parameters we will say that it is ∅-definable. More generally, if
we wish to specify it is definable with parameters from A we will say that
it is A-definable.

• Because we use x (as well as res(x)) to denote the residue of an element,
it would be confusing to also use x to denote a sequence of elements or
variables. We will instead use x to denote an arbitrary sequence x =
(x1, . . . , xn). The length of x will usually be clear from context.
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1 Valued Fields–Definitions and Examples

1.1 Valuations and Valuation Rings

Definition 1.1 Let A be an integral domain, (Γ,+, 0, <) an ordered abelian
group, a valuation is a map v : A× → Γ such that:

i) v(ab) = v(a) + v(b);
ii) v(a+ b) ≥ min(v(a), v(b)).
We refer to (A, v) as a valued ring.

A valued field (K, v) is a field K with a valuation v. The image of K under
v is called the value group of (K, v)

We also sometimes think of the valuation as a map from v : A → Γ ∪ {∞}
where v(0) = ∞ and if a 6= 0, then v(a) 6= ∞. In this case we think of γ < ∞
and γ +∞ =∞+∞ =∞ for any γ ∈ Γ.

Often we will assume that the valuation v : K× → Γ is surjective, so the
value group is Γ.

Examples

1. Let K be a field and define v(x) = 0 for all x ∈ K×. We call v the trivial
valuation on K.

2. Let p be a prime number and define vp on Z by vp(a) = m where a = pmb
where p6 | b. We call vp the p-adic valuation on Z.

3. Let F be a field and define v on F [X] such that v(f) = m where f = Xmg
where g(0) 6= 0. More generally, if p(X) is any irreducible polynomial we
could define vp(f) = m where f = pmg and p6 | g.

4. Let F be a field and let F [[T ]] be the ring of formal power series over
F . We could define a valuation v : F [[T ]] → F by v(f) = m when
f = amT

m + am+1T
m+1 + . . . where am 6= 0.

Exercise 1.2 a) If A is an domain, K is its field of fractions and v is a valuation
on A, show that we can extend v to K by v(a/b) = v(a)− v(b).

b) Show that this is the only way to extend v to a valuation on K.

Thus we can extend to the valuation vp on Z to vp : Q× → Z and we
can extend the valuations on K[X] and K[[X]] to K(X), the field of rational
functions on K, and K((T )), the field of formal Laurent series, respectively.

Let F be a field and let

F 〈T 〉 =

∞⋃
n=1

F ((T
1
n ))

be the field of Puiseux series. If f ∈ F 〈T 〉 is nonzero then for some m ∈ Z and

n ≥ 1, f =
∑∞
i=m aiT

i
n and am 6= 0. We let v(f) = m/n. We will show later
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that if we start with an algebraically closed F of characteristic 0, then F 〈T 〉 is
also algebraically closed. For a more elementary direct proof see [40].

In the trivial valuation has value group {0}. The rational functions and
Laurent series have value group (Z,+, <) and the Puiseux series have value
group Q.

We next give some very easy properties of valuations.

Lemma 1.3 i) v(1) = 0.
ii) v(−1) = 0.
iii) v(x) = v(−x);
iv) If K is a valued field and x 6= 0, then v(1/x) = −v(x).
v) If v(a) < v(b), then v(a+ b) = v(a).

Proof i) v(1) = v(1 · 1) = v(1) + v(1), so v(1) = 0.

ii) 0 = v(1) = v((−1) · (−1)) = v(−1) + v(−1). Because ordered groups are
torsion free, v(−1) = 0.

iii) v(−x) = v(−1 · x) = v(−1) + v(x) = v(x).

iv) v(1/x) + v(x) = v(1) = 0. Thus v(1/x) = −v(x).

v) we have v(a+ b) ≥ min(v(a), v(b)). Thus, v(a+ b) ≥ v(a). On the other
hand v(a) = v(a+ b− b) ≥ min(v(a+ b), v(b)). Since v(a) < v(b), we must have
v(a+ b) < v(b) and v(a) ≥ v(a+ b). �

Suppose (K, v) is a valued field. Let O = {x ∈ K : v(x) ≥ 0} we call O the
valuation ring of K. Let U = {x : v(x) = 0}. If x ∈ U , then 1/x ∈ U . Moreover,
if v(x) > 0, then v(1/x) < 0. Thus U is the set of units, i.e., invertible elements
of O.

Let m = {x ∈ O : v(x) > 0}. It is easy to see that m is an ideal. If x 6∈ m,
then v(x) ≤ 0 and 1/x ∈ O. Thus there is no proper ideal of O containing x.
Thus m is a maximal ideal and every proper ideal is contained in m.

Recall that a ring is local if there is a unique maximal ideal. We have shown
that O is local. One property that we will use about local rings is that if A is
local with maximal ideal m and a ∈ A is not a unit, then (a) is a proper ideal
and extends to a maximal ideal. Since m is the unique maximal ideal a ∈ m.
Thus the unique maximal ideal of A is exactly the nonunits of A.

Exercise 1.4 Suppose A is a domain with fraction field K and P ⊂ A is a
prime ideal. Recall that the localization of A at P is

AP = {a/b ∈ K : a ∈ A and b 6∈ P}.

Let

APP = {a1p1 + . . . ampm : a1, . . . , am ∈ AP , p1, . . . , pm ∈ P,m = 1, 2, . . . }.

Show that AP is a local ring with maximal ideal APP .
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Lemma 1.5 The ideals of O are linearly ordered by ⊂ with maximal element
m.

Proof Suppose P and Q are ideals of O, x ∈ P \Q and y ∈ Q\P . Without loss
of generality assume v(x) ≤ v(y). Then v(y/x) = v(y)− v(x) ≥ 0 and y/x ∈ O.
But then y = (y/x)x ∈ P , a contradiction. We have already shown that m is
the unique maximal ideal. �

Exercise 1.6 Consider A = C[X,Y ](X,Y ). Argue that A is a local domain that
is not a valuation ring. [Hint: Consider the ideals (X) and (Y ) in A.]

Define k = O/m. Since m is maximal, this is a field which we call the residue
field of (K, v) and let res : O → k be the residue map res(x) = x/m. Often we
write x for res(x).

Examples

1. In the trivial valuation on K, the valuation ring is K, the maximal ideal
is {0} and the residue field is K.

2. For the p-adic valuation on Q the valuation ring is Z(p) = {m/n : m,n ∈
Z, p 6 | n.}, the maximal ideal is pZ(p) and the residue field is Fp, the p-
element field.

3. Consider the field of formal Laurent series F ((T )) with valuation v(f) = m
where f =

∑∞
n=m anT

n where am 6= 0, then the valuation ring is F [[T ]],
the maximal ideal is all series

∑∞
n=m anT

n where m > 0 and the residue
field is F .

Exercise 1.7 a) Suppose (K, v) is an algebraically closed valued field. Show
that the value group is divisible and the residue field is algebraically closed.

b) Suppose (K, v) is a real closed valued field. Show that the value group is
divisible but the residue field need not even have characteristic zero.

Exercise 1.8 Suppose L is an algebraic extension of K and v is a valuation on
L.

a) Show that the value group of L is contained in the divisible hull of the
value group of K.

b) Show that the residue field of L is an algebraic extension of the residue
field of K.

The valuation topology

Let v : K× → Γ be a valuation. Let a ∈ K and γ ∈ Γ let

Bγ(a) = {x ∈ K : v(x− a) > γ}

be the open ball centered at a of radius γ.1 The valuation topology on K is the
weakest topology in which all Bγ(a) are open.

1Note this definition of radius is somewhat misleading. In particular, the balls get smaller
as the radius gets larger!
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Let
Bγ(a) = {x ∈ K : v(x− a) ≥ γ}

be the closed ball of radius γ centered at a. If b 6= Bγ(a), then v(b−a) = δ < γ.
If x ∈ Bδ(b), then v(x − a) = v((x − b) + (b − a)). Since v(x − b) > δ and
v(b − a) = δ, v(x − a) = δ < γ. Thus Bγ(a) ∩ Bδ(b) = ∅ and closed balls are
indeed closed in the valuation topology.

Lemma 1.9 If b ∈ Bγ(a), then Bγ(a) = Bγ(b) and the same is true for closed
balls. In other words, every point in a ball is the center of the ball.

Proof Let b ∈ Bγ(a). If v(x− a) > γ, then

v(x− b) ≥ min(v(x− a), v(a− b)) > γ.

�

When we have a valuation v : K× → Z, Bn(a) = Bn+1(a). Thus the closed
balls are also open. So there is a clopen basis for the topology.

In fact closed balls are always open.

Lemma 1.10 Every closed ball is open.

Proof Let B = Bγ(a) be a closed ball. Consider the boundary

∂B = {x : v(x− a) = γ}.

Suppose b ∈ ∂Bγ(a). If x ∈ Bγ(b), then

v(x− a) = v((x− b) + v(b− a)).

But v(b− a) = γ and v(x− b) > γ. Thus v(x− a) = γ and Bγ(a) is contained
in δB. Thus

B = Bγ(a) ∪
⋃

b∈δ(B)

Bγ(b).

�

Exercise 1.11 Show that every closed ball B is a union of disjoint open balls
each of which is a maximal open subball of B.

Exercise 1.12 Suppose B1, . . . , Bm are disjoint open or closed balls where
m ≥ 2. Let ai be the center of Bi and let δ = min{v(a1 − ai) : i = 2, . . . ,m}.
Show that Bδ(ai) is the smallest ball containing B1 ∪ · · · ∪Bm.

Exercise 1.13 Prove that in the valuation topology all polynomial maps are
continuous. [Hint: Consider the Taylor expansion of f(a+ ε)]
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Valuation rings

Interestingly, the ring structure of the valuation ring O alone gives us enough
information to recover the valuation.

Definition 1.14 We say that a domain A with fraction field K. is a valuation
ring if x ∈ A or 1/x ∈ A for all x ∈ K.

Let A be a valuation ring. Let U be the group of units of A and let m = A\U .
We claim that m is the unique maximal ideal of A. If a ∈ m and b ∈ A, then
ab 6∈ U since otherwise 1/a = b(1/ab) ∈ A. If a, b ∈ m. At least one of a/b and
b/a ∈ A. Suppose a/b ∈ A. Then a + b = b(a/b + 1) ∈ m. Thus m is closed
under addition so it is an ideal. If x ∈ A \ m, then A ∈ U , so no ideal of A
contains x. Thus m is the unique maximal ideal of A. For x, y ∈ K× we say x|y
if y/x ∈ A.

Let G = K×/U . Define a relation on G by x/U ≤ y/U if and only if x|y.
For u, v ∈ U we have x|y if and only if ux|vy. Thus < is well defined. If x|y and
y|x, then x/y ∈ U and x/U = y/U . If x/U ≤ y/U and y/U ≤ z/U . Then there
are a, b ∈ A such that y = ax and z = by. But then z = abx and x/U ≤ z/U .
Thus ≤ is a linear order of Γ. We write x/U < y/U if x|y and y6 | x.

Exercise 1.15 Suppose x/U < y/U and z ∈ K×. Show that x/U · z/U <
y/U · z/U .

Thus (G, ·, <) is an ordered abelian group. It is also easy to set that 1/U ≤
x/U if and only if x ∈ A. If we rename the operation + and the identity 0 we
have shown that w(x) = x/U is a valuation on K with valuation ring A.

Exercise 1.16 Suppose (K, v) is a valued field with surjective valuation v :
K×Γ and valuation ring O and let w : K× → G be the valuation recovered from
O as above. If γ ∈ Γ, choose x ∈ K with v(x) = γ and define φ(γ) = w(g).
Show that φ : Γ → G is a well defined order isomorphism and φ(v(x)) = w(x)
for all x ∈ K×. Thus the valuation we have recovered is, up to isomorphism,
the one we began with.

There are some interesting contexts where the valuation ring arises more
naturally than the valuation. Suppose (F,<) is an ordered field and O ⊂ F is
a proper convex subring. If x ∈ F \ O, then, in particular, |x| > 1. But then,
|1/x| < 1 so 1/x ∈ O. Thus O is a valuation ring.

One important example of this occurs when O is the convex hull of Z. We
call this the standard valuation.

Exercise 1.17 Let F be an ordered field with infinite elements and let O be
the convex hull of Z.

a) Show that the maximal ideal of O is the set of infinitesimal elements.
b) Suppose R ⊂ F . Show that the residue field is isomorphic to R.
c) Suppose that F is real closed (but not necessarily that R ⊂ F ). Show

that the residue field is real closed and isomorphic to a subfield of R.

The structure of the value group will depend on field F . Suppose F is real
closed. In this case we can say is that it will be divisible. Suppose g is in the
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value group and x ∈ F with x > 0 and v(x) = g. Then there is y ∈ F with
yn = x. Hence g = v(yn) = nv(y).

Definition 1.18 An ordered group Γ is archimedian if for all 0 < g < h, there
is n ∈ N with ng > h.

Exercise 1.19 Show that an ordered abelian group is archimedian if and only
if it is isomorphic to a subgroup of (R,+).

Exercise 1.20 Order R(X,Y ) such that X > r for all r ∈ R and Y > Xn for
all n ∈ N. Let F be the real closure of (R(X,Y ), <) and consider the standard
valuation. Show that the value group in nonarchimedean.

1.2 Absolute Values

Definition 1.21 An absolute value on a ring A is a function | · | : A → R≥0

such that
i) |x| = 0 if and only if |x| = 0;
ii) |xy| = |x||y|;
iii) (triangle inequality) |x+ y| ≤ |x|+ |y|;

The usual absolute values on R and C (or the restrictions to any subring)
are absolute values in this sense and if i : K → C is a field embedding we obtain
an absolute value | · | on K by taking |a| = ||i(a)||.

If v : A× → Γ is a valuation where Γ ⊆ R and 0 < α < 1. Then we can
construct and absolute value |x| = αv(x) for x 6= 0. In this case |x+y| = αv(x+y).
Since v(x+y) ≥ min(v(x), v(y)) and 0 < α < 1, |x+y| ≤ max(|x|, |y|) ≤ |x|+|y|.
An absolute value that satisfies this strong form of the triangle inequality is
called a nonarchimedean absolute value or ultrametric.

We also have the trivial absolute value where |x| = 1 for all nonzero x–this
is of course the absolute value corresponding to the trivial valuation.

Exercise 1.22 We can extend an absolute value on a domain A to the fraction
field.

Exercise 1.23 Suppose K is a field with a nonarchimedean absolute value | · |.
a) Show that O = {x ∈ K : |x| ≤ 1} is a valuation ring with maximal ideal

m = {x : v(x) < 1}.
b) Show that the valuation topology associated with O is exactly the topol-

ogy induced by the absolute value.

Once we have an absolute value we define a topology as usual by taking basic
open balls Bε(a) = {x : |x−a| < ε}. If we start with a valuation v : K× → R and
take the absolute value |x| = αv(x), then this is exactly the valuation topology.
Note that if we chose a different β with 0 < β < 1 and defined |x| = βv(x) we
would define the same topology.

Definition 1.24 We say that two absolute values | · |1 and | · |2 on A are
equivalent if they give rise to the same topology.
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Consider the field Q. We have the usual absolute value on it which we will
denote | · |∞. For p a prime we have the absolute value |x|p = (1/p)vp(a). This
choice of base is convenient as it gives the product formula

|x|∞
∏

p prime

|x|p = 1

which is trivial in this case but has nontrivial generalizations to number fields
(see, for example, [3] §10.2).

Exercise 1.25 Show that the absolute values | · |∞, | · |2, | · |3, . . . are pairwise
inequivalent. [Hint: Consider the sequence p, p2, . . . .]

Exercise 1.26 Consider the sequence 4, 34, 331, 3334, 33334, . . . . Show that
with the absolute value | · |5 on Q this sequence converges to 2/3.

The next theorem shows that we have found all the absolute values on Q.
For a proof see, for example, [3] §2.2.

Theorem 1.27 (Ostrowski’s Theorem) Any nontrivial absolute value on Q
is equivalent to | · |∞ or some | · |p.

Complete rings

Suppose (A, | · |) is a domain with absolute value | · |. We say that a sequence
(an : n = 1, 2, . . . ) in A is Cauchy if for all ε > 0, there is an n such that if
i, j > n then |ai − aj | < ε.

We say that A is complete if every Cauchy sequence converges. Clearly R
and C with the usual absolute values are complete.

Lemma 1.28 Consider the ring of power series K((X)) with the valuation v(f) =
m where f =

∑
n≥m anX

n where am 6= 0 and the absolute value |f | = αv(f),
where 0 < α < 1. Then K is complete.

Proof Suppose f0, f1, . . . is a Cauchy sequence. Suppose fi =
∑
n∈N ai,nX

n

(where ai,n = 0 for m > i Let ε ≤ α1/n. There is mn such that if i, j > mn

then |fi − fj | < ε. But then ai,k = aj,k for all k < n. Let bk be this common
value. Let g =

∑
k∈N bkX

k. Then |fi − g| < 1/n for all i ≥ n. It follows that
(fi) converges to g. �

Exercise 1.29 If (A, | · |) is a complete domain, then the extension to the
fraction field is also complete.

in nonarchimedean complete domains we have a simple test for convergence
of series.

Exercise 1.30 If (A, |·) is a nonarchimedean complete domain, then the series∑∞
n=0 an converges if and only if lim an = 0.

If a is a domain with absolute value |·|. We can follow the usual constructions

from analysis to build a completion Â of A. The elements of Â are equivalence
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classes of Cauchy sequences from K where (an) and (bn) are equivalent if and
only if for any ε > 0 there is an n such that |ai−bj | < ε for i, j > n. We can define

an absolute value on Â such that the equivalence class of (an) has absolute value
limn→∞ |an|. We identify A with the equivalence classes of constant sequences.

Exercise 1.31 Complete the construction of R̂. Prove that it is a complete
ring and that if L ⊃ K is any complete field with an absolute value extending
the absolute value of K, then there is an absolute value preserving embedding
of K̂ into L fixing K.

Lemma 1.32 Suppose A is a complete domain with nonarchimedean absolute
value |·|. If (an) is a Cauchy sequence that does not converge to 0, then |ai| = |aj |
for all sufficiently large i and j. Thus when we pass to the completion Â we add
no new absolute values.

Proof We can find an N and ε such that |an| > ε and |an − am| < ε for all
n,m > N . But then, since we have a nonarchimedean absolute value |an| = |am|
for all n > N . �

Definition 1.33 The ring of p-adic integers Zp is the completion of Z with the
p-adic absolute value | · |p. Its fraction field is Qp the field of p-adic numbers.

Lemma 1.34 i) Suppose (an) is a sequence of integers. The series
∑∞
i=0 aip

i

converges in Zp.
ii) The map (an) 7→ Zp is a bijection between {0, . . . , p− 1}N and Zp.

Proof i) If m < n, then ∣∣∣∣∣
n∑
i=0

aip
i −

m∑
i=0

aip
i

∣∣∣∣∣
p

<
1

pm
.

Thus the sequence of partial sums is Cauchy and hence convergent.

ii) Suppose (an) ∈ ZN and p6 | a0. Because p|
∑
n>0 anp

n∣∣∣∣∣
∞∑
n=0

anp
n

∣∣∣∣∣
p

= |a0|p 6= 0.

Let (an) and (bn) ∈ {0, . . . , p − 1}N be distinct. Suppose m is least such that
am 6= bm. Then ∑

anp
n =

∑
n<m

anp
n + amp

m +
∑
n>m

anp
n

while ∑
bnp

n =
∑
n<m

anp
n + bmp

m +
∑
n>m

bnp
n
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It follows that |
∑
anp

n −
∑
bnp

n|p = 1
pm . Thus the map is injective. Given

x ∈ Zp choose (an) ∈ {0, . . . , p − 1}N such that
∑
n<m anp

n = x(mod pm) for
all m. Then

∑∞
n=0 anp

n = x. Thus the map is surjective. �

It follows that every element x ∈ Q×p can be represented as a series x =∑
n=m anp

n where m ∈ Z, am 6= 0. and each an ∈ 0, . . . , p− 1 and Zp = {x ∈
Qp : |x|p ≤ 1}. We have the p-adic valuation vp(x) = m. The value group is Z
and the residue field is Fp.

Exercise 1.35 Suppose U is an open cover of Zp by open balls {x : |x−a|p < ε}.
Define T ⊂ {0, . . . , p− 1}<N such that ∅ ∈ T and (a0, . . . , am) ∈ T if and only if
there is no ball of radius at least 1/pm+1 in U containing a0 +a1p+ · · ·+anp

m.
a) Show that T is a tree (i.e. if σ ⊆ τ and τ ∈ T , then σ ∈ T ).
b) Show that T has no infinite branches.
c) Conclude that Zp is compact.

Exercise 1.36 For i > j let φi,j : Z/(pi) → Z/(pj) be the map φi,j(x) =
xmod (pj). Then Zp is the inverse limit of the this system of ring homomor-
phisms.

Why valued fields?

Most of the most important example of valued fields arising in number theory,
complex analysis and algebraic geometry have value groups that are discrete or,
at the very least, contained in R. Why are we focusing on valuations rather
than absolute values? Here are a couple of answers.

1. Valued fields with value groups not contained in R arise naturally when
looking at standard valuations on nonstandard real closed fields.

2. Once we start doing model theory we will frequently need to pass to ele-
mentary extensions. Even though Qp has value group Z when we pass to
an elementary extension the value need not be a subgroup of R.

3. One of our big goals is the theorem of Ax–Kochen and Eršov theorem that
for any sentence φ in the language of valued fields, φ is true in Fp((T )) for
all but finitely many p if and only if φ is true in Qp for all but finitely many
p. This is proved by taking a nonprinciple ultrafilter U on the primes and
showing that ∏

Fp((T ))/U ≡
∏

Zp/U.

These fields will have very large value groups.
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2 Hensel’s Lemma

2.1 Hensel’s Lemma, Equivalents and Applications

Definition 2.1 We say that a local domain A with maximal ideal m is henselian
if whenever f(x) ∈ A[X] and there is a ∈ A such that f(a) ∈ m and f ′(a) 6∈ m,
then there is α ∈ A such that f(α) = 0 and α− a ∈ m.

Theorem 2.2 (Hensel’s Lemma) Suppose K is a complete field with nonar-
chimedian absolute value | · | and valuation ring O = {x ∈ K : |x| ≤ 1}. Then
O is henselian.

Proof Suppose a ∈ O, |f(a)| = ε < 1 and |f ′(a)| = 1. We think of a as our
first approximation to a zero of f and use Newton’s method to find a better

approximation. Let δ = −f(a)
f ′(a) . Note that |δ| = |f(a)/f ′(a)| = ε. Consider the

Taylor expansion

f(a+ x) = f(a) + f ′(a)x+ terms of degree at least 2 in x.

Thus

f(a+ δ) = f(a) + f ′(a)
−f(a)

f ′(a)
+ terms of degree at least 2 in δ.

Thus |f(a+ δ)| ≤ ε2. Similarly

f ′(a+ δ) = f ′(a) + terms of degree at least 2 in δ

and |f ′(a+ δ)| = |f ′(a)| = 1.
Thus starting with an approximation where |f(a)| = ε < 1 and |f ′(a)| = 1.

We get a better approximation b where |f(b)| ≤ ε2 and |f ′(b)| = 1. We now
iterate this procedure to build a = a0, a1, a2, . . . where

an+1 = an −
f(an)

f ′(an)
.

It follows, by induction, that for all n:
i) |an+1 − an| ≤ ε2

n+1

;
ii) |f(an)| ≤ ε2n ;
iii) |f ′(an)| = 1.

Thus (an) is a Cauchy sequence and converges to α, |α − a| ≤ ε, and f(α) =
limn→∞ f(an) = 0. �

Thus the ring of p-adic integers and rings of formal power series F [[T ]] are
henselian.

Exercise 2.3 Let O be the valuation ring of the field of Puiseux series F 〈T 〉.
a) Show that O is not complete. [Hint: Consider the sequence T

1
2 , T

1
2 +

T
2
3 , T

1
2 + T

2
3 + T

3
4 + . . . .]

12



b) Show that O is henselian.

Exercise 2.4 Suppose K is henselain and F ⊆ K is algebraically closed in K,
then F is henselian.

The next lemma shows that in a Hensel’s Lemma problem, there is at most
one solution.

Lemma 2.5 Let O be a local domain with maximal ideal m. Suppose f(X) ∈
O[X], a ∈ O, f(a) ∈ m and f ′(a) 6∈ m. There is at most one α ∈ O such that
f(α) = 0 and α− a ∈ m

Proof Considering the Taylor expansions

f ′(α) = f ′(a) + (a− α)b

for some b ∈ O. Thus f ′(α) 6∈ m.
If ε ∈ m, then

f(α+ ε) = f(α) + f ′(α)ε+ bε2 = f ′(α) + bε2

for some b ∈ O. Since f ′(α) 6∈ m, f(α+ ε) ∈ m, but f(α+ ε) 6∈ m2 unless ε = 0.
Thus if β − a ∈ m and α 6= β, f(β) 6= 0. �

There are many natural and useful equivalents of henselianity.

Lemma 2.6 Let A be a local domain with maximal ideal m. The following are
equivalent.

i) A is henselian.
ii) If f(X) = 1 +X+ma2X

2 + . . .m adX
d where m ∈ m and a2, . . . , ad ∈ A,

then f has a unique zero α in A, with α = −1mod m.
iii) Suppose f(X) ∈ A[X], a ∈ A, m ∈ M and f(a) = mf ′(a)2, there is a

unique α ∈ A such that f(α) = 0 and a− α ∈ (cf ′(a)).

Proof i) ⇒ ii) is clear since f(−1) ∈ m and f ′(−1) 6∈ m.
ii) ⇒ iii) Then

f(a+X) = f(a) + f ′(a)X +

d∑
i=2

biX
i

for some bi ∈ A. But then

f(a+mf ′(a)Y ) = mf ′(a)2 +mf ′(a)2Y +

d∑
i=2

bi(mf
′(a)Y )i

= mf ′(a)2

(
1 + Y +

d∑
i=2

mciY
i

)

for some c2, . . . , cd ∈ A. By ii) we can find t u ∈ A such that 1+u+
∑
mciu

i = 0.
Let α = a+mf ′(a)u. Then f(α) = 0 and a− α ∈ m, as desired.

13



iii) ⇒ i) is immediate. �

In a valuation ring O, condition iii) can be restated v(f(a)) > 2v(f ′(a)).

Exercise 2.7 Suppose R is a real closed field and O ⊂ R is a proper convex
subring. Show that O is henselian. [Hint: Consider f(X) as in ii) and show
that f must change sign on O.]

Exercise 2.8 Suppose (K,<) is an ordered field, O is a proper convex subring,
and (K,O) is henselian with divisible value group and real closed residue field.
Prove that every positive element of K is a square. [We will see in Corollary
5.17 that, in fact, K is real closed.]

The following equivalent is also useful.

Corollary 2.9 Let A and m be as above, then A is henselian if and only for
every polynomial f(Y ) = 1 + Y +

∑n
i=2 aiY

ii where a2, . . . , an ∈ m, there is
α = −1(mod n) such that f(α) = 0.

Proof (⇒) Clear.
(⇐) It suffices to show that for every polynomial of the form Xn +Xn−1 +∑n−2
i=0 aiX

i where a0, . . . , an−2 ∈ m has a zero congruent to −1, or equivalently
that every polynomial of the form

1 + (1/X) +

n−2∑
i=0

ai(1/X)n+i

has a zero congruent to −1. Letting Y = 1/X we find the desired solution. �

Corollary 2.10 If (K, v) is an algebraically closed valued field, then K is henselian.

Proof Consider the polynomial f(X) = Xn + Xn−1 + an−2X
n−2 + · · · + a0

where a0, . . . , an−2 ∈ m. It suffices to show that f has a zero congruent to
−1(mod m). Any zero that is a unit must be congruent to −1(mod m), so it
suffices to show that f has a zero that is a unit. Since K is algebraically closed,
we can factor f(X) = (X − b1) · · · (X − bn). Each bi must have nonnegative
value, as if v(bi) < 0, then v(bni ) < v(aib

i) for all i < n and v(f(bi)) = nv(bi),
so f(bi) 6= 0. But −

∑
bi = 1 so some bi must have value 0. �

p-adic squares and sums of squares

A typical application of Hensel’s lemma is understanding the squares in Q×p .
First suppose p 6= 2. Let a ∈ Qp. Let a = pmb where b is a unit in Zp. If a = c2,
then vp(a) = 2vp(c). Thus m is even. We still need to understand when a unit
b ∈ Zp is a square. Let f(X) = X2 − b. Let b be the residue of f . Then if b is
a square b must be a square in the residue field Fp. If x ∈ Zp such that x2 = b.
Then vp(x) = vp(c) = 0 and vp(f

′(x)) = vp(2x) = 0. Thus, by Hensel’s Lemma,
there is y ∈ Zp, such that y2 = b and vp(x− y) > 0. Thus a ∈ Q2

p is a square if
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and only if a = p2nb where b is a unit and b is a square in Fp. Recall that for
p 6= 2 the squares are an index 2 subgroup of F×p . It follows that the squares
are an index 4 subgroup of Q×p .

We need to be a bit more careful in Z2. If f(X) = X2 − c and x2 = c, then
v2(x) = v2(2x) = 1 so we can not apply Hensel’s Lemma directly. We can use
the characterization iii) of Lemma 2.6 but we need to look at squares mod 8.
Consider f(X) = X2− b. Suppose b is a unit in Z2 and b is a square. Then b is
a square mod 8. We argue that the converse is true. Consider f(X) = X2 − b.
Suppose x ∈ Zp and x2 − b = 0(mod 8). Then v2(x) = 0 and v2(2x) = 1. Thus
v2(f(x)) ≥ 3 while v2(f ′(x)) = 1. Thus b is a square in Z2. The nonzero squares
mod 8 are 1 and 4. Thus a ∈ Z×2 is a square if and only if a = 22nb where b = 1
or 4(mod 8). Thus the squares are an index 8 subgroup of Q×2 .

Exercise 2.11 a) Show that if p 6= 2, then Zp = {x ∈ Qp : ∃y y2 = px2 + 1}
b) Show that Z2 = {x ∈ Q2 : ∃y y2 = 8x2 + 1}.

Exercise 2.11 shows that the p-adic integers Zp are definable in Qp in the
pure field language. Thus, from the point of view of definability, it doesn’t
matter if we view Qp as a field or as a valued field.

Exercise 2.12 a) Suppose p6 | n. Show x is an nth-power in Qp if and only if
n|vp(n) and res(n) is an nth-power in Fp.

b) Suppose p|n. Show that x is an nth-power in Qp if and only if x = pnmy
where y is a unit and y is an nth-power mod p2v(n)+1).

c) Conclude that the nonzero nth-powers are a finite index subgroup of Q×p .

Exercise 2.13 a) Let K be a field of characteristic other than 2. Show that
K[[T ]] = {f ∈ K((T )) : ∃g g2 = Tf2 + 1}.

b) Suppose K has characteristic 2 and give a definition of K[[T ]] in K((T )).

Lemma 2.14 If p is an odd prime and u ∈ Zp is a unit, then u is a sum of
two squares in Zp.

Proof In Fp there are (p + 1)/2 squares. Since the set F2
p and u − F2

p each
of size (p + 1)/2, they must have non-empty intersection. Let x, y ∈ Zp such
that x2 + y2 = u. At least one of x and y is a unit. Say x is a unit. Let
f(X) = X2−(y2−u). By Hensel’s Lemma we can find a zero z and z2 +y2 = u.
�

Lemma 2.15 Suppose p = 1(mod 4). Every element of Zp is a sum of two
squares.

Proof We know that −1 is a square in Fp. By Hensel’s Lemma there is ξ ∈ Zp
with ξ2 = −1.

Let a ∈ Zp. Note that

(a+ 1)2 − (a− 1)2 = 4a.
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Thus

a =

(
a+ 1

2

)2

+

(
ξ(a− 1)

2

)2

.

Note that since p 6= 2, 1/2 ∈ Zp. Thus we have written a as a sum of squares
in Zp. �

Corollary 2.16 If p = 1(mod 4) then every element of Qp is a sum of two
squares.

Proof We can write a = p2mb for some b ∈ Zp. If b = c2 + d2, then a =
(pc)2 + (pd)2. �

Lemma 2.17 If p = 3(mod 4), then a ∈ Qp is a sum of two squares if and only
if vp(a) is even.

Proof If a = p2mu where u is a unit. Then u is a sum of two squares so a is
as well.

Suppose vp(a) is odd and a = x2 + y2. Then a is not a square, thus both x
and y are nonzero. Also vp(x) = vp(y) as otherwise vp(a) is even. Let x = pmu
and y = pmv where u, v are units in Zp. Then a = p2m(u2 + v2). But vp(a)
is odd, thus vp(u

2 + v2) > 0 and (u/v)2 = −1(mod p), a contradiction since
p = 3(mod 4). �

Lemma 2.18 In Q2 if a = 2mu where u is a unit, then a is a sum of two
squares if an only if u = 1(mod 4).

Proof First suppose u = 1(mod 4). We first show that u is a sum of squares.
Then u = 1 or 5 (mod 8). If u = 1(mod 8), then u is already a square in Z2. If
u = 5(mod 8), then u/5 = x2 for some x ∈ Z2 and u = x2 + (2x)2.

Recall that a product of two sums of squares is a sum of squares as

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.

Since 2 = 1 + 1 and 1/2 = (1/4) + (1/4) are sum of two squares 2mu is a sum
of two squares.

Next suppose u = 3(mod 4). If a is a sum of two squares, then, as above, u
is also a sum of two squares. Say u = x2 + y2. This is impossible if x, y ∈ Z2

since the only sums of two squares mod 4 are 0, 1 and 2. Without loss of
generality suppose vp(x) < 0. But then we must have vp(y) = vp(x) = −n
where n > 0. Then x = z/2n and y = w/2n where z and w are units in Zp and
4nu = (z2 + w2). Thus z2 + w2 = 0(mod 4). But z and w are units and, thus,
z2, w2 = 1(mod 4) and z2 + w2 = 2(mod 4), a contradiction. �

We can use these results, particularly the result about primes congruent to
3(mod 4) to rephrase a classic result of Euler’s. Recall that an integer m > 0 is
a sum of two squares if and only if vp(m) is even for any prime p = 3(mod 4)
that divides m. See, for example, [38] §27.
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Corollary 2.19 An integer m is a sum of two squares if and only if it is a sum
of squares in R and in each Zp.

Proof (⇒) is clear.
(⇐) If m is a square in R, then m ≥ 0. By Lemma 2.17, if p = 3(mod 4),

then vp(m) is even. Thus m is a square in Z. �

This corollary can be though of as a baby version of a local-global principle.
Hensel’s Lemma gives us a powerful tool for solving equations in the p-adics.
We have no comparable tool in the rational numbers. Of course if a system
of polynomials over Q has no solution in Qp or R, then it has no solution in
Q. Sometimes, we can prove existence results in Q by proving them in all
completions. These are called local-global results as they reduce question in the
global field Q to the local fields Qp and R. These principles are very useful it is
often much easier to decide if there is a solution in the local fields. One of the
most general is the Hasse Principle. See for example [36] §IV.3.

Theorem 2.20 (Hasse Principle) Let p(X1, . . . , Xn) =
∑
i,j≤n ai,jXiXj ∈

Q[X1, . . . , Xn]. Then p = 0 has a nontrivial solution in Q if and only if it has
nontrivial solutions in R and Qp for all primes p.

Exercise 2.21 Suppose p > 2 is prime. Let

F (X1, . . . , Xm, Y1, . . . , Ym) =

n∑
i=1

aiX
2
i +

m∑
j=1

pbjX
2
j

where ai, bj ∈ Z are not divisible by p.
a) Suppose F has a nontrivial zero in Qp. Show that either

∑
aiX

2
i or∑

biY
2
i has a nontrivial solution in Fp. [Hint: First show that there is a solution

(x1, . . . , xm, y1, . . . , yn) ∈ Zp where some xi or yj is a unit. Show that if some
xi is a unit, then (x1, . . . , xm) is a zero of

∑
aiX

2
i and otherwise (y1, . . . , yn) is

a zero of
∑
bjY

2
j .

b) Use Hensel’s Lemma to prove that if either
∑
aiX

2
i or

∑
bjY

2
j has a

nontrivial zero in Fp, then F as a nontrivial zero in Qp.
c) Show that 3X2 +2Y 2−Z2 = 0 has no nontrivial solution in Q3 and hence

no nontrival solution in Q.

p-adic roots of unity

In the next exercises and lemma we will look for roots of unity in Qp.

Exercise 2.22 Let p be an odd prime.
a) Show that there are exactly p − 1 distinct (p − 1)th roots of unity in Zp

and no two distinct roots are equivalent mod p
b) Suppose that ξ1 and ξ2 are roots of unity of order m1 and m2 where

p 6 |m1,m2. Show that if ξ1 = ξ2(mod p), then ξ1 = x2. [Hint: Consider
f(X) = Xm1m2 − 1 and apply Lemma 2.5.]
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Lemma 2.23 Let p be an odd prime.
i) The only pth-root of unity in Qp is 1.
ii) The only pth-power root of unity in Qp is 1.

Proof i) Clearly any pth-root of unity ξ is in Zp. Suppose ξp = 1. In Fp,
ξ
p

= ξ, thus ξ = 1(mod p). Let f(X) = Xp − 1. Then vp(f
′(ξ)) = 1 and, by

the uniqueness part of Lemma 2.5 iii), ξ is the unique zero of f in {x ∈ Zp :
vp(x− ξ) ≥ 2} = ξ + p2Zp. We will show that 1 ∈ ξ + p2Zp and conclude that
ξ = 1.

Suppose ξ = 1 + px where x ∈ Zp. Then

1 = ξp = (1 + px)p = 1 + p(px) +

p∑
i=2

(
p

i

)
(px)i

Each term
(
p
i

)
(px)i is divisible by p3 thus 1 = 1 + p2x(mod p3). Hence p2x =

0(mod p3) and p|x. But then ξ = 1(mod p2) and, since ξ is the pth-root of unity
in ξ + p2Zp, ξ = 1.

ii) We prove by induction that if ξp
m

= 1, then X = 1. If ξp
m+1

= 1, then
(ξp

m

)p = 1 and, by i), ξp
m

= 1. By induction ξ = 1. �

Corollary 2.24 If p is an odd prime, then the only roots of unity in Qp are the
p− 1 roots of Xp−1 − 1.

Proof Let n = pkm where p6 |m. If ξn = 1, then ξ = xy where xp
k

= 1 and
ym = 1. By the previous exercise and lemma, x = 1 and yp−1 = 1. �

Exercise 2.25 Prove that the only roots of unity in Q2 are ±1.

The Implicit Function Theorem

We give a very different application of Hensel’s Lemma in power series rings to
a prove an algebraic version of the Implicit Function Theorem. Let F be a field
and let p(X,Y ) ∈ F [X,Y ] such that f(0, 0) = 0 and ∂f

∂Y (0, 0) 6= 0. Consider the
polynomial g(Y ) ∈ F [[T ]][Y ], where g(Y ) = f(T, Y ). Then g(0) = f(T, 0) =
f(0, 0) = 0 (mod (T )). But

g′(Y ) =
∂f

∂Y
(0, 0) 6= 0 (mod T ).

Thus by Hensel’s Lemma, we can find φ(T ) ∈ F [[T ]] such that f(T, φ(T )) = 0.
Thus we have found a power series point on the curve. We think of the power
series as parameterizing a branch on the curve near (0,0).

If ∂f
∂Y (0, 0) = 0, but ∂f

∂X (0, 0) 6= 0, we could find a ψ(T ) such that f(ψ(T ), T ) =
0. By changing variables we could, more generally shows that if (a, b) ∈ F 2 is
any smooth point of the curve we can find a power series branch. This type of
result can be extended to singular points but requires more specialize properties
of power series and Puiseux series rings such as Weierstrass factorization (see,
for example, [35]).
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2.2 Lifting the residue field

In some of our later work it will be useful to view the residue field k as a subfield
of the valued field K. Of course this is sometimes impossible. The p-adics have
characteristic 0, while the residue field has characteristic p. However, when K
is henselian and k is characteristic 0, this will always be possible.

Theorem 2.26 Suppose K is a henselian valued field and the residue field k
has characteristic 0. Then there is a field embedding j : k → K such that
res(j(x)) = x for all x ∈ k.

We call such a j a section of the residue map.

Proof We will inductively build j : k→ K. At any stage of our construction we
will have k0 ⊂ k a subfield and j : k0 → K a field embedding with res(j(x)) = x
for all x ∈ k0. To start, since k has characteristic 0, we can take k0 = Q and
let j : Q→ Q be the identity map. The theorem will follow by induction using
the following two claims.

claim 1 Suppose we have such a j : k0 → K where k0 is a subfield of k and
x ∈ k \ k0 is transcendental over k0. Then we can extend j to a suitable

ĵ : k0(x)→ k.
Choose y ∈ K such that res(y) = x. We claim that y is transcendental over

K0 = j(K). Suppose not. Then there is p(X) ∈ K0[X] such that p(y) = 0.
But then p(x) = 0. Since res ◦ j is the identity on k0, p(X) is not identically 0,

thus x is algebraic over k0 a contradiction. We extend j to ĵ by sending y to x.
Since the residue map is a ring homomorphism, res ◦ ĵ is the identity.

claim 2 Suppose we have such a j : k0 → K where k0 is a subfield of k and
x ∈ k\k0 is algebraic over k0. Then we can extend j to a suitable ĵ : k0(x)→ K.

There is y0 ∈ k with res(y0) = x. Suppose p(X) is the minimal polynomial
of x over k0. Then p(x) = 0 and p′(x) 6= 0. Let q(X) be the image of the p(X)
under j. Since res ◦ j = id, q = p. But then q(x) = 0 and q′(x) 6= 0, and, by
henselianity, there is y ∈ K such that q(y) = 0 and res(y) = res(y0) = x. We

extend j to ĵ by sending y to x. Since the residue map is a ring homomorphism,
res ◦ ĵ is the identity. �

We can use this theorem to prove an easy result very much in the spirit of
the Ax–Kochen and Ershov results we will see in §5.

Theorem 2.27 (Greenleaf) Let f1, . . . , fm ∈ Z[X1, . . . , Xn] then for all but
finitely many primes p, every solution to f1 = · · · = fm = 0 in Fnp , lifts to a
solution in Znp .

Proof We consider vauled fields as fields with a predicate for the valuation
ring. Consider the sentence Θ in the language of valued fields

∀x
(
f1(x), . . . , fm(x) ∈ m→ ∃y f1(y) = · · · = fm(y) = 0 ∧ yi − xi ∈ m

for i = 1, . . . , n
)
.
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Θ asserts that any zero of f1 = · · · = fm in the residue field lifts to the field. By
Theorem 2.26, if K is a henselian valued field with characteristic zero residue
field we can embed k into K, thus Θ holds. In particular,

∏
Zp/U |= Θ for any

nonprincple ultrafilter U . Thus, by the Fundamental Theorem of Ultraproducts,
Zp |= Θ for all but finitely many primes. �

2.3 Sections of the value group

Once could ask similar questions about the value group. This doesn’t have
anything to do with henselianity and could be moved later.

If (K, v) is a valued field with value group Γ we say that s : Γ → K is a
section of the valuation if v(s(γ)) = γ and s(γ+γ′) = s(γ)s(γ′) for all γ, γ′ ∈ Γ.

For example, in the p-adics n 7→ pn is a section. The next two lemmas give
useful examples where sections exist.

Lemma 2.28 Let (K, v) be a real closed or algebraically closed field. Then there
is a section s : Γ→ K.

Proof In either case Γ is divisible. Let (γi : i ∈ I) be a basis for Γ as a Q-vector
space.

If K is real closed then for each i we pick xi ∈ K with xi > 0 and v(xi) = γi.
Let s(m1γi1 + . . .mkγik) = xm1

i · · ·x
mk
k . Then s is the desired section.

If K is algebraically closed then for each i we need to choose a coherent
sequence of n-th roots xi,n for n = 1, 2, . . . such that xmi,nm = xi,n for all n and

m and v(xi,1) = γi. We can then let s(m1γi1 + . . .mkγik) = xlii1,ni · · ·x
lk
ik,nk

where mi = li/ni and li and ni are relatively prime. Then s is the desired
section. �

Exercise 2.29 Suppose K is a henselian valued field with divisible value group
Γ and the residue field k is of characteristic zero with k∗ divisible. Prove that
there is a section s : Γ→ K× of the valuation.

We will show that sufficiently rich fields have sections.

Theorem 2.30 If (K, v) is an ℵ1-saturated valued field with value group Γ,
then there is a section s : Γ→ K.

Corollary 2.31 Every valued field has an elementary extension where there is
a section of the value group.

The Theorem follows from the next lemma. Recall that if G is an abelian
group a subgroup H ⊆ G is pure if G/H is torsion free, i.e., if nx ∈ H, then
x ∈ H for all n > 0. If Γ0 ⊂ Γ we say that s : Γ0 → K× is a partial section if it
is a homomorphism with v ◦ s = id.

Lemma 2.32 Suppose K is an ℵ1-saturated valued field with value group Γ,
Γ0 ⊂ Γ is a pure subgroup, s : Γ0 → K× is a partial section and g ∈ Γ \ Γ0.
Then there is a pure subgroup Γ0 ∪ {g} ⊂ Γ1 ⊆ Γ and ŝ ⊃ s a partial section of
Γ1.
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We know that Γ0 = {0} is a pure subgroup of Γ with partial section s(0) = 1.
By Zorn’s Lemma there is a maximal partial section and by the Lemma it must
be defined on all of Γ.

Proof of Lemma Let H be the group generated by Γ ∪ {g}. We first look for
a smallest pure subgroup Γ1 containing H. Let S = {n > 0 : there is b ∈ Γ such
that b/H has order exactly n in Γ/H. If n ∈ S there is b ∈ Γ, c ∈ Γ0 and m ∈ Z
such that nb = c+mg. We make some observations.

• if m,n ∈ S, let b/H have order m and c/H have order n, then (b+ c)/H
has order d, where d is the least common multiple of m and n. Thus d ∈ S.

• If (nk)b = c + (mk)g, then c = k(nb −mg) ∈ Γ0 and, by purity of Γ0,
nb−mg ∈ Γ0. Thus b/H has order n. It follows that if n ∈ S, there are b ∈ Γ,
c ∈ Γ0 and m ∈ Z such that nb = c+mg where n and m are relatively prime.

• If nb = c + mg where n and m are relatively prime, then there is b′ ∈ Γ
and c′ ∈ Γ0 such that nb′ = c′ + g.

There are integers u and v such that un+ vm = 1. Then n(ub) = uc+ umg
and n(ub− vg) = uc+ g.

• If nb = c + g and nb′ = c′ + mg, then b′ is in the group generated by
Γ0 ∪ {b}.

Note that nmb = cm+mg. Thus n(b′ −mb) = c′ −mc ∈ Γ0. Thus, by the
purity of Γ0, b′ −mb ∈ Γ0.

Suppose for n ∈ S we choose bn ∈ Γ and cn ∈ Γ0 such that nbn = cn+g. Note
that 1 ∈ S and b1 = g. Let Γ1 be the subgroup generated by Γ0 ∪ {bn : n ∈ S}.
Putting together the previous observations, we see that Γ1 is the smallest pure
subgroup of Γ containing Γ0 ∪ {g}.

We need to find (xn : n ∈ S) ∈ K such that v(xn) = bn and xnn = s(cn)x1

for all n. Consider the set of formulas

Σ = {v(xn) = bn ∧ xnn = s(cn)x1 : n ∈ S}.

Since (K, v) is ℵ1-saturated, it suffices to show that every subset of Σ is consis-
tent.

Let S0 be a finite subset of S. Without loss of generality we may assume
that 1 ∈ S0 and there is N ∈ S0 such that n|N for all n ∈ S0. Choose xN with

v(xN ) = bN . We must have x1 = xN

s(cN ) .

Suppose n ∈ S0 and N = nd. Then NbN = cN + nbn − cN . Thus

n(dbN − bn) = cN − cn ∈ Γ0

and there is cN,n ∈ Γ0 such that dbN − bn = cN,n. Then s(cN,n)n = s(cN )
s(cn) .

Let xn =
xdN

s(cN,n) . Then

xNn =
xNN

s(cN,n)n
=
xNNs(cn)

s(cN )
= s(cn)x1
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and
v(xn) = dbN − cN,n = bn,

as desired. Thus every finite subset of Σ is consistent. If (xn : n ∈ S) satisfies
Σ we can extend s by sending bn 7→ xn for n ∈ S. �

Exercise 2.33 a) Modify the proof above to prove the following. Consider the
language of groups where we add a unary predicate for a distinguished subgroup.
Suppose (G,H) is an ℵ1-saturated abelian group with proper subgroup such
that G/H is torsion free. Prove that there is a section s : G/H → G, i.e., a
homomorphism such that s(x/H)/H = x/H.

b) Use the above to show that in every ℵ1-saturated valued field K there is
a section s : Γ→ K× with v ◦ s = id.

Unfortunately, we can not always find sections.

Exercise 2.34 Consider the field Q(X1, X2, . . . ) with the valuation where
v(Xn) = 1/n. Prove that there is no section of the value group.

2.4 Hahn fields

Let k be a field and let (Γ,+, <) be an ordered abelian group. We will consider
the multiplicative group of formal monomials (T γ : γ ∈ Γ) where T 0 = 1 and
T γ1T γ2 = T γ1+γ2 and formal series f =

∑
γ∈Γ aγT

γ where aγ ∈ k. The support
of f is supp(f) = {γ : aγ 6= 0}. We will only consider series f where supp(f)
is well ordered (i.e. every nonempty subset has a least element). The Hahn
seriesfield is

k(((Γ))) = {f : supp(f) is well ordered}.
Addition is easy to define if f =

∑
γ∈Γ aγT

γ and g =
∑
γ∈G bγT

γ . Then

a+ b =
∑
γ∈Γ

(aγ + bγ)T γ .

Lemma 2.35 Let A and B be well ordered subsets of Γ. Then A + B is well
ordered and for any c ∈ A+B the set {(a, b) ∈ A×B : a+ b = c} is finite.

In particular, if A ⊂ Γ is well ordered then the set Σn = {a1 + · · · + an :
a1, . . . , an ∈ A} is well ordered and for all g ∈ Σn, {(a1, . . . , an) ∈ An :

∑
ai =

g} is finite.

Proof Suppose (a0, b0), (a1, b1), . . . are distinct such that ai + bi ≥ aj + bj
for i > j. We can find a strictly monotonic subsequence of the ai. Since A
is a well ordered, the sequence can not be decreasing. Thus we may assume
a0 ≤ a1 ≤ . . . . But then b0 > b1 > . . . is an infinite descending sequence,
contradicting the fact that B is well ordered. �

This allows us to define multiplication by∑
γ∈Γ

aγT
γ

∑
γ∈Γ

bγT
γ

 =
∑
γ∈Γ

∑
γ1+γ2=γ

aγ1bγ2T
γ .
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The usual proofs of commutativity and associativity in power series show
that k(((Γ))) is a domain. There is a natural valuation v(f) = min supp(f). A
stronger form of the last lemma is needed to show k(((Γ))) is a field. For a proof
see [1] §7.21.

Lemma 2.36 (Neumann’s Lemma) Suppose A ⊂ Γ is well ordered and ev-
ery element of A is positive. Let Σ = {a1 + · · · + an : (a1, . . . , an) ∈ A<N}.
Then Σ is well ordered and for all g ∈ Σ the set {(a1, . . . , an) ∈ A<N : n ∈ N
and

∑
ai = g} is finite.

Proof Suppose g0 > g1 > . . . is an infinite decreasing sequence in Σ. For each
i let σi = (σi(1), . . . , σi(ni)) ∈ S be of minimal length such that gi = σi(1) +
· · · + σi(ni) and ni is the minimal length such that there is (a1, . . . , am) ∈ S
with a1 + · · ·+ am = gi. We also assume that σi(1) ≤ σi(2) ≤ . . . . We can thin
the sequence such that n0 ≤ n1 ≤ n2 ≥ . . . . [In this proof we use several times
that in an ordered set every sequence has a strictly monotonic subsequence.]

claim By altering the sequence we may assume that the sequence n0, n1, n2 . . .
is constant.

The lemma will lead to a contradiction as we have shown that the set of
sums of n-elements of A is well ordered for each n.

Suppose we have arranged things such that n0 = n1 = · · · = nk < nk+1.
We can pass to a subsequence fixing σ0, . . . , σk but, perhaps, thinning the rest
such that σk+1(1), σk+2(1), σk+3(1), . . . is strictly monotonic. Since A is well
ordered, we must have σk+1(1) ≤ σk+2(1) ≤ σk+3(1), . . . . For all j > k let σ′j =
(σj(2), . . . , σj(nj)) and let hj = σj(2) + · · ·+ σj(nj). Since all element of A are
nonnegative hj < gj and since σj(1) ≥ σk+1(1) for j > k, hk+1 > hk+2 > . . . .
Replace gj by hj and σj by σ′j for j > k. We have shortened the sequence
σk+1 by one. Repeating this procedure finitely many times we may assume that
σ1, . . . σk+1 have the same length.

Repeating this process for each k we get may assume that n0, n1, . . . is
constant. [Note that after stage k we never change σk.]

Thus we conclude that Σ is well ordered. We need to show that for all g ∈ Σ
there are only finitely many sequence (a1, . . . , an) ∈ A<N

Suppose g ∈ Σ and there are σ0, . . . , σn, . . . distinct in A<N such that σi =
(σi(1), . . . , σi(ni)) and σi(1) + · · · + σi(ni) = g. Since g is well ordered we
may assume that g is the least element of Σ where this is possible. Passing to
a subsequence we may assume that σ0(1), . . . , σn(0), . . . is strictly monotonic.
Since A is well ordered, it can not be strictly decreasing. Let hi = σi(2) +
· · · + σi(ni) ∈ Σ. If σ0(1), . . . , σn(1), . . . is strictly increasing h0 > h1 > . . .
contradicting that Σ is well ordered. If σ0(1), . . . , σn(1), is constant then every
hi = h0 − σ0(1) < g since every element of A is positive. But this contradicts
the minimality of g. �

Corollary 2.37 If
∑
n=0 anXn ∈ k[[X]], f ∈ k(((Γ))) and v(f) > 0, then∑

n=0 anf
n is a well defined element of k(((Γ))).
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We can now show that k(((Γ))) is a field. Suppose f 6= 0. Then f = aT γ(1−ε)
where ε ∈ k(((Γ))) and a ∈ k×. and v(ε) > 0. Then g =

∑∞
n=0 ε

n ∈ T and the
usual arguments show that g(1− ε) = 1. Thus 1/f = (1/a)T−γg and k(((Γ))) is
a field.

Definition 2.38 If f, g ∈ k(((Γ))), f =
∑
aγT

γ and
∑
bγT

γ , we say that g is
an end extension of f or, alternatively, that f is a truncation of g if supp(f) ⊂
supp(g), every element of supp(g) \ supp(f) is greater than every element of
supp(f) and if γ ∈ supp(f) then aγ = bγ . We write f C g.

Exercise 2.39 Suppose we have (fβ : β < α) for some ordinal α where fδ C fβ
for all δ < β < α. Let fβ =

∑
aβ,γT

γ . Show that
⋃
β<α supp(fβ) is well ordered

and if f =
∑
aγT

γ where aγ = aβ,γ for all sufficiently large β < α. Moreover
v(fα − f) > supp(fα).

Lemma 2.40 The field of Hahn series k(((Γ))) is henselian.

Proof While k(((Γ))) need not be complete, we can mimic the proof of Hensel’s
Lemma with a transfinite iteration. Let O be the valuation ring, let p(X) ∈
O[X] and a ∈ O such that v(p(a)) > 0 and v(p′(a)) = 0. As we saw in the

proof of Hensel’s Lemma if we take b = a − p(a)
p′(a) , then v(p(b)) ≥ 2vp(a) and

v(p′(b)) = 1.
We build a sequence of better and better approximations. Let a0 = a. Given

aα if p(aα) = 0 we are done, otherwise let aα+1 = a+α− p(aα)/overp′(aα) and
let γα = v(p(a)) = v(aα+1 − aα).

Suppose α is a limit ordinal and we have constructed (aβ : β < α). Let
aβ =

∑
g∈Γ bβ,γT

γ . If β > α, then aβ,γ = aβ+1,γ for all γ < γβ . Let fβ =∑
γ < γβaβ+1,γ . Then v(aδ−fβ) ≥ γβ and fβ is an initial segment of the series

fβ for all β > α. We can naturally take the limit of the series (fα : β < α) as
in Exercise 2.39 and let this be aα. We have v(aα − aβ) > γβ for all β < α.
As in the proof of Hensel’s Lemma, this implies v(p(aα) > γβ for all β < α and
v(p′(aα)) = 1.

Since we are building (γα) an increasing sequence in Γ, this process must
stop at some ordinal α < |Γ|+, but it only stops when we find the desired zero
of p. �

Corollary 2.41 For any field k and any ordered abelian group Γ there is a
henselian valued field with value group Γ and residue field k.

Exercise 2.42 Suppose k is an ordered field.
a) Show that we can order k(((Γ))), by x > 0 if and only if x = atγ(1 + ε)

where a > 0.
b) Suppose ever nonnegative a ∈ k is a square and Γ is 2-divisible, i.e., if

g ∈ Γ there is h ∈ Γ with 2h = g. Let a ∈ k(((Γ))) with a > 0. Show that a is a
square. Thus the ordering in a) is the only possible ordering of k(((Γ))).

We will show in Corollary 3.17 that if k is real closed and Γ is divisible then
k(((Γ))) is real closed.
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Hahn series fields recapture some aspects of completeness.

Definition 2.43 Let K be a valued field. We say that K is spherically complete
if whenever (I,<) is a linear order and (Bi : i ∈ I) is a family of open balls such
that Bi ⊃ Bj for all i < j, then

⋂
i∈I Bi 6= ∅.

Lemma 2.44 Any Hahn series of field k(((Γ))) is spherically complete.

Proof Without loss of generality we may assume that there is an ordinal α
(Bβ : β < α) and Bδ ⊃ Bβ for δ < β < α. Let Bβ = {x : v(x− aβ) > γβ}. For
each β < α choose fβ such that sup supp(fβ) = γβ and v(fβ − aβ) > γβ . Then
fδ C fβ for δ < β < α. Let f be as in Exercise 2.39, then f ∈

⋃
β<αBβ . �

maximal valued fields

Hahn fields k(((Γ))) are the maximal fields with residue field k and value group
Γ.

Definition 2.45 If (K, v) is a valued field extending L is a subfield, then K is
an immediate extension if v(K) = v(L) and kK = kL.

For example Qp is an immediate extension of Q.

Lemma 2.46 k(((Γ))) has no proper immediate extensions.

Proof Suppose K is an immediate extension of k(((Γ))) and x ∈ K \k(((Γ))). We
build a series as follows: Let γ0 = v(x). Choose a0 ∈ k such that res(x/T γ0) =
aγ . Then v(x− a0T

γ
0 ) > γ0.

Suppose we have constructed (aβ : β < α) a sequence in k and (γβ : β < α)
an increasing sequence in Γ such that if fα =

∑
δ<β aδT

γδ then v(x− fα) > γβ
for all β < α. Let γα = v(x − fα). As before we can find aα ∈ k such that
res((x− fα)/T γα) = aα. Then v(x− fα+aαT

γα) > γα and we can continue the
induction.

In this way we will build an increasing map from the ordinals into Γ, but
this must stop by some α < |Γ|+, a contradiction. �

Definition 2.47 We say that (K, v) is a maximal valued field if it has no proper
immediate extensions.

We will show that every valued field has a maximal extension.

Lemma 2.48 (Krull’s Bound) If K is a valued field, then |K| ≤ |k||Γ|.

Proof Let κ = |k|. Suppose B is a closed ball of radius of radius γ, then, as
we saw in Lemma 1.10, that B is the union of κ disjoint open balls of radius
γ. Let (CBα : α < κ) be the listing. For x ∈ K define fx : Γ → κ, be defined
so that if B is the closed ball of radius γ around x, then x ∈ CBfx(γ). Suppose

x 6= y and v(x − y) = γ. Then fx(δ) = fy(δ) for all δ < γ, but fx(γ) 6= fy(γ).
Thus x 7→ fx in injective and |K| ≤ |k|Γ. �
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Corollary 2.49 (Kaplansky) If K is a valued field, then there is K ⊆ L an
immediate extension that is maximally valued.

Proof By Krull’s bound, the collection of immediate extensions of K is a set
so we can apply Zorn’s Lemma to find a maximal immediate extension. �

In Exercise 5.41 we will show that any maximally valued field is spherically
complete.
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3 Extensions of Rings and Valuations

When studying the model theory of certain theories of valued fields our first step
will usually be to prove quantifier elimination in an appropriate language. Proofs
of quantifier elimination in algebraic theories usually require some algebraic
extension results. That is particular true in valued fields. In this section we
will prove some basic results and then will use them in §4 to begin the study
of the model theory of algebraically closed valued fields. In §5 we will focus on
extension results for henselian valued fields.

For more details on some of the background results from commutative al-
gebra see, for example [16] or [26]. All of the results we will be proving on
extensions of valuations can be found in [17]. To be careful we will tend to state
most results for domains even though many are true in more generality.

3.1 Integral extensions

We begin by reviewing some facts about the integral extensions.
Recall that a domain A is local if and only if A has a unique maximum ideal

m which is exactly the nonunits of A.

Definition 3.1 If A ⊂ B are domains, we say that b ∈ B is integral over A, if
there are a0, . . . , an−1 ∈ A such that

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0

for some n. We say that B is integral over A if every element of B is integral
over A.

Lemma 3.2 Let A ⊂ B be domains and b ∈ B. The following are equivalent.
i) b is integral over A.
ii) A[b] is a subring of B that is a finitely generated A-module.
iii) A[b] is contained in a finitely generated A-module.

Proof i) ⇒ ii) If bm =
∑m−1
n=0 anb

n where a0, . . . , am−1 ∈ A. Then A[b] is
generated over A by 1, b, . . . bm−1.

ii) ⇒ iii) is clear.

iii) ⇒ i) Let x1, . . . , xm generate a submodule containing A[b] over A. For
i = 1, . . .m we can find ai,1, . . . , ai,m ∈ A such that

bxi =

m∑
j=1

ai,jxj .

Let M be the matrix
a1,1 − b a1,2 . . . a1,m

a2,1 a2,2 − b . . . a2,m

...
...

. . .
...

am,1 am,2 . . . am,m − b


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i.e, the matrix with ai,i − b along the diagonal and ai,j everywhere else. Then
M(x1, . . . , xm)T = 0. Let Adj(M) be the adjoint of M . Then

Adj(M)M(x1, . . . , xm)T = (detMx1, . . . ,detMxm)T = (0, . . . , 0)T .2

Thus we must have detM = 0. But detM is a monic polynomial in A[b]. �

Corollary 3.3 If A ⊂ B ⊂ C are domains, B is an integral extension of A and
C is an integral extension of B, then C is an integral extension of C.

Proof Let c ∈ C. There are b0, . . . , bn−1 ∈ B such that cn +
∑
bic

i = 0. Then
A[b0, . . . , bn−1, c] is a finitely generated A-module and c is integral over A. �

The next lemma is a simple but useful tool.

Lemma 3.4 If A is a local subring of a field K, x ∈ K× and 1 = a0+ a1
x +. . . anxn

where a0 ∈ m and a1, . . . , an ∈ A, then x is integral over A.

Proof Then (1 − a0)xn − a1x
n−1 − · · · − an = 0. Since a0 ∈ m, 1 − a0 6∈ m.

Since A is local, 1− a0 is a unit and x is integral over A. �

Lemma 3.5 If A ⊂ B are domains and B is integral over A, then A is a field
if and only if B is a field.

Proof (⇐) Suppose B is a field and a ∈ A is nonzero. Then there are
c0, . . . , cm−1 ∈ A such that

(a−1)m +

m−1∑
n=0

cn(a−1)n = 0.

Multiplying by am−1 we see that

a−1 = −
m−1∑
n=0

cna
m−n−1 ∈ A.

Thus A is a field.

(⇒) Suppose A is a field and b ∈ B is nonzero. Then, by Lemma 3.2 A[b] is
a finitely generated vector space over A. The map z 7→ bz is an injective linear
transformation of A[b] and, since A[b] is a finite dimensional vector space must
be surjective. Thus there is z ∈ A[b] with zb = 1. �

Definition 3.6 Let A ⊂ B be domains and let P ⊂ A, Q ⊂ B be prime ideals.
We say that Q lies over P if A ∩Q = P .

Corollary 3.7 Let A ⊂ B be domains with B integral over A and let P ⊂ A
and Q ⊂ B be prime ideals such that Q lies over P . Then P is maximal if and
only if Q is maximal.

2Remember Cramer’s Rule!
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Proof Since P = A∩Q we can view B/Q as an integral extension of A/P . By
the last lemma, A/P is a field if and only if B/Q is a field. �

Lemma 3.8 Suppose A ⊂ B are domains, B is integral over A, Q is a prime
ideal in B and P = Q ∩A. Then then BAP is integral over AP .

Proof Consider b/t where b ∈ B and t ∈ A \ Q. There are a0, . . . , am−1 ∈ A
with bm +

∑
aib

i = 0. But then

(b/t)m +
∑

(ai/t
m−i)(b/ti) = 0.

�

Lemma 3.9 Suppose A ⊂ B are domains, B is integral over A, P ⊂ A is a
prime ideal and Q1 ⊆ Q2 are prime ideals in B lying over P . Then Q1 = Q2.

Proof Consider the localization AP and the integral extension BAP . Then
Q1AP and Q2AP are prime ideals of BAP lying over PAP . But PAP is max-
imal. Thus each QiAP is maximal and we must have Q1AP = Q2AP . But if
x ∈ Q2 \ Q1, then x 6∈ Q1AP . If we did have x = q/t for some q ∈ Q1 and
t ∈ A \ P . Then xt ∈ Q1 and since x 6∈ Q1 and Q1 is prime, we would have
t ∈ Q1 ∩A = P , a contradiction. �

Theorem 3.10 (Lying Over Theorem) Suppose A ⊂ B are domains, B is
integral over A and P is a prime ideal of A. There is a prime ideal Q of B such
that A ∩Q = P .

Proof First, suppose A was a local ring then P is the unique maximal of A.
If Q ⊂ B is any maximal idea extending P , then, by Corollary 3.7, Q ∩ A is
maximal. But then Q = P .

In general, we pass to the localization AP . As above, if Q0 is any maximal
ideal in BAP , then Q0 ∩ AP = PAP . So Q0 ∩ A = P . Let Q = Q0 ∩ B. Then
Q ∩A = P and, since Q0 is prime, Q is prime. �

3.2 Extensions of Valuations

Theorem 3.11 (Chevalley’s Theorem) Suppose A is a subring of a field K
and P ⊂ A is a prime ideal. Then there is a valuation ring O of K with
A ∩MO = P

Proof Replacing A by AP we may assume that A is a local ring with maximal
ideal P . Let P be the set of all local subrings B of K with mB ∩ A = P .
Clearly P is partially ordered by ⊂ and if (Bi : i ∈ I) increasing chain in P then⋃
i∈I Bi is an upper bound. Thus by Zorn’s Lemma, P has maximal elements.

Let O ∈ P be maximal. Let m be the maximal ideal of O. We will argue that
O is a valuation ring.
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Suppose x, 1/x ∈ K \O. If x is integral over O, then we can find a maximal
ideal of O[x] lying over m contradicting the maximality of O ∈ P. Thus x is
not integral over O.

By Lemma 3.4, 1 6∈ mO[1/x]. Thus there is a maximal ideal Q of O[1/x]
that lies over m, contradicting the maximality of O. Thus for all x ∈ K at least
one of x and 1/x is in O. �

Exercise 3.12 Show that if v : K× → Γ is a valuation and L ⊃ K is an
extension field, there is Γ′ ⊇ Γ and w : L× → Γ′ extending v.

integral closures and valuations

Definition 3.13 We say that A is integrally closed in B if no element of B \A
is integral over A. We say that A is integrally closed if it is integrally closed in
its fraction field.

The integral closure of A is the smallest integrally closed ring containing A.

Lemma 3.14 If (K, v) is a valued field, then the valuation ring O is integrally
closed.

Proof Suppose b ∈ K and bn+an−1b
n−1+· · ·+a1b+a0 = 0 where a0, . . . , an−1 ∈

O. If b 6∈ O, then v(b) < 0 and

v(aib
i) = v(a) + iv(b) < nv(b)

since v(ai) ≥ 0 for all i. Thus v(bn + an−1b
n−1 + · · ·+ a1b+ a0) = nv(b) < 0, a

contradiction. �
We can use valuation rings to find the integral closure of a local subring.

Lemma 3.15 Let A be a local subring of a field K with maximal ideal m. The
integral closure of A ∈ K is the intersection of all valuation rings O ⊂ K with
mO lying over m.

Proof Suppose x ∈ K be nonintegral over A. Then by Lemma 3.4, 1 6∈
mA[1/x] + 1

xA[1/x]. Thus we can find a maximal ideal Q of A[1/x] lying over
m with 1/x ∈ Q. Let O ⊇ A[1/x] be a maximal local subring of K. Then, as in
the proof of Theorem 3.11, O is a valuation ring, mO lies over m and 1/x ∈ mO.
Thus x 6∈ O. �

Algebraic Extensions

Suppose K ⊂ L are fields and v is a valuation on K. Then v restricts to a
valuation on K. LetOL,ΓL,kL andOK ,ΓK ,kK denote the respective valuation
rings, value groups and residue fields.

Lemma 3.16 Then ΓL is contained in the divisible hull of ΓK and kL is an
algebraic extension of kK .
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Proof Let x ∈ L \K. There are a0, . . . , an ∈ K such that
∑
aix

i = 0. There

must be i 6= j such that v(aix
i) = v(ajx

j). But then v(x) =
v(ai)−v(aj)

j−i .

Suppose x ∈ L and the residue x ∈ kL \ kK . There is a polynomial f [X] ∈
OK(X) such that f(x) = 0. Let f(X) =

∑
aiX

i. Suppose aj has minimal

value and let g(X) =
∑ ai

aj
Xi. Then g(x) = 0 and g(X) is not identically zero

as some coefficient is 1. Thus x is algebraic over K. �

Corollary 3.17 i) If k is an algebraically closed field, Γ is a divisible ordered
abelian group and K = k(((Γ))), then K is algebraically closed.

ii) If k is a real closed, Γ is a divisible ordered abelian group and K = k(((Γ))),
then K is real closed.

Proof If K is not algebraically closed field let L/K be an algebraic extension,
then we can extend the valuation to L and since kL/k is algebraic and Γ(L) is
contained in the divisible hull of Γ(K) by Exercise 1.8 (see also Lemma 3.16).
But k is algebraically closed and Γ is divisible, thus L/K is immediate. But
we saw in Lemma 2.46 that Hahn fields have no proper immediate extensions.
Thus K is algebraically closed.

ii) If k is real closed, then kalg(((Γ))) is a degree 2 algebraic extension of
k(((Γ))). Thus by the work of Artin and Schreier (see for example [26] XI §2
Proposition 3), k(((Γ))) is real closed. �

We will prove much more general of these results later.

If L/K is a finite algebraic extension and [L : K] = d, then the argument
above shows that [ΓL : ΓK ] ≤ d and [kL : kK ] ≤ d. We will prove a much
sharper bound. We let e = [ΓL : ΓK ] be the ramification index and f = [kL :
kK ] be the residue degree . Note that if e = f = 1, then L is an immediate
extension of K.

Theorem 3.18 (Fundamental Inequality) If L/K is a finite algebraic ex-
tension of degree d then ef ≤ d.

Proof Choose x1, . . . , xe ∈ L such that v(x1), . . . , v(xn) represent distinct
cosets of ΓL/ΓK . Choose y1, . . . , yf ∈ L such that y1, . . . , yf is a basis for
kL/kK . It suffices to show that (xiyj : i ≤ e, j ≤ f) are linearly independent
over K.

Suppose ∑
i≤e,j≤f

ai,jxiyj = 0

where not all ai,j = 0. Pick î and ĵ such that

v(âi,̂jxî) = min{v(ai,jxi) : i ≤ e, j ≤ f}.

Suppose i 6= î and j ≤ f . We claim that v(âi,̂jxî) < v(ai,jxi). If they were
equal then

v(xî)− v(xi) = v(ai,j)− v(âi,̂j) ∈ ΓK ,
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contradicting that v(xî) and v(xi) represent different cosets. Thus v(âi,̂jxî) <

v(ai,jxi) for i 6= î.
Let bi,j =

ai,j
aî,ĵ

xî. Then

0 =

f∑
j=1

e∑
i=1

bi,j
xi
xî
yj

and bi,j
xi
xî
∈ mL for i 6= ĵ. Thus

f∑
j=1

âi,j
âi,̂j

yj = −
f∑
j=1

∑
i 6=î

bi,jxiyj ∈ mL.

Let ĉi,j = res(âi,j/âi,̂j). Then ĉi,̂j = 1 and

f∑
j=1

ci,jyj = 0,

contradicting that y1, . . . , yf are linearly independent over kK . �

Exercise 3.19 Show that even if L/K is an infinite algebraic extension the
argument above shows that if (xi : i ∈ I) represent distinct cosets of ΓL/ΓK
and (yj : j ∈ J) are such that (yj : j ∈ J) are linearly independent over
kK , then (xiyj : i ∈ I, j ∈ J) are linearly independent and v(

∑
ai,jxiyj) =

min v(ai,jxiyj).

Definition 3.20 If K ⊂ L are fields and L/K is algebraic, we say that L/K is
normal if L is a splitting field for every irreducible f ∈ K[X] with a zero in L.

A separable normal extension is a Galois extension. Thus in characteris-
tic 0 normal and Galois are the same. But in characteristic p we can build
nonseparable normal extensions by taking pth-roots.

Our goal for the rest of this section is to show that if L/K is a normal
extension and O is a valuation ring of K, then the valuation rings of L extending
O are all conjugate under the action of the Galois group.

We need a form of the Chinese Remainder Theorem.

Lemma 3.21 Let A be a domain and let m1, . . . ,mn be distinct maximal ideals
of A. Then for any a1, . . . , an we can find a ∈ A such that a = ai(mod mi) for
all i.

Proof
claim For each i we can find bi such bi = 1(mod mi) but bi ∈ mj for j 6= i.

For notational simplicity assume i = 1. If j 6= 1 then m1 + mj = A, as
otherwise m1 + mj is an ideal, contradicting maximality. Thus there is cj ∈ m1

and dj ∈ mj such that cj + dj = 1. Then

1 =
∏
j 6=1

(cj + dj) =
∏
j 6=1

dj(mod m1).
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Let b1 =
∏
j 6=1 dj . Then b1 = 1(mod m1) but b1 ∈ mi for i 6= .

Let a =
∑
aibi. Then a = ai(mod mi) for all i. �

Lemma 3.22 Let A be a local domain integrally closed in its fraction field K
and let L/K be normal. Let B be the integral closure of A in L. Then any two
maximal ideals of B are conjugate under Gal(L/K).3

Proof It suffices to prove this when L/K is finite. Let m0 and m1 be maximal
ideal of B and suppose there is no σ ∈ Gal(L/K) with σ(m1) = m2. Let
Xi = {σ(mi) : σ ∈ Gal(L/K)} then X0 ∩X1 = ∅. By the Chinese Remainder
Theorem, we can find b ∈ B such that b ∈ m for m ∈ X0 and b = 1(mod m) for
m ∈ X1. Thus σ(b) ∈ m0 \m1 for all σ ∈ Gal(L/K).

For the remainder of the proof we will assume that our fields have character-
istic zero. One needs to be slightly more careful in characteristic p when we have
an inseparable extension. Suppose f(X) = Xd +

∑d−1
n=0 aiX

i, a0, . . . , ad−1 ∈ A
be the minimal polynomial of b over K.. Since L/K is normal, f(X) =∏d
i=1(X − βi) where β1, . . . , βd ∈ L are the distinct roots or f , i.e., the set

of conjugates of b under Gal(L/K). Without loss of generality, we assume
L = K(β1, . . . , βd). Then

∏
σ∈Gal(L/K)

σ(b) =

d∏
i=1

βi = a0 ∈ A.

Each σ(b) ∈ m0. Thus a0 ∈ m0 ∩ A = mA ⊆ m1. But no σ(b) ∈ m1, thus, since
m1 is prime a0 6∈ m1, a contradiction. �

Lemma 3.23 Let A be a valuation ring with fraction field K, let L ⊇ K be
an algebraic extension and let B be the integral closure of A in L. For every
valuation ring O ⊂ K with mA ⊆ mO there is n a maximal ideal of B with
O = Bn.

Moreover, for every maximal ideal n ⊂ B, Bn is a valuation ring.

Proof Let O be a valuation ring of L with mA ⊆ mO. Since O is integrally
closed in L, B ⊆ O. Let n = mO ∩B.

If x ∈ B \ n, then 1/x ∈ O. Thus Bn ⊆ O. Let x ∈ O. Since L/K is
algebraic, there are a0, . . . , ad ∈ A not all zero such that

∑
aix

i = 0. Let m ≤ d
be maximal such that v(am) = min(v(ai) : i = 0, . . . , d) and divide

∑
aix

i by
amx

m. Thus, letting bi = ai/am we have

d∑
i=m+1

bix
i−m + 1 +

m−1∑
i=0

bix
i−m = 0.

Note that b0, . . . , bm−1 ∈ A and bm+1, . . . , bd ∈ mA. Let y =
∑d
i=m+1 bix

i−m+1

and z =
∑m−1
i=0 bix

i−m+1. Then xy = −z and y is a unit in O.

3We use Gal(L/K) to denote the group of automorphism of L/K even when L/K is not
necessarily a Galois extension.
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We claim that y, z ∈ B. Since B is the integral closure of A in L, by
Lemma 3.15, it suffices to show that x, y ∈ V for any valuation ring V ⊂ L with
mV ∩A = mA. If x ∈ V , then y ∈ V and z = −xy ∈ V . If x 6∈ V , then 1/x ∈ V ,

z =
∑m−1
i=0 bix

i−m+1 ∈ V and y = −z/x ∈ V .
Since y is a unit in O, y 6∈ n. Thus x = −z/y ∈ Bn. Thus Bn = O.

To prove the last claim of the lemma we need to show that if n is a maximal
ideal of B, then Bn is a valuation ring extending A. Clearly n ∩ A = mA. By
Chevalley’s Theorem, there is a valuation ring O such that B ∩mO = n. Then
by the first part of the lemma O = Bn. �

We summarize the last few lemmas.

Theorem 3.24 Let A be a valuation ring with fraction field K, let L ⊇ K be
an algebraic extension and let B be the integral closure of A in L. There is a
bijective correspondence m 7→ Bm between maximal ideals of B and valuation
rings O ⊂ L with mO ∩ A = mA. Moreover, if L/K is normal, then any two
such valuation rings are conjugate under Gal(L/K).

Corollary 3.25 Let (K,O) be a valued field and let L/K be a purely inseparable
algebraic extension of K. Then there is a unique valuation ring O∗ on L with
(K,O) ⊆ (L,O∗).

Proof L is obtained from K by adjoining pth-roots where K has characteristic
p. Then L/K is normal but there are no nontrivial automorphisms of L fixing
K. �
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4 Algebraically Closed Valued Fields

4.1 Quantifier Elimination for ACVF

We now have developed enough machinery to begin the study of the model
theory of algebraically closed valued fields.

Valued fields as structures

The first issue is deciding what kind of structure we are looking at, i.e., what
language or signature do we use to study valued fields? There are several natural
candidates.

One-sorted structures
We can think of valued fields as pairs (K,O) where K is the field and O

is the valuation ring. In this case the natural language would be the usual
language of rings {+,−, ·, 0, 1} together with a unary predicate O which picks
out the valuation.

Three-sorted structures
We can think of valued fields as three-sorted structures (K,Γ,k) where we

have separate sorts for the field (which we refer to as the home sort, the value
group and the residue field. On the home sort and on the residue field we will
have the +,−, ·, 0, and 1. On the group we will have +,−, <, 0. We also have
the valuation map v and the residue map res. 4

It would also be natural to think of valued fields as two sorted structure
(K,Γ) and later we will consider adding more imaginary sorts.

How does this effect definability? It’s easy to see that it doesn’t.

Lemma 4.1 In the one-sorted structure (K,O) we can interpret the value group
Γ, the residue field k and the maps v : K× → Γ and res : O → k. Thus
any subset of Kn definable in the three-sorted structure is definable in the one-
sorted structure. Moreover if X ⊆ Kl×Γm×kn is definable in the three-sorted
structure, then there is A ⊆ Kl+m+n definable in (K,O) such that

X = {(a1, . . . , al), v(al+1, . . . , v(al+m), res(al+m+1), . . . , res(al+m+n) : (a1, . . . , al+m+n) ∈ A.

In the three-sorted structure (K,Γ, v) we can define the value ring O = {x ∈
K : v(x) ≥ 0}. Thus any subset of Kn definable in the one-sorted structure is
definable in the three-sorted structure.

We will also look at further variants of these languages.

• When studying the p-adic field Qp, we have already shown in Exercise
2.11 that Zp is definable in the field language. Thus any subset of Qnp
definable in (Qp,Zp) is already definable in Qp in the field language. The
exercises below show that this is not always possible.

4Note we should think of they symbols on each sort as being distinct, so while we routinely
use + on K,k and Γ, if we were more careful we would think of them as three distinct symbols.
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• To prove quantifier elimination for algebraically closed valued fields we
will work in the language of divisibility

Ldiv = {+,−, ·,O, |, 0, 1}

where | is a binary function symbol which we interpret

(K,O) |= x|y if and only if ∃z ∈ O xz = y.

The relation x|y is definable in (K,O) thus any subset of Kn definable in
the language Ldiv is already definable in (K,O).

Note that once we have added | to the language we could get rid of O
since x ∈ O if and only if 1|x.

• To prove quantifier elimination for Qp we will work in the Macintyre Lan-
guage LMac = {+,−, ·,O, 0, 1, P2, P3, P4, . . . } where Pn is a unary predi-
cate predicate which we interpret in (K,O) as the nth powers of K. Since
x ∈ Pn if and only if K |= ∃y yn = x, any subset of Kn definable in LMac

is already definable using L. Indeed in Qp we can define Zp in a quanti-
fier free way using P2 as in Exercise 2.11. Thus we don’t really need the
predicate for O.

• In the original work of Ax and Kochen it was useful to work in the three-
sorted language and add a symbol for π : Γ→ K a section of the valuation.
This is more problematic. We saw in Exercise 2.34 that not every valued
field has a section. Moreover we will show that the section map is not
definable in the three-sorted language. Thus, while adding the section can
be useful, we will end up with new definable sets.

• An angular component map is a multiplicative homomorphism ac : K× →
k× such that ac agrees with the residue map on the units. For example
on Qp if vp(x) = m then x = amp

m + am+1p
m+1 + . . . and we can let

ac(x) = am. Similarly, there is an angular component map on K((T )).

If we have a section π : Γ→ K, then we can define an angular component
map by ac(x) = res(x/π(x)). But, like sections, angular component maps
need not exist and, even when they do exist, may change definability.

Nevertheless, we will find it useful to work in the three-sorted language
LPas where we add a symbol for an angular component map. This is called
the Pas language

Exercise 4.2 Let (K,O) be a valued field where K is algebraically closed or
real closed. Show that O is not definable in K in the pure field language.

Exercise 4.3 Suppose π : Γ → K is a section of the valuation. Show that
ac(x) = res(x/π(x)) is an angular component map.
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Quantifier Elimination

We will prove quantifier elimination for algebraically closed valued fields in the
language Ldiv. Let ACVF be the Ldiv-theory such that (K,O, |) |= ACVF if and
only if K is an algebraically closed field with valuation ring O and x|y if and
only if there is z ∈ O such that zx = y. We will also assume that the valuation
is nontrivial so there is x ∈ K× \ O.

Theorem 4.4 (Robinson) The theory of algebraically closed fields with a non-
trivial valuation admits quantifier elimination in the language Ldiv.5

Quantifier elimination will follow from the following proposition.

Proposition 4.5 Suppose (K, v) and (L,w) are algebraically closed fields with
non-trivial valuation and L is |K|+-saturated. Suppose R ⊆ K is a subring, and
f : R → L is an Ldiv-embedding. Then f extends to a valued field embedding
g : K → L.

Exercise 4.6 Show that the proposition implies quantifier elimination. [Hint:
See [30] 4.3.28.]

We will prove the Proposition via a series of lemmas.

Definition 4.7 Suppose R is a subring of K. We say that a ring embedding
f : R→ L is an Ldiv-embedding if for a, b ∈ R,

R |= a|b⇔ w(f(a)) ≤ w(f(b)).

First, we show that without loss of generality we can assume R is a field.

Lemma 4.8 Suppose (K, v) and (L,w) are valued fields, R ⊆ K is a subring
and f : R→ L is and Ldiv-embedding. Then f extends to a valuation preserving
embedding of K0, the fraction field of R into L.

Proof Extend f to K0, by f(a/b) = f(a)/f(b). If x ∈ K0, then x is a unit
in (K, v) if and only if x|1 and 1|x if and only in f(x) is a unit in (L,w). Since
the value group is given by K×/U , addition in the value group is preserved. So
we need only show that the order is preserved.

Suppose x, y ∈ K0. There are a, b, c ∈ R such that x = a
c and y = b

c . Then

v(x) ≤ v(y)⇔ v(a) ≤ v(b) ≤ R |= a|b⇔ L |= f(a)|f(b)⇔ w(f(x)) ≤ w(f(y)).

�

We next show that we can extend embedding from fields to their algebraic
closures.

5Actually, Robinson only proved model completeness, but his methods extend to prove
quantifier elimination.
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Lemma 4.9 Suppose (K, v) and (L,w) are algebraically closed valued fields,
K0 ⊆ K is a field and f : K0 → L is a valuation preserving embedding. Then
f extends to a valuation preserving embedding of Kalg

0 , the algebraic closure of
K0 into L.

Proof It suffices to show that if x ∈ K \K0 is algebraic over K0, then we can
extend f to K0(x). Let K0(x) ⊆ F ⊆ K with F/K0 normal. There is a field
embedding g : F → L with g ⊃ f and g(v) gives rise to a valuation on g(F )
extending f(v|K0). Then g(v|F ) and w|g(F ) are valuations on g(F ) extending
f(v|K0) on f(K0). By Theorem 3.24, there is σ ∈ Gal(g(F )/f(K0)) mapping
g(v|F ) to w|g(F ). Thus σ ◦ g is the desired valued field embedding of F into L
extending f . �

Thus in proving Proposition 4.5 it suffices to show that if we have (K, v)
and (L,w) non-trivially valued algebraically closed fields, L is |K|+-saturated,
K0 ⊂ K algebraically closed and f : K0 → L a valuation preserving embedding,
then we can extend f to K. There are three cases to consider.

case 1 Suppose x ∈ K, v(x) = 0 and x is transcendental over kK0
.

We will show that we can extend f to K0[x], then use Lemmas 4.8 and 4.9
to extend to K0(x)acl. Since L is |K|+-saturated, there is y ∈ L such that y is
transcendental over kf(K0). We will send x to y.

Suppose a = m0 + a1x + · · · + mnx
n, where mi ∈ K0. Suppose ml has

minimal valuation. Then a = ml(
∑
bix

i) where v(bi) ≥ 0 and bl = 1. Then
v(
∑
bix

i) ≥ 0. If v(
∑
bix

i) > 0, then taking residues we see that∑
bix

i = 0,

but bl = 1, so this is a nontrivial polynomial and x is algebraic over kK0 . Thus
v(
∑
bix

i) = 0 and v(a) = ml.
Thus v(a) = min{v(mi) : i = 0, . . . , n}. Similarly, in L, w(

∑
f(mi)y

i) =
min{w(f(mi)) : i = 0, . . . , n}. Thus the extension of f to K0[x] is and Ld-
embedding.

case 2 Suppose x ∈ K and v(x) 6∈ v(K0).
Let γ = v(x). Suppose a, b ∈ K0, i < j are in N, and v(a) + iγ = v(b) + jγ.

Since K0 is algebraically closed there is c ∈ K0 such that cj−i = a
b , but then

γ = v(c) ∈ v(K0).
Suppose a ∈ K0[x] and a = m0 +m1x+ . . .mnx

n. Since the v(mi) + iγ are
distinct, v(a) = min(v(mi) + iγ).

Since L is |K|+-saturated, there is y ∈ L realizing the type

{w(f(a)) < w(y) : a ∈ K0, v(a) < v(x)} ∪ {w(y) < w(f(b)) : v(x) < v(a)}.

Then v(a)+iv(x) < v(b)+jv(x) if and only if w(f(a))+iw(y) < w(f(b))+jw(y)
for all a, b ∈ K0 and the extension of f to K0[x] sending x to y is and Ldiv-
embedding.
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case 3 Suppose x ∈ K \K0, v(K0(x)) = v(K0) and kK0(x) = kK0 , i.e., K0(x)
is an immediate extension of K0.

Let C = {v(x − a) : a ∈ K0}. Since v(K0(x)) = v(K0), C ⊆ v(K0). We
claim that C has no maximal element. Suppose v(b) ∈ C is maximal. Then
v(x−ab ) = 0 and, since kK0

= kK0(x), there is c ∈ K0 such that x−a
b − c = ε

where v(ε) > 0. But then,

v(x− a− bc) = v(bε) > v(b),

a contradiction.
Consider the type

Σ(y) = {w(y − f(a)) = w(b) : a, b ∈ K0, v(x− a) = v(b).}

We claim that Σ is finitely satisfiable. Suppose a1, . . . , an, b1, . . . , bn ∈ K0 and
v(x − ai) = v(bi). Because f is valuation preserving it suffices to find c ∈ K0

with v(c−ai) = v(bi) for i = 1, . . . , n. Since C has no maximal element, there is
c ∈ K0 such that v(x− c) > v(bi) for i = 1, . . . , n. Then v(c− ai) = v(x− ai) =
v(bi).

By sending x to y we can extend f to a ring isomorphism between K0[x] and
f(K0)[y]. For a ∈ K0(x), there is p(X) ∈ K0[X] such that d = p(x). Factoring
p into linear factors over the algebraically closed field K0, there is a0, . . . , an
such that

d = p(x) = a0

n∏
i=1

(x− ai).

For each i we can find bi ∈ K0 such that v(x− ai) = v(bi). Thus

v(d) = v(a0) +

n∑
i=1

v(bi)

By choice of y, we also have

w(f(d)) = w(f(a0)) +

n∑
i=1

w(f(bi)),

thus f preserves the valuation.

This concludes the proof of Proposition 4.5 and hence the proof that ACVF
has quantifier elimination in the language Ldiv.

The proofs we have given can readily be adapted to prove quantifier elimi-
nation in the three-sorted language.

Exercise 4.10 Modify the proofs above to verify that algebraically closed fields
have quantifier elimination when viewed as three-sorted structures in the usual
language.
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4.2 Consequences of Quantifier Elimination

Completions of ACVF

ACVF is not a complete theory. We need to specify the characteristic of the field
K and the residue field k. If K has characteristic p, then k has characteristic
p. If K has characteristic 0, the k may have any characteristic. Let a be either
0 or a prime. If a = p a prime, then b = p. If a is zero, then b is either zero or
a prime. Let ACVFa,b be ACVF with additional axioms asserting the field has
characteristic a and the residue field has characteristic b.

Corollary 4.11 Each theory ACVFa,b is complete and these are exactly the
completions of ACVF.

Proof If (a, b) = (0, 0) let R = (Q,Q, |). If (a, b) = (0, p) let R = (Q,Z(p), |)
and if (a, b) = (p, p), let R = (Fp,Fp, |). Suppose (K,OK , |) and (L,OL, |) are
models of ACVFa,b. Then R is a common substructure of both fields. Let φ be
an Ldiv-sentence. Then there is a quantifier free Ldiv-sentence such that

ACVF |= φ↔ ψ.

But then, since ψ is quantifier free,

K |= φ⇔ K |= ψ ⇔ R |= ψ ⇔ L |= ψ ⇔ K |= φ.

Thus ACVFa,b is complete.
We have listed the only possibilities for the characteristics of the field and

residue field. Thus these are the only possible completions of ACVF.6 �

Definable subsets of K

In any valued field we can always define open and closed balls and any finite
boolean combination of balls.7 We will show that in an algebraically closed
valued field these are the only definable subsets of K.

Lemma 4.12 Let (K, v) be an algebraically closed valued field. Suppose f ∈
K[X]. Then we can partition K into finitely many sets each of which is a finite
boolean combination of balls such that that for each Y in the partition there are
n ≥ 1, a ∈ K and γ ∈ Γ in the value group such that v(f(x)) = nv(x − a) + γ
for all x ∈ Y .

Proof Let f(X) = c(X − a1) · · · (X − an) for c ∈ K× and a1, . . . , an ∈ K.
Then v(f(x)) = v(c) + · · ·+ v(x− a1) + · · ·+ v(x− an). We will show that we
can partition K such that on each set in the partition there is i such that either

6Here we are using the assumption that our fields have nontrivial valuations. If we were
to also consider the trivial valuation we would have completions saying that I have a trivial
valued field of characteristic 0 or p. But these are just the completions of ACF.

7Here we allow trivial balls K = {x : v(x) < ∞} and {a} = {x : v(x) = ∞}. If we don’t
want to do this, we should look at boolean combinations of points and balls instead.
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v(x − aj) = v(x − ai) for each set in the partition or v(x − aj) is constant on
the partition.

For each partition I, J of {1, . . . , n} where I is nonempty, let î be the least
element of I. Let

YI,J = {x ∈ K : v(x− ai) = v(x− âi) > v(x− aj) for i ∈ I, j ∈ J}.

Then the sets YI,J are boolean combinations of balls and they partition K (of
course some YI,J might be empty.

For j 6= î let γj = v(âi − aj). Then
• if v(x− âi) < γj , then v(x− aj) = v(x− âi)
• If v(x− âi) > γj , then v(x− aj) = γj
• We can not have v(x − âi) = γj , as then v(x − aj) ≥ γj , contradicting

x ∈ YI,J .
This allows to partition YI,J into finitely many pieces each of which is a

boolean combination of balls, such v(x − aj) is either v(x − âi) or constant on
each set in the partition. �

Exercise 4.13 Show that if (K, v) is algebraically closed and f, g ∈ K[X], then
{x ∈ K : v(f(x)) ≤ v(g(x))} is a finite Boolean combination of balls.

Corollary 4.14 If (K,O) |= ACVF and X ⊆ K is definable, then X is a finite
boolean combination of balls.

Proof By quantifier elimination any definable subset of X is a finite boolean
combination of sets of the form {x : f(x) = g(x)} and {x : f(x)|g(x)} = {x :
v(f(x)) ≤ v(g(x))} for f, g ∈ K[X]. �

Definition 4.15 A swiss cheese is a definable set of the form B \(C1∪· · ·∪Cn)
where B,C1, . . . , Cn are balls and Ci ⊂ B (and we allow the possibilities where
B = K or ∅, n = 0 and some B or Ci is a point.)

Exercise 4.16 a) Show the intersection of two swiss cheese is a finite disjoint
union of swiss cheese.

b) Show that the complement of a swiss cheese is a finite disjoint union of
swiss cheese.

c) Prove that every definable subset of K can be written in a unique way as
a finite union of disjoint swiss cheese.

Corollary 4.17 i) Any infinite definable subset of K has interior.
ii) There is no definable section of the value group.

Proof i) Any infinite definable set will contain a swiss cheese S = B \ (C1 ∪
· · · ∪ Cm), where B 6= ∅. If a ∈ S, then S contains a ball U with a ∈ U .

ii) The image of the section would be infinite with no interior. �

Exercise 4.18 Suppose K is an algebraically closed valued field and A ⊆ Km+n

is definable. For x ∈ Km let Ax = {y ∈ Kn : (x, y) ∈ A}. Show that {x : Ax
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is finite} is definable and that there is an N such that if Ax is finite, then
|Ax| ≤ N .

Exercise 4.19 Let A ⊂ K. Show that the model theoretic algebraic closure of
A is the field theoretic algebraic closure of A.

In Exercise 5.25 we will characterize definable closure in ACVF.

Exercise 4.20 Let (K, v) be an algebraically closed valued field. Prove that
there is no definable angular component map.

NIP

LetM be a structure. Recall that φ(x1, . . . , xm, y1, . . . , yn) has the independence
property if for all k there are b1, . . . , bk ∈ Mm and (cJ : J ⊂ {1, . . . , k}) in Mn

such that
M |= φ(bi, cJ)⇔ i ∈ J).

In which case we say that φ shatters b1 . . . , bk. Otherwise we say φ has NIP.
We say that a theory has NIP if no formula has the independence property.

We need two basic facts about NIP. See [39] 2.9 and 2.11.

Lemma 4.21 i) T has NIP if and only if every formula φ(x1, y1, . . . , yn) has
NIP.

ii) A boolean combination of NIP formulas has NIP.

Corollary 4.22 ACVF has NIP.

Proof By the lemma above and Corollary 4.14, it suffices to show that no
definable family of balls has the independence property. We claim that the
family of all balls can not shatter a set of size 3. Suppose a, b and c ∈ K are
distinct and, without loss of generality, v(a− b) ≤ v(a− c), v(b− c). Then any
ball that contains a and b contains c. Thus the family of all balls does not
shatter any three element set. �

Definable subsets of the value group and residue field

To study definable subsets of km, Γn and, more generally km × Γn we need to
apply quantifier elimination in the three-sorted language. We will let variables
x0, x1, . . . range over the home sort, while y0, y1, . . . ranges over the residue field
and z0, z1, . . . range over the value group. Any atomic formula is equivalent to
one in one of the following forms
• t(x0, . . . , xm) = 0, where t is a polynomial over Z;
• t(y0, . . . , yn, res(x0), . . . , res(xm)) = 0 , where t is a polynomial over Z;
• s(z0, . . . , zl, v(x0), . . . , v(xm)) = 0, where s(u0, . . . , ul+m+1) =

∑
riui, ri ∈

Z;
• s(z0, . . . , zl, v(x0), . . . , v(xm)) > 0, where s(u0, . . . , ul+m+1) =

∑
riui, ri ∈

Z;
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We say that A ⊆ kn × Γm is a rectangle if there is B ⊆ kn definable in the
field structure on k and C ⊆ Γm definable in the ordered abelian group Γ such
that A = B × C.

Corollary 4.23 (Orthogonality) Every definable subset of kn×Γm is a finite
union of rectangles.

Proof By quantifier elimination, every definable set is a finite union of sets
defined by conjunctions of atomic and negated atomic formulas. But atomic
formulas defining subsets of kn × Γm only have variables over just the residue
field sort or just the value group sort and the definable set is either of the
form kn × A or B × Γn where A ⊆ kn is already definable in k or B ⊆ Γm is
already definable in Γ. Thus any set defined by a conjunction of atomic and
negated atomic formulas is a rectangle and every definable set is a finite union
of rectangles. �

Corollary 4.24 i) Any definable function f : k→ Γ has finite image.
ii) Any definable function g : Γ→ k has finite image.

This shows that the residue field and value group are as unrelated as possible.
It also shows that the valuation structure induces no additional definability on
the residue field and value group.

Corollary 4.25 i) Any subset of kn definable in (K,Γ,k) is definable in the
field k.

ii) Any subset of Γm definable in (K,Γ,k) is definable in the ordered abelian
group Γ.

In this case k with all induced structure, is just a pure algebraically closed
field and hence ω-stable, while Γ with all induced structure, is a divisible ordered
abelian group and hence o-minimal.

Definition 4.26 We say that a sort S is stably embedded if any subset of Sn

that is definable in the full structure is definable using parameters from S.

Corollary 4.27 The residue field and value group of an algebraically closed
field are stably embedded.

In the next section we give an example of an imaginary sort that is not stably
embedded.

Exercise 4.28 Let A ⊂ k. Prove that if b ∈ k is algebraic over A in the
three-sorted valued field structure, then b is algebraic over A in the field k.

4.3 Balls

For this section we start by thinking of valued fields as three-sorted structures
(K,Γ,k), but this also makes sense if we think of them as one-sorted structures
(K,O).
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For any valued field we can introduce two new sorts Bo and Bc for open
and closed balls. For Bo define an equivalence relation ∼ on K × Γ such that
(a, γ) ∼ (b, δ) if and only if γ = δ and γ = δ and v(a− b) > γ. Then

(a, γ) ∼ (b, γ)⇔ b ∈ Bγ(a)⇔ a ∈ Bγ(b).

Thus we can identify (a, γ)/ ∼ withBγ(a). Let Bo = K×Γ/ ∼. We can indentify
Bo with the open balls of K. There is a definable map r : Bo → Γ given by
r((a, γ)/ ∼) = γ, i.e., r assigns each ball it’s radius. There is a definable relation
Ro on K×Bo such that aRob if and only if a ∈ b. Replacing ∼ by (a, γ) ∼∗ (b, δ)
on K × Γ ∪ {∞} if and only if γ = δ and v(a− b) ≥ γ , we can similarly define
the sort of closed balls Bc.

Exercise 4.29 Let a ∈ K and let X ⊂ S be the set of all open balls containing
a. Prove that X is not definable with parameters from Bo. [Hint: Show that for
any finite subset A of Bo there is an automorphism (possibly of a larger field)
fixing A pointwise but moving X.]

While up to this point the construction makes sense in any valued field,
henceforth we will assume K is algebraically closed.

Lemma 4.30 If X ⊆ Bc is an infinite definable set then either r|X is finite-to-
one, or there is an infinite definable Z ⊆ X and a definable surjection f : Z → k.

Proof If r|X is not finite-to-one, there is γ ∈ Γ such that Y = {B ∈ X :
r(B) = γ} is infinite. Let A =

⋃
B∈Y B. Then A is an infinite definable subset

of K and if a ∈ A, then Bγ(a) ∈ Y .

claim There is a closed ball Bε(a) with ε < γ such that every closed ball of
radius γ in Bε(a) is in Y .

By quantifier elimination A is a finite disjoint union of sets of W = B \(C1∪
· · · ∪Cm), where B,C1, . . . , Cm are balls. Since Y is infinite, some B must have
radius δ < γ. If a ∈ W , then Bγ(a) ⊂ W . Let ai be the center of Ci, then
δ ≤ v(a − ai) < γ for all i. Choose ε such that δ ≤ v(a − ai) < ε < γ. Then
Bε(a) ⊂W ⊆ A. Thus if b ∈ Bε(a), then Bγ(b) ∈ Y .

Let Z be the set of closed balls of radius γ contained in Bε(a). Then Z is
an infinite set of closed balls and Z ⊆ Y .

If we choose c ∈ K with v(c) = −ε, then g(x) = c(x−a) is a bijection between
Bε(a) and O. If b1, b2 ∈ Bε(a) such that v(b1− b2) ≥ γ, then v(g(b1)− g(b2)) =
v(b1−b2)−ε > 0. Thus res(g(b1)) = res(g(b2)). Thus the map Bγ(b) 7→ res(g(b))
is a well defined map from Z onto k. �

Corollary 4.31 Suppose f : Γ → Bc. Let X be the image of f . Then r|X is
finite-to-one.

Proof If not there is an infinite Z ⊆ X and a definable surjection g : Z → k.
Let A = f−1(Z). Then g ◦ f |A is a definable map from an infinite definable
subset of Γ onto k, a contradiction. �
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Lemma 4.32 If X ⊆ Bc is infinite, there is a definable f : X → Γ with infinite
image. In particular, the image of f contains a non-trivial interval.

Proof First consider the image of X under the radius map. If this is infinite,
then we are done. If not, then, without loss of generality we may assume that
all balls in X have radius γ. Let A =

⋃
B∈Y B. As the proof of Lemma 4.30,

there is a closed ball Bε(a) ⊂ A with ε < γ. If x, y ∈ Bε(a) \ Bγ(a) such that
v(x − y) ≥ γ, then v(x − a) = v(y − a). Thus we have a well defined function
f : X → Γ such that

f(B) =

{
v(x− a) if B ⊂ Bε(a) \Bγ(a) and a ∈ B
0 otherwise

.

Then the image of f is an infinite subset of Γ. �

We can extend this result to balls in n-spaces. Let γ ∈ Γ and let a =
(a1, . . . , an) ∈ Γn. Then

Bγ(a) = {b ∈ Kn :
∧
v(ai − bi) ≥ γ}

is the closed ball around a of radius γ. Let Bnc be the collection of all closed balls
in Kn. Let π : Kn → Kn−1 be the projection onto the first n−1 coordinates. If
B ∈ Bnc is a closed ball of radius δ, then π(B) ∈ Bn−1

c and if Bδ(a1, . . . , an−1) ∈
Bn−1
c then B is in the fiber π−1(B1) if and only if

B = Bδ(a1, . . . , an) = Bδ(a1, . . . , an−1)×Bδ(an)

for some an ∈ K. Thus the fiber is in definable bijection with an infinite subset
of Bc.

Corollary 4.33 If X ⊆ Bnc is infinite and definable, there is a definable func-
tion f : X → Γ with infinite image.

Proof We proceed by induction on n, knowing the result is true for n = 1. Let
X ⊂ Bn−1

c . Consider the projection of X to Bnc . If this is infinite we are done.
If not, some fiber is infinite. But this gives rise to an infinite subset of Bc and
we are done. �

Corollary 4.34 If X ⊆ Kn is infinite and definable, then there is a definable
f : X → Γ with infinite image.

Proof We have a definable injection a 7→ {a} = B∞(a) of Kn into Bnc . Thus
this follows from the previous corollary. �

4.4 Real Closed Valued Fields

We next consider valued fields (K,O) where K is a real closed field and O is
a proper convex subring. We call O a real closed ring and we refer to (K,O)
as a real closed valued field. In a series of exercises we will prove the following
theorem of Cherlin and Dickmann.
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Theorem 4.35 The theory of theory of real closed valued fields admits quanti-
fier elimination in the language Ldiv,< = {+,−, ·, <, |, 0, 1}.

As usual, the theorem will follow from an embedding lemma.

Lemma 4.36 Let (K,O) and (L,OL) be real closed valued fields such that L
is |K|+-saturated. Let R be a subring of K and f : R → L is an embedding
that preserves both the order and the divisibility relation. Then f extends to an
order and valuation preserving embedding of K into L.

Let K, L, R and f : R → K be as in the lemma. We let v denote the
valuation on K and vL denote the valuation on L.

Exercise 4.37 Let K0 be the fraction field of R. Show that f extends to an
order and and valuation preserving embedding of K0 into L.

Exercise 4.38 Let K0 be as above and let Krcl
0 be the real closure of K0 inside

K. Show that we can extend f to an order and valuation preserving of Krcl
0

into K.

Henceforth, we assume that we have K0 a real closed subfield of K and
f : K0 → L an order and valuation preserving embedding.

Exercise 4.39 Suppose x ∈ K \K0, v(x) = 0 and x is transcendental over kK0 .
Show that we can extend f to K0(x) preserving the ordering and the valuation.

Exercise 4.40 Suppose x ∈ K \K0, v(x) 6∈ v(K0). Show that we can extend
f to K0(x) preserving the ordering and the valuation.

Exercise 4.41 Suppose x ∈ K \K0 and K/K0 is immediate. Show that we
can extend f to K0[x] preserving the ordering and the valuation.

Exercise 4.42 Conclude that the theory of real closed rings has quantifier
elimination. Show that the theory of real closed valued fields is complete.

Recall that an ordered structure (M,<, . . . ) is weakly o-minimal if every
definable X ⊂M is a finite union of points and convex sets.

Exercise 4.43 Show that a real closed ring is weakly o-minimal and NIP.

A partial converse holds ([28]). It T is a theory all of whose models are
weakly o-minimal rings, then they are real closed rings or real closed fields.

46



5 Algebra of Henselian Fields

5.1 Extensions of Henselian Valuations

Our first goal is to give two alternative characterizations of being henselian.
The first is that for any algebraic extension there is a unique extension of the
valuation. The second, under some additional assumptions, is that there are no
proper immediate algebraic extensions.

We begin with a useful lemma.

Lemma 5.1 Suppose O1, . . . ,Om are valuation rings of K with maximal ideals
mi, A = O1 ∩ · · · ∩ Om and ni = A ∩mi. Then Oi = Ani for each i.

Proof Let ki denote the residue field of Oi. Let x ∈ O1. We may assume
x 6= 1. Let I = {i : x ∈ Oi}.

Choose M so that:

• M 6= 0(mod mi) for all i;

• for i ∈ I either x = 1(mod mi) or x is not a M th root of unity in ki;

• for i 6∈ I either x = 1(mod mi) or 1/x is not a M th root of unity in ki.

The next exercise is to show this is always possible. Let y = 1 +x+ · · ·+xM−1.
Then y is a unit in Oi [if x = 1(mod mj), then y = M 6= 0(mod mj), while if

x 6= 1(mod mj), then y = 1−xM
1−x 6= 0(mod mi)]. In particular xy−1 ∈ Oi for

i ∈ I.
Similarly, we can also assume that z = 1 + x−1 + · · ·+ x1−M is a unit in Oj

for j 6∈ I. But then y−1 = x1−Mz−1 ∈ Oj and xy−1 = x2−Mz−1 ∈ Oj for j 6∈ I.
Thus xy−1, y−1 ∈ A and y−1 6∈ n1. Thus x = (xy−1/y−1) ∈ An1

. �

Exercise 5.2 Show that it is always possible to choose M as in the above
proof.

Lemma 5.3 Let K be a field and let O1, . . . ,Om be valuation rings of K such
that Oi 6⊆ Oj for i 6= j, let A = O1 ∩ · · · ∩ Om and let ni = mi ∩A. Then

i) ni 6⊆ nj for i 6= j;
ii) n1, . . . , nm are maximal ideals of A and every maximal ideal of A is one

of the ni;
iii) for (a1, . . . , am) ∈ O1 × · · · × Om, there is a ∈ A with a = ai in ki.

Proof i) If ni ⊆ nj , then Oj = Anj ⊆ Ani = Oi.
ii) Suppose I ⊂ A is a proper ideal. We will show that I ⊂ ni for some i.

Suppose not. For each i choose ai ∈ I \ ni. Also for i 6= j choose bi,j ∈ ni \ nj .
Then

cj =
∏
i 6=j

bi,j ∈ ni \ nj for all i 6= j.
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Thus ajcj ∈i \nj for all i 6= j and

d =
∑

ajcj ∈ I \ ni for all i.

Thus 1/d ∈ Oi for all i, so 1/d ∈ A. But then 1 ∈ I, a contradiction.

iii) We know that Oi = Ani and mi = niAni . Thus ki = Ani/niAni = A/ni.
Now we can apply the Chinese Remainder Theorem. �

Lemma 5.4 Suppose (K,O) is a valued field and L/K is algebraic. If O1 ⊆ O2

are valuation rings of L with Oi ∩K = O, then O1 = O2.

Proof Then O1 = O1/m2 in O2/m2 is a valuation ring in k2 and k ⊂ O1. But
k2/k is algebraic, thus O1 is a field. Since it’s a valuation ring its fraction field
must be all of k2. Thus O1 = k2. Since m2 ⊆ m1, we must have O1 = O2. �

The following analysis will be the key to several of our main results in this
section. Let (K,O) be a valued field. Suppose F/K be a finite Galois extension
and O1, . . . ,Om are distinct extensions of O to F . Let G = {σ ∈ Gal(F/K) :
σ(O1) = O1} and let L ⊆ F be the fixed field of G. We will make two observa-
tions.

Lemma 5.5 Under the assumptions above with m > 1:
i) (K,O) is not henselian;
ii) (L,O1 ∩ L) is a proper immediate extension of (K,O)

Proof Let O′i = Oi ∩ L for i = 1, . . . ,m.

claim If i > 1, then O′i 6= O′1.
If O′i = O′1, then O1 and Oi are extensions of O′1 from L to F . But then by

Theorem 3.24, there is σ ∈ Gal(F/L) = G with σ(O1) = Oi, contradicting the
definition of G.

Let A = O′1 ∩ · · · ∩ O′m. Let ni = Oi ∩A.

claim If i ≥ 2, then ni 6= n1.
By Lemma 5.1, if ni = n1, then O′1 = An1

= Ani = O′i, a contradiction.

By Lemma 3.21 we can find a ∈ A such that a = 1(mod m1) and a ∈
m2 ∩ · · · ∩mm, where mi is the maximal ideal of Oi.

As mi ∩K = mK we must have a 6∈ K. Let

f(X) = Xn + bn−1X
n−1 + . . . b0 = (X − a)(X − α2) · · · (X − αn)

be the minimal polynomial for a overK, where b0, . . . , bn−1 ∈ K and α2, . . . , αn ∈
F .

claim α2, . . . , αn ∈ m1.
Let i ≥ 2. There is σ ∈ G(F/K) such that σ(a) = αi. We know that

a ∈ A ⊂ L and any σ ∈ G fixes L pointwise. Thus σ 6∈ G and σ−1(O1) = Oj
for some j 6= 1. But a ∈ mj . Thus αi = σ(a) ∈ m1.
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It follows that bn−1 = −a−α2− · · · −αn = −1(mod m1) and b0, . . . , bn−2 ∈
m1.

claim (K,O) is not henselian.
Clearly f(1) ∈ mO. Let g(X) = (X − α2) · · · (X − αn). Then f ′(X) =

(X − a)g′(X) + g(X). Thus

f ′(1)(mod m1) = (1− a)g′(1) + g(1)(mod m1) = 1(mod m1).

Thus f ′(1) 6= 0(mod mO). If K were henselian, f would not be irreducible. Thus
K is not henselian.

To show that (L,O′1) is an immediate extension we make some minor mod-
ifications to the proof above. Suppose c is a unit in O′1 we can find a ∈ A such
that a = c(mod m1) but a ∈ mi for i > 1. Let f be the minimal polynomial for
a over K. Arguing as above

f(X) = Xd + bd−1X
d−1 + · · ·+ b0 = (X − a)(X − α2) · · · (X − αd)

where bd−1 = −c(mod m1) and b0, . . . , bd−2 ∈ m1. But −(c + α2 + · · · + αd) =
bd−1 ∈ K and c = bd−1. Thus the residue field does not extend.

We need to show the value group does not extend. We let v denoted the
valuation on L. Let x ∈ L. We must find y ∈ K with v(x) = v(y). We can
find a ∈ A such that a − 1 ∈ m1 and a ∈ m2 ∩ · · · ∩ mm. Then v(a) = 0 and
v(σ(a)) = 0 for all σ ∈ G. Since a ∈ m2 ∩ · · · ∩mm, as above, v(σ(a)) > 0 for all
σ ∈ Gal(F/K) \G. We claim that we can choose N large enough we can ensure
that

v(aNx) 6= v(σ(aNx)) for all σ ∈ Gal(F/K) \G.

For any particular σ ∈ Gal(F/K)\G, v(arx) = v(x) and v(σ(arx)) = rv(σ(a))+
v(σ(x)). Since v(σ(a)) > 0, for all but one value of r these are unequal. Thus,
since Gal(F/K) is finite, we can choose N as desired.

Let aNx = α1, . . . , αn be the distinct conjugates of aNx over K. Let

g(X) = (X − α1) · · · (X − αn) = Xn + bn−1X
n−1 + · · ·+ b0.

For 1 < i ≤ n, αi = σ(aNx) for some σ ∈ Gal(F/K) \ G [note that any τ ∈ G
fixes aNx ∈ L]. Thus v(αi) 6= v(α1) for i > 1.

First suppose v(αi) > v(α1) for all i > 1. Then bn−1 = −
∑
αi, v(x) =

v(aNx) = v(bn−1) ∈ v(K), as desired. In general suppose that v(αi) < v(α1)
for 1 < i ≤ k and v(αi) > v(α1) for k < i. Note that

bn−j = (−1)j
∑

1≤i1<···<ij≤n

αi1 · · ·αin .

Thus
v(bn−k) = v(α2 · · ·αk) and v(bn−k−1) = v(α1 · · ·αk).

Thus v(x) = v(α1) = v(bn−k−1/bn−k) ∈ v(K).

Thus L is an immediate extension of K. �
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Theorem 5.6 Let (K,O) be a valued field. The following are equivalent:
i) (K,O) is henselian;
ii) For any separable algebraic extension L/K there is a unique extension of

O to a valuation ring of L;
iii) For any algebraic extension L/K there is a unique extension of O to a

valuation ring of L
iv) If f(X) ∈ O[X] is monic irreducible and f(X) is non-constant, then

there is and irreducible g(X) ∈ k[X] and n ≥ 1 such that f(X) = g(X)n.
v) If f, g, h ∈ O[X] is monic and f = gh where g and h are relatively prime,

then there are g1, h1 ∈ O[X] such that g1 = g, h1 = h and g1 and g have the
same degree.

Proof i) ⇒ ii) Suppose not. Then we can find F/K a finite Galois extension
such that O has multiple extensions O1, . . . ,Om each of which are conjugate
under Gal(F/K). Now we can apply Lemma 5.5 to show that (K,O) is not
henselian.

ii) ⇒ iii) Let K ⊆ F ⊆ L be the separable closure of K in L. By ii) there is
a unique extension of the valuation to F . Since L/F is purely inseparable and
there is a unique extension of the valuation to L.

iii) ⇒ iv) In Kalg we can factor

f(X) =

d∏
i=1

(X − αi).

Let O∗ and m∗ denote the valuation ring and maximal ideal of an extension to
Kalg.

Since f ∈ O[X],
∏
αi ∈ O, thus we can not have v(αi) < 0 for all i. Since

any two roots are conjugate and there is a unique extension of the valuation
ring to Kalg we must have all of the αi ∈ O or all of the αi 6∈ O, but the latter
option is not possible.

Thus, f(X) =
∏

(X − αi). To show that f is a power of an irreducible
polynomial in k[X] it is enough to show that we can not fact f = gh where
g and h are relatively prime and monic. Suppose we can. If g(αi) = 0, then
g(αi) ∈ m∗ and for any σ ∈ Gal(Kalg/K), g(σ(αi)) ∈ σ(m∗) = m∗. But all of
the roots of f are conjugate. Thus they are all roots of g, a contradiction.

iv) ⇒ v) Let f = q1 · qm be an irreducible factorization of f in O[X]. into
monic factors. For each i, there is a monic pi ∈ O[X] such that qi = pnii . We
can find J ⊆ {1, . . . , d} such that g =

∏
i∈J p

ni
i . Let

h =
∏
i 6∈J

pnii .

Let
g1 =

∏
i∈J

pnii and h1 =
∏
i 6∈J

pnii .
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Then f = g1h1 and g and g1 have the same degree.

v) ⇒ i) Suppose f(X) ∈ O[X] and f(X) = Xd + Xd−1 +
∑
aiX

i where

ai ∈ mi. In k[X] we can factor f(X) = h(X)(X + 1), Since f
′
(−1) = ±1,

h(−1) 6= 0. Thus h(X) and (X + 1) are relatively prime. By iv) there is a ∈ K
with a = −1 such that (X − a) is an irreducible factor of f . �

Exercise 5.7 Show that it (K,O) is henselian and (L,OL) is an algebraic
extension, then (L,OL) is henselian.

Exercise 5.8 Suppose (K,O) is henselian, F ⊆ K and F is separably closed in
K. Prove that (F,O ∩ F ) is henselian.

5.2 Algebraically Maximal Fields

Definition 5.9 We say that a valued field (K,O) is algebraically maximal if it
has no proper separable algebraic immediate extensions.

Corollary 5.10 An algebraically maximal valued field (K,O) is henselian.

Proof If (K,O) is not henselian we can find F/K a finite Galois extension
with multiple extensions of O to F . By Lemma 5.5, we can find an intermediate
field K ⊂ L ⊆ F with L/K immediate. �

The converse is true under some additional assumptions which will apply in
many of our settings.

Definition 5.11 We say that (K,O) has equicharacteristic zero if K and the
residue field k have characteristic zero.

We say that (K,O) is finitely ramified if k has characteristic p > 0 and
{v(x) : 0 < v(x) < v(p) : x ∈ K×} is finite.

Note that the later condition is true for the p-adics.

Exercise 5.12 Prove that if (K,OK) is a finite algebraic extension of (Qp,Zp),
then (K,OK) is finitely ramified.

Exercise 5.13 Suppose L/K is finitely ramified. Show that the set {v(x) :
0 < v(x) < v(n)} is finite for all n ∈ Z.

Theorem 5.14 If (K,O) is henselian and equicharacteristic zero or finitely
ramified, then (K,O) is algebraically maximal.

Proof Suppose F is an algebraic immediate extension and x ∈ F \K. Without
loss of generality F/K is finite. There is L ⊇ K such that L/K is Galois. There
is a unique extension OL of O. Let v be the valuation associated with OL. For
and a ∈ K, we have v(x−a) = v(b) for some b ∈ K, but then v(σ(x)−a) = v(b)
for all σ ∈ Gal(L/K).
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Let d = [L : K] Let

a =
1

d

∑
σ∈Gal(L/K)

σ(x) ∈ K.

Since F/K is immediate, there is b ∈ K such that v((x− a)/b) = 0 and c ∈ K
such v(x−ab − c) > 0. Then

v(x− (a+ bc)) > v(b) = v(x− a).

Since (K,O) is equicharacteristic zero or finitely ramified, repeating this argu-
ment finitely many times in the case where the residue field has characteristic
p we can find â ∈ K such that

v(x− â) > v(x− a) + v(n)

(if the residue field has characteristic zero v(n) = 0 so we need only do this
once). Then

v(n) + v(a− â) = v(n(a− â))

= v

 ∑
σ∈Gal(L/K)

(σ(x)− â)


≥ min(v(σ(x)− â))
≥ v(x− â) since v(w) = v(σ(w)) for all w ∈ L
> v(x− a) + v(n)
= v(a− â) + v(n)

a contradiction. The last line holds since v(a − â) = v((a − x) + (x − â)) and
v(x− â) > v(x− a). �

Corollary 5.15 If (K,O) is henselian with divisible value group and alge-
braically closed residue field of characteristic zero, then K is algebraically closed.

Proof If L/K is a proper algebraic extension, then we can extend the valuation
to L and, by Lemma 3.16 it must be an immediate extension, contradicting
Theorem 5.14. �

Corollary 5.16 If k is an algebraically closed field of characteristic zero, then
the Puiseux series field k〈T 〉 is algebraically closed.

This doesn’t work in characteristic p > 0. The series solution to f(X) =
Xp −X = T−1 should be of the form

a+ T−1/p + T−1/p2 + · · ·+ T−1/pn + . . .

where a ∈ Fp, which is not a Puiseux series. This series is in the immediate
extension Fp(((Q))) and thus in the separable closure of the Puiseux series in
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the Hahn series. This shows that henselianity alone is not enough to conclude
algebraically maximal. Kedlaya in [25] gives a characterization of the algebraic
closure of Falg

p ((T )).

If k is real closed and Γ is divisible, kalg〈T 〉 is a degree 2 extension of k〈T 〉.
Thus k〈T 〉 is real closed. This is true in much more generality.

Corollary 5.17 Let (K,<) is an ordered field and let O be the convex hull of a
subring. Suppose (K,O) is henselian with real closed residue field k and divisible
value group Γ. Then K is real closed.

Proof Let L be the real closure of (K,<) and let O∗ be the convex hull of O in
K. Then, since the orderings agree, (K,O) ⊆ (L,O∗). The residue field kL is
real closed and algebraic over k, so it must equal k. Similarly, the value group
of L is contained in the divisible hull of v(K) and hence equals v(K). Thus L/K
is an immediate extension and, since (K,O) is henselian and equicharacteristic
zero, L = K. �

5.3 Henselizations

Infinite Galois Theory

We quickly review some facts we need about the Galois Theory of infinite alge-
braic extensions. The reader should consult [23] §8.6 or [19] §1.

Let K be a field. The separable closure of K is Ks the maximal separable
algebraic extension of K. When we apply these results we will be working almost
exclusively in the setting where K has characteristic zero so there would be no
harm in working with Kalg the algebraic closure of K. We let Gal(Ks/K) be
the Galois group of all automorphisms of Ks that are the identity on K.

Suppose L/K is a finite Galois extension. If σ ∈ Gal(Ks/K), then σ|L ∈
Gal(L/K). Moreover if τ ∈ Gal(L/K), there is τ̂ ∈ Gal(Ks/K) extending τ .
Thus

Gal(Ks/K) = lim←−
L/K finite Galois

Gal(L/K)

is a profinite group. We topologize Gal(Ks/K) by taking the weakest topology
such that for all finite Galois extensions L/K and σ ∈ Gal(L/K), Uσ = {τ ∈
Gal(Ks/K) : σ ⊆ τ} is open.

If H is a subgroup of Gal(Ks/K), let Fix(H) = {x ∈ Ks : σ(x) = x for all
σ ∈ H} be the fixed field of H.

Theorem 5.18 (Fundamental Theorem of Infinite Galois Theory) The
maps L 7→ Gal(Ks/L) and H 7→ Fix(H) are inclusion-reversing bijections be-
tween the collection of intermediate fields K ⊆ L ⊆ Ks and closed subgroups of
Gal(Ks/K).
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Henselizations

Let (K,O) be a valued field, let Ks be the separable closure of K and let Os
be an extension of O to K. Let G(Os) = {σ ∈ Gal(Ks/K) : σ(Os) = Os}. We
call G(Os) the decomposition group.

Lemma 5.19 G(Os) is a closed subgroup of Gal(Ks/K).

Proof Suppose σ 6∈ G(Os). There is x ∈ Os with σ(x) 6∈ Os. Let L/K be
finite Galois with x ∈ L and let τ = σ|L. Then σ ∈ Uτ and Uτ ∩ G(Os) is
empty. �

Definition 5.20 Let Kh(Os) be the fixed field of G(Os) and let Oh(Os) =
Os ∩Kh. We call (Kh(Os),Oh(Os)) a henselization of (K,O).

When no confusion arises we will suppress Os and write (Kh,Oh).

Lemma 5.21 i) Os is the unique extension of Oh to Ks. Thus (Kh,Oh) is
henselian.

ii) (Kh,Oh) is an immediate extension of K.

Proof i) Suppose Os1 is an extension of Oh to Ks. By Theorem 3.24, Os and
Os1 are conjugate under Gal(Ks/K). But G(Os) is the Galois group of Ks/Kh,
so any element of Gal(Ks/K) fixes Os. Hence Os = Os1

ii) follows from Lemma 5.5. �

Lemma 5.22 If (K1,O1) is a henselian extension of (K,O) then there is a
unique embedding j : (Kh,Oh)→ (K1,O1) fixing K pointwise.

Proof Without loss of generality, by Exercise 5.8, we may assume that K1 ⊆
Ks. Since K1 is henselian, there is a unique extension Os1 of O1 to Ks. Then
Gal(Ks/K1) ⊆ G(Os1). Thus K1 ⊇ Kh(Os1). By Theorem 3.24 there is σ ∈
Gal(Ks/K) with σ(Os) = Os1, but then σ(Kh) = Kh(Os1) ⊆ K1 and σ|Kh is
the desired embedding of (Kh,Oh) into (K1,O1).

Suppose j : (Kh,Oh) → (K1,O1) is another embedding. We can extend j
to τ ∈ Gal(Ks/K). Then τ(Os)∩ τ(Kh) = Os1 ∩ τ(Kh). But (τ(Kh), τ(Oh)) is
henselian, so Os1 is the unique extension of τ(Os) to Ks and τ(Os) = Os1. Thus
τ−1σ(Os) = Os and τ−1σ ∈ G(Os). Since Kh is the fixed field of G(Os), σ and
τ agree on Kh. Thus j = σ|Kh. �

Exercise 5.23 In particular if Os and Os1 are distinct extensions of O, then
there is a unique isomorphism between (Kh(Os),Os) and (Kh(Os1),O(Os1)) fix-
ing K.

Summarizing we have proved:

Theorem 5.24 Let (K,O) be a valued field. There is a henselization (Kh,Oh),
i.e. a henselian immediate separable algebraic extension of (K,O) such that if
(K1,O1) is a henselian extension of (K,O) then there is a unique embedding
j : (Kh,Oh)→ (K1,O1) with j|K the identity.
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Corollary 5.25 a) Let (K, v) be an algebraically closed valued field of charac-
teristic 0 and let A ⊂ K. Show that dcl(A), the definable closure of A, is exactly
the henselization of the fraction field of A.

Proof Let F be the fraction field of A. Then F alg is an elementary submodel
of (K, v). The valued field automorphisms of F alg that fixes A are exactly
the elements of the decomposition group G(OFalg), when has fixed field Fh. It
follows that Fh = dcl(A). �

Exercise 5.26 Let (K, v) be an algebraically closed field of characteristic p > 0.
Prove that A = dcl(A) if and only if A is perfect and henselian.

5.4 Pseudolimits

Let K be a valued field with valuation v. We will consider sequences (aα : α < δ)
where δ is a limit ordinal and aα ∈ K for α < δ. Frequently, we will simplify
notation by just writing (aα).

Definition 5.27 We say that a is a pseudolimit of (aα : α < δ) if the sequence
(v(a− aα) : α < δ) is eventually strictly increasing. We write (aα) a. We let
γα = v(a− aα).

Exercise 5.28 Suppose (aα) a and b ∈ K.
a) Show (aα + b) a+ b.
b) Show (baα) ba

Lemma 5.29 Suppose (aα) a. Then either:
i) (v(aα)) is eventually constant and equal to v(a);
ii) (v(aα)) is eventually strictly increasing and v(aα) < v(a) for sufficiently

large α.

Proof Suppose γα is increasing for α ≥ α0 and v(a) ≤ v(aα0). Then v(a −
aα0

) ≥ v(a) and α > α0, v(aα) = v(a), since

v(a− α) > v(a− aα0
) ≥ v(a).

Thus we are in case i).
If this never happens then v(aα) < v(a) for all sufficiently large α and for

β > α Then γα = v(aα) and v(aα) < v(aβ) for sufficiently large α < β and case
ii) holds. �

Lemma 5.30 Suppose (K, v) ⊆ (L, v) is an immediate extension and x ∈ L\K.
There is a sequence (aα) in K such that (aα) x and (aα) has no pseudolimit
in K.

Proof Let a0 = 0. Suppose we have aα. Since v(K) = v(L) we can find
b ∈ K such that v(b) = v(x − aα). Since kK = kL, there is c ∈ K such that
0 6= c = res(x−aαb ). Thus

v(x− (aα + bc)) > v(b) = v(x− aα).
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Let aα+1 = aα + cb. Then v(x− aα+1) > v(x− aα).
Suppose δ is a limit ordinal and we have constructed (aα : α < δ) with

v(x − aα) < v(x − aβ) for α < β < δ. If there is b ∈ K such that v(x − b) >
v(x − aα) for all α < δ let aδ = b and continue. If no such b exists (aα) is our
desired sequence. �

A sequence (aα) in K might not have a pseudolimit in K, but we can tell if
it could have pseudolimit in an extension.

Definition 5.31 We say that (aα) is pseudocauchy if there is α0 such that
v(aδ − aβ) > v(aβ − aα) for δ > β > α > α0.

Lemma 5.32 i) If (aα) a, then (aα) is pseudocauchy.
ii) If (aα) is pseudocauchy, there is an elementary extension (K, v) ≺ (L, v)

such that (aα) has a pseudolimit in L.

Proof i) If δ > β > α are suitably large, then aδ − aβ = (a − aβ) − (a − aδ).
Thus v(aδ − aβ) = v(a − aβ). Similarly, v(aβ − aα) = v(a − aα) and, thus,
v(aδ − aβ) > v(aβ − aα) and the sequence is pseudocauchy.

ii) Consider the type t(v) = {v(x− aβ) > v(x− aα) : for α0 < α < β}. Let
∆ ⊂ t(v) be finite. Choose δ > α for all aα occurring in ∆. Then v(aδ − aβ) >
v(aβ − aα) = v(aδ − aβ) for δ > β > α > α0. Thus t(v) is finitely satisfiable
and thus realized in some elementary extension of K. �

Corollary 5.33 If (aα) is pseudocauchy, then (v(aα)) is either eventually con-
stant or eventually strictly increasing.

Exercise 5.34 Prove that in a Hahn field k(((Γ))) every pseudocauchy sequence
has a pseudolimit and conclude that Hahn fields have no proper immediate
extensions. (This is essentially the same proof we gave in §1.)

The next lemma is important but not surprising and rather routine. We
omit the proof and refer the reader to [12] Proposition 4.7 for the proof.

Lemma 5.35 Suppose (aα) a and f(X) ∈ K[X]. Then (f(aα)) f(a).
Thus if (aα) is pseudocauchy, so is (f(aα)).

There is an important dichotomy among pseduocauchy sequences.

Definition 5.36 Let (aα) be a pseudocauchy sequence in K. We say that
(aα) is of algebraic type if there is a nonconstant polynomial f(X) ∈ K[X] such
that (v(f(aα))) is eventually strictly increasing. Otherwise we say (aα) is of
transcendental type.

If (aα) is of transcendental type, then (v(f(aα))) is eventually constant for
all f ∈ K[X].
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Lemma 5.37 If (aα) is a pseudocauchy sequence over K of transcendental type,
then (aα) has no pseudolimit in K and there is an extension of v to the field of ra-
tional functions K(X) with v(f) = eventual value of v(f(aα)). Then (K(X), v)
is an immediate extension of K where (aα) X.

If L/K is a valued field extension of K and (aα) a in L, then sending X
to a we get a valued field isomorphism between K(X) and K(a) fixing K.

Proof If (aα)  a, let f(X) = X − a, then (v(f(aα))) is eventually strictly
increasing and the sequence is of algebraic type, a contradiction. Thus (aα) has
no pseudolimit in K.

Let v be defined as above. Then, for α sufficiently large

v(fg) = v(f(aα)) + v(g(aα)) = v(f) + v(g)

and

v(f + g) = v(f(aα) + g(aα)) ≥ min(v(f(aα))v(g(aα))) = min(v(f), v(g)).

Thus v is a valuation on K(X) extending the valuation on K. Clearly, the
value group of K(X) is equal to the value group of K. Let f ∈ K(X) \K with
v(f) = 0. Then 0 = v(f) = v(f(aα)) for sufficiently large α. If β > α, then
v(f − f(aβ)) > v(f − f(aα)) > v(f(aα)) = 0 and res(f) = res(aβ). Thus K(X)
is an immediate extension of K.

Suppose (L, v) is a valued field extension of K and a ∈ L is a pseudolimit
of (aα). For nonconstant f ∈ K[X] we have (f(aα))  f(a). Thus v(f(a)) =
v(f(aα)) = v(f) for sufficiently large α. In particular f(a) 6= 0, thus a is
transcendental over K and the field isomorphism of K(X) to K(a) obtained by
sending X to a preserves the valuation. �

Definition 5.38 If (aα) is of algebraic type, a minimal polynomial of (aα) is a
polynomial g of minimal degree such (v(g(aα)) is eventually increasing.

Lemma 5.39 Let (aα) be a pseudocauchy sequence of algebraic type with min-
imal polynomial g(X) and no pseudolimit in K. Then g(X) is irreducible of
degree at least 2. Let a be a zero of g in an extension field of K. Then v ex-
tends to a valuation on K(a) where v(f(a)) = eventual value of v(f(aα)), where
f(X) ∈ K[X] of degree less than deg(g). Then K(a) is an immediate extension
of K where (aα) a.

If L/K is any valued field extension of K where b ∈ K is a zero of g and
(aα)  b, then the isomorphism K(a) to K(b) obtained by sending a to b,
preserves the valuation.

Proof If g(X) = X − a then (v(g(aα))) = v(aα − a) is eventually strictly
increasing and (aα)  a, a contradiction. Thus g has degree at least two. If
g = g1g2 is a nontrivial factorization of g, then, by minimality of the degree of g,
(v(gi(aα))) is eventually constant for each i, but then (v(g(aα))) = (v(g1(aα) +
g2(aα))) is eventually constant, a contradiction. Thus g is irreducible of degree
at least two.
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Consider the extension K(a) where g(a) = 0. Suppose f1, f2 ∈ K[X] have
degree less that deg(g). There are h, r ∈ K[X] with degree less than deg(g)
such that f1f2 = hg + r. Then for α sufficiently large

v(f1) = v(f1(aα)), v(f2) = v(f2(aα)) and v(f1f2) = v(r) = v(r(aα)).

Then,
v(f1) + v(f2) = v(f1(aα)f2(aα)) = v(h(aα)g(aα) + r(aα)).

The sequence (v(h(aα)g(aα) + r(aα)) is eventually constant, while the sequence
(v(h(aα)g(aα)) is eventually increasing. This is only possible if v(h(aα)g(aα)) >
v(r(aα)) eventually. But then v(h(aα)g(aα) + r(aα)) = v(r(aα)) eventually and
v(f1f2) = v(f1) + v(f2) as desired.

The rest of the proof closely follows the proof of Lemma 5.37. �

Corollary 5.40 Let (K, v) be a valued field. Then every pseudocauchy sequence
in K has a pseudolimit in K if and only if K has no proper immediate exten-
sions.

Exercise 5.41 Prove that K has no proper immediate extensions if and only if
K is spherically complete.

We can refine Lemma 5.30 for algebraic immediate extensions.

Lemma 5.42 Suppose (L, v) is an immediate extension of K and a ∈ L \ K
is algebraic over K with minimal polynomial g. Let (aα) be a pseudocauchy
sequence over K with no pseudolimit in K such that (aα) a. Then (aα) is of
algebraic type. In fact (v(g(aα))) is increasing.

Proof Let g(X) = (X − a)h(X) where h ∈ K(a)[X]. Then g(aα) = (aα −
a)h(aα). The sequence (v(aα − a)) is eventually increasing and the sequence
(v(h(aα))) is either eventually increasing or eventually constant. Thus v(g(aα))
is either eventually increasing or eventually constant. �

Corollary 5.43 Let (K, v) be a valued field. If every pseudocauchy sequence
(aα) of algebraic type in K has a pseudolimit in K, then K is henselian. More-
over, the converse holds if, in addition (K, v) is either equicharacteristic zero
or finitely ramified.

Proof If every pseudocauchy sequence (aα) of algebraic type has a pseudolimit
in K, then by Lemma 5.42 (K, v) has no proper immediate algebraic extension
and, by Theorem am hen, (K, v) is henselian. Note that this direction did not
use the additional assumptions on (K, v).

If (K, v) is henselian and either equicharacteristic zero or finitely ramified,
then by Theorem 5.10, (K, v) has no proper immediate algebraic extensions.
Thus by Lemma 5.39, every pseudocauchy sequence of algebraic type in K has
a pseudolimit in K. �
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Exercise 5.44 Suppose K is a valued field with value group Γ such that there
is a lifting of the residue field k to K and there is s : Γ → K a section of the
value group. Show there is a valuation preserving embedding of K into the
Hahn field k(((Γ))). [Hint: View k as a subfield of K. First show that k(s(Γ))
embeds into k(((Γ))). Then consider a maximal subfield K0 ⊆ K such that the
embedding extends to a valuation preserving embedding of K0 into k(((Γ))).]

Conclude that if K is a real closed field with valuation ring O a convex
subring, residue field k and value group Γ, then there is a valuation preserving
embedding of K into k(((Γ))).8

8Mourgess and Ressarye [32] proved the stronger result that we can embedding K into
k(((Γ))) such that if f is in the image so is any truncation (i.e. initial segment) of f . They
used this to prove that every real closed field has an integral part (i.e. a discrete subring Z
such that for all x ∈ K, |[x, x + 1) ∩ Z| = 1).
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6 The Ax–Kochen Eršov Theorem

6.1 Quantifier Elimination in the Pas Language

We will be considering valued fields as three-sorted objects (K,Γ,k) in the
Pas language where we have the language of rings {+,−, ·, 0, 1} on both the
home sort, i.e. the field K, and the residue field sort, the language of ordered
groups {+,−, <, 0} on the value group sort, the valuation map v : K× → Γ
and an angular component map ac : K× → k×. Not all valued fields have
angular component maps, but for any valued field we can pass to an elementary
extension where there is an angular component map.

Let ∆0 be the collection of all formulas of the form

• φ(u), where φ is a quantifier free formula in the language of rings and u
are variables in the field sort;

• ψ(v(f1(u)), . . . , v(fk)(u)),v)) where ψ is a formula in the language of
ordered groups, u are variables in the field sort, fi is a term in the ring
language and v are variables in the value groups sort;

• θ(ac(g1(u)), . . . , ac(gk)(u)),w)) where ψ is a formula in the language of
ordered groups, u are variables in the field sort, gi is a term in the ring
language, and w are variables in the residue sort;

Note that we are allowing quantifiers over the value group and the residue
field but not over the home sort. Let ∆ be the collection of finite boolean
combinations of ∆-formulas. Note that each ∆ formula is equivalent to a formula
of the form

φ(u) ∧ ψ(v(f1(u)), . . . , v(fk)(u)),v)) ∧ θ(res(g1(u)), . . . , res(gl)(u)),w)),

where φ, ψ and θ are as above.

Theorem 6.1 (Pas) [33] Let T be the theory of henselian valued fields with
angular components where the residue field has characteristic zero. Then every
formula is equivalent to a ∆-formula.

We will use the following relative quantifier elimination test.

Exercise 6.2 Suppose L is countable. Let ∆ be a collection of formulas closed
under finite boolean combinations and let T be an L-theory with the following
property.

WheneverM and N are models of T , |M| = ℵ0 N is ℵ1-saturated, A ⊂M
and f : A→ N is a ∆-embedding (i.e, M |= θ(a)⇔ N |= θ(f(a) for a ∈ A and

θ ∈ ∆), then there is f̂ :M→N that is ∆ preserving.
Show that every L-formula is equivalent to a ∆-formula. [Hint: add predi-

cates for all formulas in ∆.]

Our main step will be proving an embedding result. We look at embeddings
that preserved ∆-formulas. A map f : (A,ΓA,kA)→ L is an ∆-embedding if:
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i) f |A is a ring embedding;
ii) f |ΓA is a partial elementary embedding in the language of groups;
iii) f |kA is a partial elementary embedding in the language of rings;
iii) f preserves v and ac.

Theorem 6.3 Let (K,Γ,k) and (L,ΓL, kL) be henselian valued fields with an-
gular component with characteristic zero residue field. Suppose K is count-
able, L is ℵ1-saturated, (A,ΓA,kA) is a countable substructure of K, and f :
(A,ΓA,kA) → (L,ΓL,kL) is a ∆-embedding. Then there is an extension of f

to a ∆-embedding f̂ : (K,ΓK ,kK)→ (L,ΓL,kL).

Henceforth, we assume K is countable and L is ℵ1-saturated. We extend
our map by iterating the following lemmas.

Note that in a substructure (A,ΓA,kA), A and kA are domains, while ΓA is
a subgroup.

Lemma 6.4 Suppose (A,ΓA,kA) be a subring of K and f : (A,ΓA,kA) →
(L,Γ,kL) is a ∆-embeddings. Let F be the fraction field of A and let l be the
fraction field of kA. We can extend f to a ∆-embedding of (F,Γ, l) into L.

Proof There is a unique extension of f to (F,G, l). Since v(a/b) = v(a) −
v(b) and ac(x/y) = ac(x)/ac(y), vL(f(a/b)) = f(v(a/b)) and acL(f(x/y)) =
f(ac(x/y)), f is a ∆-embedding. �

Henceforth, we will work only with substructures (F,ΓF ,kF ) where F and
kF are fields and ΓF is a group, v(F ) ⊆ ΓF and ac(F ) ⊆ kF .

We next show how to extend the value group.

Lemma 6.5 Suppose f : (F,ΓF ,kF )→ (L,ΓL,kL) is a ∆-embedding. We can
extend f to a ∆-embedding of (F,Γ,kF ).

Proof We will prove this by iterating the following claim.

claim Let γ ∈ Γ \ ΓF and let G be the group generated by ΓF and γ, then we
can extend f to (F,G,kF ).

Let p(v) be the type {ψ(v, f(g1), . . . , f(gm)) : g1, . . . , gm ∈ ΓF , ψ a formula
in the language of ordered groups where Γ |= ψ(γ, g1, . . . , gm). If ψ1, . . . , ψn ∈
p(v) with parameters f(g1), . . . , f(gm), then, since f is a ∆-embedding

ΓL |= ∃v
n∧
i=1

ψi(v, f(g1), . . . , f(gm)).

Thus p(v) is consistent and, by ℵ1-saturation, realized in ΓL. Let γ′ be a
realization and extend f by γ 7→ γ′. �

Lemma 6.6 If we have a ∆-embedding f defined on (F,Γ,kF ) we can extend
it to (F,Γ,k).
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Exercise 6.7 Prove Lemma 6.6.

We next make the residue map surjective.

Lemma 6.8 Suppose f is a ∆-embedding of (F,Γ,k). Then we can find F ⊆
E ⊆ K such that res : E → k is surjective and we can extend f to a ∆-embedding
of (E,Γ,k).

Proof We iterate the following two claims and Lemma 6.4.

claim 1 Suppose we have a ∆-embedding f : (F,Γ,k)→ (L,ΓL,kL) and b ∈ K
with residue b algebraic over res(F ) but not in res(F ). Then we can extend f
to F (b).

There is p(X) ∈ OF [X] irreducible with p(X) the minimal polynomial of b
over res(F ). Let q(X) ∈ Of(F )[X]be the image of p. Since the embedding of

residue fields is elementary, q(X) is irreducible in f(res(F )) and q(f(b)) = 0.
Moreover, since kL has characteristic zero and q is irreducible, q′(f(b)) 6= 0.
Since L is henselian, there is unique c ∈ L such that q(c) = 0 and c = f(b). We
extend f to F (b) by b 7→ c.

We need to show that the valuation and angular component are preserved.
Let d be the degree of p. Let x ∈ F (b) = α(

∑d−1
i=0 aib

i) where α ∈ F, ai ∈ OF
and some v(ai) = 0 for some i. As p is the minimal polynomial of b,

∑
aib

i 6= 0.

Thus v(x) = v(α) and v(f(x)) = v(f(α)) and ac(x) = ac(α)(
∑
aib

i
). A similar

analysis shows acL(f(x)) = acL(f(α))(
∑
f(ai)c

i).

claim 2 Suppose we have a ∆-embedding f : (F,Γ,k)→ (L,ΓL,kL) and b ∈ B
with residue b transcendental over res(F ). Then we can extend f to F (b).

Let c ∈ L with c = f(b). Then c is transcendental over F and we can extend
f by b 7→ c. We need to show that the valuation and angular component are
preserved. If x ∈ F [b] we can write x = α(

∑
aib

i) where α ∈ F , ai ∈ OF and
v(ai) = 0 for some i. Then as in claim 2, v(x) = v(α) and v(f(x)) = v(f(α)),

ac(x) = ac(α)(
∑
aib

i
) and v and ac are preserved. As in Lemma 6.4, we can

extend to f from F [b] to F (b). �

Next we make the valuation surjective.

Lemma 6.9 Suppose f is a ∆-embedding of (F,Γ,k). There is F ⊆ E ⊆ K
such that v : E → Γ is surjective and we can extend f to (E,Γ,k).

Proof The lemma is proved by iterating the following two claims.

claim 1 Suppose we have a ∆-embedding f of (F,Γ,k) where the residue map
from F to k is surjective and g ∈ Γ such ng 6∈ v(F ) for any n > 0. Let b ∈ K
with v(b) = g. We will extend f to F (b).

Since g is not in the divisible hull of v(F ), b is transcendental over F . Let
c ∈ L with v(c) = f(g) and acL(c) = f(ac(b)). We can extent f to F (b) with
b 7→ c. Let x =

∑
aib

i recall that v(x) = min(v(ai) + iv(b)) and vL(f(x)) =
min vL(f(ai) + if(g)). Choose i such that v(ai) + iv(b) is minimal, then x =
aib

i(1 + ε) where v(ε) > 0 and ac(x) = ac(ai)ac(b)i. Similarly, acL(f(x)) =
acL(f(ai)ac(c)i, as desired.
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claim 2 Suppose we have a ∆-embedding f of (F,Γ,k) where the residue map
from F to k is surjective and let n > 0 be minimal such that there is g ∈ Γ\v(F )
such that g > 0 and ng ∈ v(F ). Then we can extend F to E with F ⊂ E ⊆ K
and extend f to a ∆-embedding of (F,Γ,k) such that g ∈ v(E).

Let a ∈ F and b0 ∈ K be such that v(b0) = g and v(a) = ng. Since the
residue field does not extend we can choose a such that ac(bn0 ) = a, in which
case bn0 = a(1 + ε) where ε ∈ K and v(ε) > 0. Since K is henselian, there is
d ∈ K with v(d) = 0 such that dn = 1 + ε. Let b = b0/d. Then bn = a. By the
minimality of n, Xn − a is the minimal polynomial of b over F .

Similarly, we can find c ∈ L such that cn ∈ f(F ) and vL(cn) = v(f(a)). Then
ac(c) is algebraic over kf(F ). But kf(F ) ≺ kL, thus, ac(c0) ∈ kf(F ). Thus there

is d ∈ Of(F ) with d = f(ac(b))ac(c−1
0 ). Let c1 = dc0. Then ac(c1) = f(ac(b))

and f(a) = f(bn) = cn1 (1 + ε) where v(ε) > 0. By henselianity, there is e ∈ L
such that en = (1 + ε). Let c = c1e, then cn = f(a), v(c) = f(v(b)) and
ac(c) = f(ac(b)). We extend f to F (b) by b 7→ c. As in Lemma 6.5, we show
that f preserves the valuation and the the angular component map. �

Lemma 6.10 Suppose the residue and valuation maps of (F,Γ,k) are surjective
and f is a ∆-embedding. Then we can extend F to (Fh,Γ,k)

Proof There is a unique valuation preserving extension of f from F to g : Fh →
L. We know that Fh is an immediate extension of f . If a ∈ Fh\F , there is b ∈ F ,
with v(a) = v(b), but then v(g(a)) = v(g(b)). There is c a unit in OF such that
res(c) = res(a/b). Thus ac(a) = ac(b)ac(c) and acL(g(a)) = acL(g(b))acL(g(c)).
�

We can now finish the proof of Theorem 6.3
Thus we may assume that we have a (F,Γ,k) such that F is henselian,

v : F → Γ and res : F → k are surjective and f is a ∆-embedding. Then
K is an immediate extension of F . By Zorn’s Lemma, we may assume that
F ⊆ K is maximal henselian such that there is a ∆-embedding of (F,Γ,k) into
L extending f . We claim that F = K. If not, let b ∈ K \ F . We will show that
we can extend f to F (b). Since F is henselian and kB has characteristic zero,
by Theorem 5.14, b is transcendental over F .

We can find a pseudocauchy sequence (aα) in F of transcendental type with
no pseudolimit in F such that (aα)  b, (aα) has no pseudolimit in F and
(v(p(aα)) is eventually constant for p ∈ F [T ].

By ℵ1-saturation, we can find c ∈ L such that (f(aα))  c. Extend f to
F (b) by x 7→ c. For p ∈ F [T ],

vL(f(p(b))) = vL(f(p)(b)) = vL(f(p)(f(aα))) = vL(f(p(aα)) = f(v(p(aα)) = f(v(p(b)))

for large enough α. Similarly, ac(p(b)) = ac(p(aα)) for large enough α and it
follows that f(ac(p(b))) = acL(f(p(b))). But this contradicts the maximality of
F .

This completes the proof.
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6.2 Consequence of Quantifier Elimination

Let T0 be the theory in the language of three sorted valued fields asserting that
we have (K,Γ,k) where K is a henselian valued field where Γ is the value group
and k is a the residue field.

Corollary 6.11 (Ax-Kochen [2], Eršov[18]) Let (K,Γ,k) be a henselain val-
ued field with characteristic zero residue field. Let TΓ be the theory of the value
group in the language of ordered groups and Tk be the theory of the residue field
in the language of rings. Then T = T0 ∪ TΓ ∪ Tk is complete.

Proof Let K and L be models of T and let K ≺ K∗ and L ≺ L∗ be ℵ1-
saturated elementary extensions. We can define angular component maps on K∗

and L∗. Consider the substructure (Q, {0},Q). Since TΓ and Tk are complete,
the identification of this structure in K∗ and L∗ is a ∆-embedding. Let K ′ be
a countable elementary submodel of K∗ in the Pas-language. By Theorem 6.3,
we can extend this to a ∆-embedding of K into L∗. Let φ be any sentence in
the language of valued fields. There is ψ a disjunction of ∆-sentences equivalent
to φ. Then

K |= φ⇔ K∗ |= φ⇔ K ′ |= ψ ⇔ L∗ |= ψ ⇔ L∗ |= φ⇔ L |= φ.

�

Corollary 6.12 Let U be an nonprinciple ultrafilter on the set of primes. Then∏
Qp/U ≡

∏
Fp((T ))/U .

In particular, for any sentence in the language of valued fields Qp |= φ for all
but finitely many primes p if and only if Fp((T )) |= φ for all but finitely many
primes p.

Proof
∏

Qp/U and
∏

Fp((T ))/U are henselian valued fields with value group∏
Z/U and characteristic zero residue field. Hence they are elementarily equiv-

alent.
If Qp |= φ for all but finitely many primes and D is an infinite set of primes

where Fp((T )) |= ¬φ, let U be an ultrafilter on the primes such thatD ∈ U . Then,
by the Fundamental Theorem of Ultraproducts

∏
Qp/U |= φ and

∏
Fp((T ))/U |=

¬φ, a contradiction. The converse is similar. �

Exercise 6.13 Show that if the Continuum Hypothesis is true then
∏

Qp/U ∼=∏
Fp((T ))/U .

We will discuss applications of this in the next section.

Corollary 6.14 Suppose (K,Γ,k) is a valued field with angular component and
TΓ and Tk have quantifier elimination, then every formula is equivalent to a
quantifier free formula.
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Proof Every ∆-formula is equivalent to a quantifier free formula. �

Exercise 6.15 Let K ⊂ L be henselian valued fields of characteristic zero.
Suppose ΓK ≺ ΓL and kK ≺ kL. Show that K ≺ L.

We can generalize Corollary 5.17 to drop the assumption that our field is
ordered and the valuation ring is convex.

Corollary 6.16 Let K be a henselian valued field with real closed residue field
and divisible value group. Then K is real closed.

As in ACVF in equicharacteristic zero henselian valued fields the resiude
field and value group are stably embedded and orthogonal.

Exercise 6.17 Let (K,Γ,k) be a henselian valued field with characteristic zero
residue field. Any definable subset of Γm × kn is a finite union of rectangles
A×B where A ⊆ Γm is definable in the group language and B ⊂ kn is definable
in the ring language.

NIP

Not all theories of henselian valued fields have NIP. For example the theory of∏
Qp/U has the independence property since the pseudofinite field

∏
Fp/U has

the independence property.

Exercise 6.18 [Duret] [15] Show that the theory of any infinite pseudofinite
field has the independence property. In particular, show that for any distinct
a1, . . . , am there are bI for I ⊆ {1, . . . ,m} such that ai+bJ is a square if and only
if i ∈ J . [Recall that in an infinite pseduofinite field every absolutely irreducible
variety has a point.]

Indeed the theory of
∏

Qp/U is NTP2. In fact, failure of NIP in the residue
field is the only obstruction to NIP. Delon [7] proved that a Henselian valued
field with characteristic zero residue field has NIP if and only if the theories of
the residue field and the value group have NIP. But Gurevich and Schmitt [20]
showed that all theories of ordered abelian groups have NIP.

Theorem 6.19 (Delon) Henselian valued field with characteristic zero residue
fields have NIP if and only if the theory of the residue field has NIP and the
theory of value group has NIP.

Corollary 6.20 Henselian valued field with characteristic zero residue fields
have NIP if and only if the theory of the residue field has NIP.

We will give a proof of Delon’s theorem from Simon [39]. We will use an
alternative characterization of the independence property (see [39] 2.7).

Lemma 6.21 A formula φ(x,y) has the independence property if and only if,
in a suitably saturated model, there is an indiscernible sequence (x0, x1, . . . ) and
b such that φ(xi,b) holds if and only if i is even.
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Lemma 6.22 Let (K,Γ,k) be a valued field with angular component, f(X) =
a0 + a1X + · · ·+ adX

d ∈ K[X] and let x0, x1, . . . be a sequence of elements of
K such that v(x0), v(x1), . . . is strictly increasing or strictly decreasing. There
is r ≤ d and t ∈ N such that

v(f(xi)) = v(arx
r
i ) < v(ajx

j
i ) and ac(f(xi)) = ac(arx

r
i )

for all i ≥ t and j 6= r.

Proof Consider the cut v(xi) makes with respect to the finite set X =

{ v(aj)−v(ak)
k−j : 0 ≤ i < j ≤ d}. Since v(xi) is strictly increasing or strictly

decreasing, there is an t such that for all v(xi) are not in X and realize the
same cut over X for i ≥ t.

Note that if
v(aj)−v(ak)

k−j < v(xi), then v(ajx
j
i ) < v(akx

k
i ). Choose r such

that v(arx
r
i ) is minimal, then r is unique and works for all i ≥ t. In this case,

v(f(xi)) = v(arx
r
i ) and ac(f(xi)) = ac(arx

r
i ) for i ≥ t, as desired. �

Lemma 6.23 Let (K,Γ,k) be an ℵ1-saturated valued field with angular com-
ponent and let x0, x1, . . . be a sequence of indiscernibles in K. Then there are
indiscernible sequences g0, g1, . . . of indiscernibles in Γ and b0, b1, . . . of indis-
cernibles in k such that for any f ∈ K[X] there is r and γ ∈ Γ such that
v(f(xi)) = γ + rgi and there is q ∈ k[x] such that ac(f(xi)) = q(bi) for all large
enough i.

Proof
case 1 The sequence v(x0), v(x1), . . . is nonconstant.

We take gi = v(xi) and bi = ac(xi). Then by indiscernibility it is either
strictly increasing or strictly decreasing and we can apply the previous lemma
to conclude that v(f(xi)) = v(arx

r
i ) and ac(f(xi)) = ac(arx

r
i ) for large enough

i. Thus the lemma is true if we take γ = v(ar) and q(X) = arX
r.

From now on we assume that v(x0), v(x1), . . . is a constant sequence. Let
yi = xi− x0. The sequence v(y0), v(y1), . . . is not strictly increasing. If it were,
then

v(xi − x1) = v((xi − x0)− (x1 − x0)) = v(yi − y1) = v(y1).

But then the sequence (v(xi− x1)) is constant, while the sequence v(xi− x0) is
increasing, contradicting indiscernibility.

case 2 The sequence v(y1), v(y2), . . . is decreasing.
In this case we will take gi = v(yi+1), ai = ac(yi+1. Let f(X) ∈ K[X].

There is h(X) ∈ K[X] such that f(xi) = f(x0 + yi) = f(x0) + h(yi) for all
i > 0. As in case 1, we can apply the previous lemma applied to the sequence
y1, y2, . . . .

case 3 The sequences (v(yi)) and (ac(yi)) are constant.
Then

v(x2 − x1) = v(y2 − y1) > v(y1) = v(y2) = v(x2 − x0)
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Find xω ∈ K such that x0, x1, . . . , xω is an indiscernible sequence of order type
ω + 1. Let zi = xω − xi. By indiscernibility, v(z1), v(z2), . . . is an increasing
sequence. Let gi = v(zi+1) and ai = ac(zi). For f(X) ∈ K[X] as in case 2 there
is h(X) ∈ K[X] such that for i > 0 f(xi) = h(zi) using the lemmas we proceed
as in the previous cases.

case 4 The sequence v(yi) is constant but the sequence (ac(yi)) is not.
In this case let gi = v(y0), a constant sequence, and let bi = ac(yi).
For any f(X) ∈ K[X] we can find h(X) ∈ K[X] such that

f(x0 + Y ) = h(yi) =

d∑
n=0

anY
n.

Let A ⊂ {0, . . . , d} be the set of n such that v(an) + ng0 is minimal. Let
q(X) =

∑
n∈A ac(an)Xn. For sufficiently large i, q(ac(yi)) 6= 0. But then

v(f(xi)) = v

(
d∑

n=0

any
n
i

)
= v

(∑
n∈A

any
n
i

)
= v(an) + ng0 = v(an) + ngi

and
ac(f(xi)) = q(ac(yi))

where n is any fixed element of A and i is sufficiently large. �

We are now ready to prove Delon’s Theorem. By the Pas quantifier elimi-
nation and the basic facts about NIP from Lemma 4.21. it suffices to show that
formulas of the following form have NIP.

1. f(x,y) = 0, f ∈ K[X,Y] and x,y are variables in the home sort;

2. φ(x, t1(y), . . . , tm(y)) where φ is a formula in the language of ordered
groups, y are variables from the home and value group sort and t1, . . . , tm
are terms with values in the value group sort;

3. ψ(x, t1(y), . . . , tm(y)) where ψ is a formula in the language of rings , y
are variables from the home and residue field sort and t1, . . . , tm are terms
with values in the residue sort;

4. θ(v(f1(x,y)), . . . , v(fm(x,y)), z) where θ is a formula in the language or-
dered groups x and y are variables in the home sort, f1, . . . , fm ∈ Z[X,Y]
and z are variables in the ordered group;

5. χ(ac(f1(x,y)), . . . , ac(fm(x,y)), z) where χ is a formula in the language
rings x and y are variables in the home sort, f1, . . . , fm ∈ Z[X,Y] and z
are variables in the ring sort;

Formulas of types 1, 2 and 3 are easily seen to by NIP. If the x variable is of
degree d in f(x,y), then f(x,y) = 0 fails to shatter a set of size d + 2. Thus
formulas of the first type are NIP. Formulas of the second and third type are
NIP by our assumptions on the theories of the residue field and the value group.
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Consider Θ(x,y, z) = θ(v(f1(x,y)), . . . , v(fm(x,y)), z) of type 4. If Θ has
the independence property, then we can find a sequence of indiscernibles in K
(x1, x2, . . . ) and b1,b2 such that Θ(xi,b1,b2) holds if and only if i is even.
By Lemma 6.23 there is are g0, g1, . . . an indiscernible sequence of elements
in the value group such that for j = 1, . . . , n there are hj ∈ Γ and rj ∈ N
such that v(fj(xi,b1) = hj + rjgj for sufficiently large i. Consider the formula
Θ∗(v,h,b2) which is θ(h1 +r1v, . . . , hm+rmv,b2) where v is a variable over the
value group. Since the theory of the value group has NIP, Θ∗(gi,h,b2) is either
eventually true, or eventually false for large i, but Θ∗(gi,h,b2) is equivalent to
Θ(xi,b1,b2) for large i. Thus Θ does not have the independence property.

The argument for formulas of type 5 is similar.

6.3 Artin’s Conjecture

We say that a field K is a Cm-field if whenever f(X1, . . . , Xn) is a homogeneous
polynomial of degree d where n > dm, then f has a nontrivial zero in K.

Exercise 6.24 Show that K is a Cm-field if and only if every homogeneous
polynomial of degree dm + 1 has a nontrivial zero in K

Tsen and Lang [27] proved that if F is a finite field then F ((T )) is a C2 field
and Artin conjecture that each Qp is a C2-field. This is false.

Exercise 6.25 [Terjanian] Let

p(X,Y, Z) = X2Y Z +XY 2Z +XY Z2 +X2Y 2 +X2Z2 −X4 − Y 4 − Z4

let
q(X1, . . . , X9) = p(X1, X2, X3) + p(X4, X5, X6) + p(X7, X8, X9)

and
r(X1, . . . , X18) = q(X1, . . . , X9) + 4q(X10, . . . , X18).

a) Show that if (x, y, z) ∈ Z3 are not all even, then p(x, y, z) = 3(mod 4).
b) Show that if (x1, . . . , x9) ∈ Z9 are not all even , then q(x1, . . . , x9) 6=

0(mod 4).
c) If x = (x1, . . . , x18) ∈ Z18

2 and some xi is a unit, then v2(x) = 0 or 2.
d) Conclude that Artin’s conjecture fails for Q2 with n = 18 and d = 4.

Nevertheless, the Ax, Kochen, Eršov transfer principle tell us is true for
sufficiently large p.

Corollary 6.26 Fix d. There is a prime p0 such that for all primes p ≥ p0

every homogenous polynomials of degree d in n > d2 variables has a nontrivial
zero in Qp.

Proof The statement that every homogeneous polynomial of degree d in d2 +1
variables has a nontrivial zero is a first order sentence that is true in every
Fp((T )) and hence true in Qp for p sufficiently large. �
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The Tsen–Lang Theorem

We will prove that F ((T )) is C2 if F is finite.

Lemma 6.27 If F is a finite field with |F | = q and n < q − 1, then∑
x∈F

xn = 0

Proof Let a ∈ F× with an 6= 1. Since x 7→ ax is a bijection,∑
xn =

∑
(ax)n = an

∑
xn.

Since an 6= 1,
∑
xn = 0. �

Theorem 6.28 (Chevalley–Warning) Let F be a finite field of characteristic
p and let f1, . . . , fm ∈ F [X1, . . . , Xn] be polynomials of degrees d1, . . . , dm with
n >

∑
di. Then the number of zeros of f1 = · · · = fm in F is divisible by p.

In particular, if the polynomials f1, . . . , fm are homogeneous, there is a non-
trivial zero in F .

Proof Let F have characteristic p and cardinality q. Let N be the number of
zeros of f1 = · · · = fm = 0 in Fn. Note that for all x ∈ Fn

k∏
i=1

(1− fi(x)q−1) =

{
1 if f1(x) = · · · = fk(x) = 0

0 otherwise
.

Thus the number of zeros of f is

N =
∑
x∈Fn

k∏
i=1

(1− fi(x)q−1) =
∑
x∈Fn

∑
j∈J

cjx
j =

∑
j∈J

cj

( ∑
x∈Fn

xj

)
(mod p)

where J = {j = (j1, . . . , jn) :
∑
ji ≤ (q − 1)

∑
di}.

Fix j = (j1, . . . , jn) ∈ J . Note that, since n >
∑
di, we must have some

ĵi < q − 1. Then ∑
x∈Fn

xj =

n∏
i=1

∑
x∈F

xji

Thus, by the lemma,
∑
x∈F x

jî = 0 and N = 0(mod p). �

We can combine this with Greenleaf’s Theorem 2.27.

Corollary 6.29 If f1, . . . , fm ∈ Z[X1, . . . , Xn] where fi has degree di and n >∑
di, then for all but finitely many primes p, f1 = · · · = fm = 0 has a solution

in Zp.

Lemma 6.30 Let F (T ) be the field of rational functions over a finite field F .
Let f ∈ F (T )[X1, . . . , Xn] be homogeneous of degree d2 < n. Then f has a
nontrivial zero in F (T )n.
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Proof Clearing denominators, we may assume f ∈ F [T ][X1, . . . , Xn]. We will
look for a solution of the form (x1, . . . , xn) where for some suitably large s

xi = yi,0 + yi,1T + · · ·+ yi,sT
s.

Let r be the maximum of the degrees of the coefficients of f . Choose s >
(d(r + 1)− n)/n− d2. Then n(s+ 1) > d(ds+ r + 1) Then

f(x1, . . . , xn) = f0(y) + f1(y)T + · · ·+ fds+r(y)T ds+r.

Since n(s+ 1) > d(ds+ r+ 1), by Chevalley-Warning, there is a nontrivial zero
y = (y1,0, . . . , yn,s) ∈ F . �

Corollary 6.31 Let f ∈ F ((T ))[X1, . . . , Xn] be homogeneous of degree d with
d2 < n and F is a finite field. Then f has a nontrivial zero in F ((T )).

Proof We may assume f ∈ F [[T ]](X1, . . . , Xn). For k sufficiently large let
f |k(X1, . . . , Xn) be the polynomial over F [T ] obtained by truncating all the co-
efficients of f to polynomials of degree at most k. By the lemma fk(X1, . . . , Xn)
has a nontrivial zero ak ∈ F (T )n. We may assume that v(ak,i) ≥ 0 for all i and
some v(ak,i) = 0. Since the residue field is finite we see that F [[T ]] is compact
so we can choose a Cauchy subsequence of the ak that converges to a nonzero
element of F [[T ]]n . �
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7 The Theory of Qp

7.1 p-adically Closed Fields

We next turn our attention to the theory of Qp. If K ≡ Qp, then (v(G),+, <
, 0, v(p)) ≡ (Z,+, <, 0, 1). We know that the complete theory of (Z,+, <, 0, 1)
is just Presburger arithmetic which is axiomatized by saying that we have an
ordered abelian group with least positive element 1 such that for any x and
n ≥ 2 there is a y such that x = ny or x = ny + 1 . . . or x = ny + n− 1.

We have quantifier elimination in Presburger arithmetic once we add either
equivalence relation x ≡n y for x = y(mod n) or predicates for the elements
divisible by n, for all n ≥ 2.

Definition 7.1 We say that a valued field (K, v) is p-adically closed if K is
henselian of characteristic zero, the residue field is Fp and the value group in
a model of Presburger arithmetic and v(p) is the least positive element of the
value group.

Lemma 7.2 Let K be p-adically closed, x ∈ K and v(x) = gn + i where 0 ≤
i < n, then there is m ∈ Z with 0 ≤ v(m) < n and y ∈ K such that x = myn.

Proof Suppose K is p-adically closed and v(x) = gn + i. Choose z such that
v(z) = g, then v( x

pign ) = 0. There is 0 < r < p2v(n)+1 such that x
pizn =

r(mod p2v(n)+1) and p6 | r. Let c = x
rpizn . Then c = 1(mod p2v(n)+1). Consider

f(X) = Xn − c, then v(f ′(1)) > 2v(n) and v(f ′(1)) = v(n). By Lemma 2.6 ii),
there is y ∈ F such that yn = c. Then x = rpi(yz)n and 0 ≤ v(rpi) < n. �

Lemma 7.3 Suppose F is a p-adically closed field, A ⊂ F and E is the algebraic
closure of Q(A) in F . Then E is p-adically closed.

Proof Since E is algebraically closed in F , E is henselian. Clearly E has
characteristic zero, kE = Fp and v(p) = 1. So we need only show v(E) is
a Z-group. Let x ∈ E. There is y ∈ F and m ∈ Z such that x = myn

and 0 ≤ v(m) < n. Since E is algebraically closed in F , y ∈ E, but then
v(x) = nv(y) + v(m) as desired. �

We will show that the theory of p-adically closed fields has quantifier elim-
ination in the Macintyre language LMac = {+,−, ·, |, P2, P3, . . . , 0, 1} where Pn
is a predicate picking out the nth-powers. The symbol | is actually unnecessary
as we can always define | in a quantifier free way using P2 as in Exercise 2.11.

We begin with some useful lemmas about nth-powers.

Lemma 7.4 Let K be henselian of characteristic zero. Let a ∈ K× and γ =
v(a) + 2v(n). Then a is an nth-power in K if and only every b ∈ Bγ(a) is an
nth-power in K.

Proof Suppose b ∈ Bγ(a). Let c = b/a.

v(1− c) = v(a− b)− v(a) > 2v(n).

71



Consider f(X) = Xn − c. Then

v(f(1)) = v(1− c) > 2v(n) and v(f ′(1)) = v(n).

Thus by Lemma 2.6 ii), there is u ∈ K un = c. Then aun = b and a is an
nth-power if and only if b is. �

Corollary 7.5 In a henselian field of characteristic zero, the set of nonzero
nth-powers is open.

Corollary 7.6 Suppose K is henselian of characteristic zero with residue field
k of characteristic p where v(p) is the least positive element of the value group.
Suppose F ⊂ E ⊆ K, E/F is immediate and a ∈ E. Then there is b ∈ F such
that v(a− b) > v(a) + 2v(n) and for any such b we have that a ∈ Kn if and only
if b ∈ Kn.

Proof Since F (a)/F is immediate, there is b0 ∈ F such that v(a− b0) > v(a).
We can then find a b1 ∈ F such that

v(a− b1) > v(a− b0) ≥ v(a) + v(p).

Continuing inductively, we can find b ∈ F such that v(a − b) > v(a) + 2v(n).
By the lemma, a is an nth-power in K if and only any such b is. �

Lemma 7.7 Suppose K is henselian of characteristic zero and residue field Fp
and v(p) is the least positive element of the value group. Let F ⊂ K and suppose
g ∈ v(K)\v(F ), ng ∈ v(F ) Then there is b ∈ F with v(b) = g such that bn ∈ F .

Proof Let a ∈ F and c ∈ K such v(c) = g and v(a) = ng. Since K and
F have the same residue field, without loss of generality we can choose a such
that cn = a(1 + ε) where vε > 0. We can find 0 ≤ m < p2v(n)+1 such that
m = ε(mod p2v(n)+1). Then cn = a(1 +m)(1 + δ) where v(δ) > 2v(n). Since K
is henselian, there is u ∈ K such that un = 1 + δ. But then (c/u)n = a(1 +m)
and v(c/u) = g. �

Quantifier elimination will follow from the following embedding result.

Theorem 7.8 (Macintyre[29]) Suppose (K, v) and (L,w) are p-adically closed
fields where K is countable and L is ℵ1-saturated. Suppose A is a subring of K
and f : A → L is an LMac-embedding. Then f extends to an LMac-embedding
of K into L.

This will be proved by iterating the following lemmas. Throughout we as-
sume that K and L satisfy the hypotheses of the theorem. If A ⊂ K and f is
an LMac-embedding, we will think of this as also defining a map on the value
group by f(v(a)) = w(f(b)).

Lemma 7.9 Suppose A is a subring of K and f : A → K is and LMac-
embedding, then we can extend f to F the fraction field of A.
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Proof Since

w(f(a)/f(b)) = w(f(a))− w(f(b)) = f(v(a))− f(v(b)) = f(v(a/b),

the natural extension preserves divisibility. Since

Pn(a/b)⇔ Pn(abn−1),

the predicates Pn are preserved. �

Lemma 7.10 Suppose F ⊂ K and f : F → L is an LMac-embedding, then f
extends to an LMac-embedding of Fh into L

Proof Let f also denote the unique extension to a valued field embedding of
Fh into F . Since Fh/F is immediate, for all n and all a ∈ Fh there is a b ∈ F
such that v(b− a) > v(a) + 2v(n). Then v(f(a)− f(b)) > v(f(a)) + 2v(n) and

Pn(a)⇔ Pn(b)⇔ Pn(f(b))⇔ Pn(f(a).

Hence f is an LMac-embedigin �

Our next goal is to show that if we have an LMac-embedding of a subfield F
of K into L, that it extends to the algebraic closure of F in K. The next lemma
shows that if we can extend to a valued field embedding it will automatically
be an LMac-embedding.

Lemma 7.11 If F ⊆ K is algebraically closed in K then any valuation pre-
serving embedding of F into L preserves the predicates Pn.

Proof Clearly if Pn(a), then a is an nth-power in K and, since F is algebraically
closed in K there is b ∈ F such that bn = a. But then f(b)n = f(a) and
Pn(f(a)).

Suppose Pn(f(a)). Suppose, for contradiction, that all of the nth-roots of
f(a) are in L \ f(K).

Note that ΓK/ΓF is torsion free. Suppose not. Let n be minimal such that
there is g ∈ ΓK \ΓF such that ng ∈ ΓF . By Lemma 7.7, we can find a ∈ F with
v(a) = ng such that a has an nth-root in K. Then a has an nth-root in F .

It follows that ΓL/Γf(F ) is also torsion free. To see this, note that if g ∈ ΓF
and n 6 | g there is 1 ≤ i < n and b ∈ F such that g = nv(b) + i. Then
f(g) = w(f(bn)) + i and n6 | f(g).

By Exercise 2.4 F is henselian and hence f(F ) is henselian and, by Theorem
5.14 has no proper algebraic immediate extensions.

Let b ∈ L with bn = f(a). Then f(F )(b) is not an immediate extension of
f(F ). Since the residue field does not extend, the value group must extend.
Since the extension is algebraic, there is g ∈ ΓL \ Γf(F ) such that mg ∈ Γf(F )

for some m, but this contradicts that ΓL/Γf (F ) is torsion free. �

Lemma 7.12 Suppose F ⊆ K is henselian and we have an LMac-embedding
f : F → L. Let K0 be the algebraic closure of F in K. Then we can extend f
to an LMac-embedding of K0 into K.
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Proof By ℵ1-saturation it suffices to show that we can extend f to any E
where F ⊂ E ⊆ K and E/F is a finite algebraic extension. Since F is henselian
and unramified, E/F is not immediate. In particular ΓF ⊂ ΓE ⊂ QΓF . Thus
ΓE/ΓF is finite abelian group. Suppose

ΓE/ΓF = 〈g1/F 〉 ⊕ · · · ⊕ 〈gm/F 〉

where 〈gi/F 〉is cyclic over order ni. Then nigi ∈ ΓF and ni is minimal with
this property. By Lemma 7.7, there are a1, . . . , am ∈ E such that v(ai) = gi
and anii ∈ F . Since F is henselian, so is F (a1, . . . , am). But E/F (a1, . . . , am) is
immediate and, hence, F (a1, . . . , am) = E.

Since f is an LMac-embedding, there are b1, . . . , bm ∈ L such that bnii =
f(anii ). We claim that we can extend f to a valuation preserving embedding of
E into L with ai 7→ bi.

We argue this in detail in the case m = 1. Suppose a ∈ E, v(a) = g, n is
minimal such that ng ∈ ΓF and an ∈ F . Suppose x = cna

n−1 + . . . c1a + c0 ∈
E(a). By the minimality of n, v(ci) + iv(a) 6= v(cj) + jv(a) for any i < j < n.
Thus Xn−an is irreducible over F and v(x) = min v(ci) + iv(a). It follows that
Xn−f(an) is irreducible over f(F ) and that if b ∈ L such that bn = f(am), then
the extension of f to F (a) obtained by sending a to b is valuation preserving.
The general case is done similarly by induction. �

The full embedding result will follow from the next lemma.

Lemma 7.13 Suppose F ⊂ F1 ⊆ K f : F → K is a valued field embedding. F
and F1 are algebraically closed in K and F1/F is transcendence degree 1. Then
we can extend f to F1.

Proof There are two cases to consider.

case 1 F1/F is immediate.
Let a ∈ F1 \ F . We can find a pseudocauchy sequence of transcendental

type (aα)  a such that (aα) has no pseudolimit in F . We can find b ∈ L a
pseudolimit if (f(aα)) and can extend f to a valued field embedding of F (a)
into L by sending a to b. We can further extend f to a valued field embedding
of F (a)h into L. But F1/F (a) is an immediate algebraic extension, thus F1 =
F (a)h and we have the desired embedding.

case 2 F1/F is not immediate.
By ℵ1-saturation, it suffices to show that we can extend the embedding to

any F ⊂ E ⊆ F1 where E/F is finitely generated. Then ΓE/ΓF is finitely
generated and torsion free, since E/F has transcendence degree one we must
have ΓE = ΓF ⊕Zv(a) for some a ∈ E transcendental over F . We can find b ∈ L
transcendental over f(F ) such that the type w(b) realizes over v(ΓF ) is the image
of the type v(a) realizes over ΓF . We claim that sending a 7→ b gives a valued
field embedding of F (a) into L. Suppose x ∈ F [a] and x =

∑
ci
ai where each

ci ∈ F . By choice of a, all v(ci) + iv(a) are distinct. Choose j such that v(cj) +
jv(a) is minimal. Then v(x) = v(cj)+jv(a) and, by choice of b, w(f(cj))+jw(b)
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is minimal and w(f(x)) = f(v(x)), as desired. There is a unique valuation
preserving extension of f from F (a)h into L. Since E/F (a) is an immediate
extension, F (a)h ⊆ E. Thus we can extend f to a valuation preserving extension
of E into L. By ℵ1-saturation, we can extend the embedding to F1 �

Corollary 7.14 (Macintyre) The theory of p-adically closed fields is admits
quantifier elimination.

Lemma 7.15 Suppose K is p-adically closed and x ∈ Q then x is an nth-power
in K if and only if x is an nth-power in Qp.

Proof The algebraic closure of Q in K is an immediate extension of Q Thus
the henselization Qh is the algebraic closure of Q in K. My uniqueness of
henselization, the algebraic closure of Q in any two p-adically closed field are
isomorphic. Thus Pn(K) ∩Q does not depend on K. �

Corollary 7.16 The theory of p-adically closed fields is complete.

Proof By the lemma the rational numbers with Pn interpreted as Pn(Qp)∩Q
is a substructure of any p-adically closed field. Thus, by quantifier elimination,
the theory is complete. �

Exercise 7.17 a) Show f(x) = 0 if and only if P2(pf(x)2).
b) Show that if p 6= 2, f(x)|g(x) if and only if P2(f(x)2 + pg(x)2).
c) Give a version of b) for p = 2.
d) Conclude that every definable set is a Boolean combination of sets of the

form Pk(f(x)).

7.2 Consequences of Quantifier Elimination

Throughout this section K will be a p-adically closed field.

Lemma 7.18 The set of nonzero nth-powers in K is clopen.

Proof By Lemma 7.4 if a is an nth-power, then B2v(n)+v(a)(a) is contained in

the nth powers. Thus Pn \ {0} is open. If x is not in Pn, then x ∈ a(Pn \ {0}
for some non nth-power a. Thus the set of non nth-powers is open. �

Corollary 7.19 If X ⊆ K is definable and infinite, then X has non-empty
interior.

Proof Let X be definable. By quantifier elimination X is the union of finitely
many sets of the form

Y = {x ∈ K : f1(x) = · · · = fm(x) = 0 ∧ g(x) 6= 0 ∧
n∧
i=1

(Pki(hi(x)) ∧ hi(x) 6= 0)
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for some polynomials fi, g, hj ∈ kp[X]. Note that we do not need conjuncts of
the form ¬Pk since

¬Pk(x)⇔
m∨
i=1

Pk(lix)

for appropriately chosen m and l1, . . . , lm ∈ K. If Y is infinite, then all of the
fi must be trivial, in which case Y is open. �

Exercise 7.20 More generally, suppose X ⊆ Km
p is definable with non-empty

interior. Show that if S1, . . . , Sm is a partition of X into definable sets, then
some Si has non-empty interior.

As in Exercise 4.18, we can show that if K is a p-adically closed field and
A ⊆ Km+n is definable, then there is an N such that Ax is finite if and only if
|Ax| ≤ N .

Exercise 7.21 Let U ⊆ Qp be open and let f : U → Qp be definable.
a) Show that there is a ∈ U such that f is continuous at a. [Hint: This is

similar to the proof in [30] 3.3.24 and uses the local compactness of Qp.]
b) Show that {x : f is discontinuous at x} is finite.
c) Prove that the same is true over any p-adically closed field K.

Exercise 7.22 Let U ⊆ Kn and let f : U → K be definable. Then there is
F ∈ Qp[X, Y ] such that F (a, f(a)) = 0 for all a ∈ U , i.e., f is algebraic.

There is a p-adic version of the Implicit Function Theorem (see for example
[37] §II). Once we know f is algebraic and continuous except at finitely many
points we can conclude it is analytic except at finitely many points.

Skolem functions

We will show that p-adically closed fields have definable Skolem functions. We
start with a partial result due to Denef for functions with finite fibers.

Theorem 7.23 (Denef [8]) Let K be p-adicaly closed. Suppose A ⊆ Km+1 is
C-definable, B = {x ∈ Km : ∃y (x, y) ∈ A} and for all x ∈ B, |{y ∈ K : (x, y) ∈
A}| ≤ N . Then there is an C-definable f : B → K such that (x, f(x)) ∈ A for
all x ∈ B.

Proof We prove this by induction on N . The result is clear if N = 1. Assume
N > 1. For x ∈ B, let Ax = {y : (x, y) ∈ A} Without loss of generality, we may
assume that |Ax| = N for all x. Replace A by

{(x, y) ∈ A : v(y) is minimal in {v(z) : z ∈ Ax}}.

Then using induction we may, without loss of generality assume that |Ax| = N
and v(y1) = v(y2) whenever x ∈ B and y1, y2 ∈ Ax.

Let k = φ(pv(N)+1) where φ is Euler’s phi-function.

claim For all x ∈ B, if Ax = {y1, . . . , yN} then not all the yi are in the same
coset of kth-powers.
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Suppose they are. Fix z such that v(z) = v(y1) = · · · = v(yN ) and let
yi = zy′i where p6 | y′i. Then all of the y′i are in the same coset of kth-powers..
Suppose p6 | y, z and y = zak. By Euler’s theorem ak = 1mod pv(N)+1. Thus
y and z are congruent mod pv(N)+1. Hence there is a c such that p 6 | c and
y′i = cmod pv(N)+1 for all i/ But

∑
y′i = 0. Thus Nc = 0(mod pv(N)+1), a

contradiction.

Fix any ordering of the cosets of kth-powers. We can assume without loss
of generality that for all (x, y) ∈ A, y is in the minimal coset of kth-powers
represented in Ax. We are then done by induction. �

Note that the Skolem function defined in Denef’s proof are invariant, i.e., if
Ax = Az then f(x) = f(z).

We next show that the restriction to finite fibers in unnecessary.

Theorem 7.24 (van den Dries [10]) p-adically closed fields have definable
Skolem functions.

Proof Let φ(x, y) be a formula with parameters from A. We want to show
there is an A-definable function f such that if a ∈ Km and ∃y φ(a, y), then
φ(a, f(a)).

Consider the type

Γ(v) = {∃y φ(v, y),¬φ(v, f(v)) : f is an A-definable function}.

If Γ is inconsistent, then there are finitely many definable functions f1, . . . , fn
such that

{∃y φ(v, y),¬φ(v, f1(v)), . . . ,¬φ(v, fn(v))}

is inconsistent. Define

F (a) =

{
0 ¬∃y φ(a, y)

fi(a) i is least such that φ(a, fi(a))
.

Then F is the desired definable Skolem function.
Suppose for contradiction that Γ is consistent. Let a realize Γ in F p-adically

closed. Let E be the algebraic closure of Q(A,a) in E. Then E is p-adically
closed and, by model completeness E) ≺ F . Thus there is b ∈ E such that
φ(a, b). There is f ∈ Q(A)[X, Y ] such that f(a, Y ) is nontrivial and f(a, b) = 0.
Let ψ(x, y) be

φ(x, y) ∧ f(x, y) = 0 ∧ ∃z f(x, z) 6= 0.

Then ψ(a, b) and {y : ψ(a, y)} is finite for all y. By Denef’s theorem, there is a
A-definable function g such that if ∃y ψ(x, y) then ψ(x, g(x)). Thus ψ(a, g(a)),
contradicting that a realizes Γ. �

Definition 7.25 Let F be a valued field. We say that K/F is a p-adic closure of
F , if there for any p-adically closed L/F there is a unique valued field embedding
of K into L fixining F pointwise.
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Exercise 7.26 Suppose F is a valued field that is a substructure of a p-
adically closed field. Show that F has a p-adic closure K and the there are no
automorphisms of K/F . We say K/F is rigid.

In fact, van den Dries’ result preceded Denef’s. He proved the following
more general result.

Exercise 7.27 Suppose T has quantifier elimination. Then T has definable
Skolem functions if and only every model M of T∀ has an extension N that is
algebraic and rigid over M.

In real closed fields we have invariant definable Skolem functions, i.e., if
A ⊂ Kn+m is definable there is a definable Skolem function f such that if
Ax = Ay, then f(x) = f(y). This is impossible in Qp.

Exercise 7.28 Let A = {(x, y) ∈ Q2
p : v(x) = v(y)}. Show that there is no

invariant definable Skolem function.

Exercise 7.29 [Definable Curve Selection] Let A ⊆ Qnp be definable. Let a
be in the closure of A but not in A. Then there for any ε > 0 there is a definable
f : Bε(0)→ A such that f(0) = a and for x 6= 0, f(x) ∈ A and v(f(x)) > f(x)

Dimension

As a topological space there can be no good notion of dimension in Qp.

Exercise 7.30 Show that Qp and Q2
p are homeomorphic.

Nevertheless, there is a good notion of dimension that works for definable
sets and maps.

We begin with an relatively approach to dimension due to van den Dries [11]
that works in several theories of fields.

Definition 7.31 Let L be a language with constant symbols C and let T be
an L-theory of fields. We say that T is algebraically bounded if for any formula
φ(x, y) there are polynomials f1, . . . , fm ∈ Z[C][X, Y ] such that if K |= T ,
a, b ∈ K, {y ∈ K : φ(a, y)} is finite and φ(a, b), then fi(a, b) = 0 for some i,
where fi(a, Y ) is not identically zero.

Exercise 7.32 Use quantifier elimination to show that algebraically closed
fields, real closed fields, algebraically closed valued fields and p-adically closed
fields are algebraically bounded.

Definition 7.33 Suppose A ⊆ Km is definable, say φ(v) is a formula with
parameters from K defining A. We define dim A, the dimension of A, to be
the largest l ≤ m such that there is K ≺ L and a = (a1, . . . , am) ∈ L with
L |= φ(a) and td(K(a)/K) = l, where td(L/K) denotes the transcendence
degree of L/K.

Exercise 7.34 Show that this definition agrees with the usual notions of di-
mension in algebraically closed fields and real closed fields.
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Exercise 7.35 [van den Dries] Let T be an algebraically bounded theory and
K |= T . Our notion of dimension has the following properties. Let A and B be
definable sets in Km for some m.

a) Show dim A = 0 if and only if A is finite;
b) Show dim (A ∪B) = max(dim A,dim B);
c) Show that if f is a definable function, then dim f(A) ≤ dim A;
d) Show A ⊆ Km+n, then {a ∈ Km : dim Aa = i} is definable for each

i ≤ n.

Exercise 7.36 Let A ⊆ Km+n. For i ≤ n let Bi = {a ∈ Km : dim Aa = i}.
Show that dim A = max(i+ dim Bi).

Exercise 7.37 a) Suppose U ⊆ Qp is open. Show that dim U = m.
b) Suppose A ⊆ Qmp is definable, then dim A is the largest l such that there

is a projection from π : Qmp → Qlp such that π(A) has nonempty interior.

Exercise 7.38 Use quantifier elimination to show that if A ⊆ Qmp is definable
and dim A < m then there is a nonzero polynomial f ∈ Qp[X1, . . . , Xm] such
that A is contained in the hypersurface p(x) = 0.

In o-minimal expansions of real closed fields there is a notion of Euler char-
acteristic for definable sets. Basically a point has Euler characteristic 1, an open
cell in Kn has Euler characteristic (−1)n and if we partition a definable set into
cells, then the Euler characteristic is the sum of the Euler characteristics of the
cell. van den Dries [14] showed the notion is independent of the partition chosen
and that two definable sets are in definable bijection if and only if they have
the same dimension and Euler characteristic.

The next exercises based on results of Cluckers and Haskell [6] tells that
there is no good definably invariant notion of Euler characteristic in Qp. Fix
p 6= 2–though similar results can be proved for p = 2. Let Z∗p denote Zp \ 0,
let P2 be the nonzero squares in Zp, let Z1

p be the elements of Zp with angular

component 1 and let P
(1)
2 denote P2 ∩ Z(1)

p . Note that

Z∗p =

p−1⋃
m=1

mZ(1)
p .

Let X t Y denote the disjoint union of X and Y . Say X ∼ Y if there is a
definable bijection between X and Y

Exercise 7.39 a) Show that P2 t P2 ∼ Z∗p. [Hint: There is a definable Skolem
function f : P2 → Z∗p such that f(x)2 = x.]

b) Show that P2 t P2 t P2 t P2 ∼ Z∗p. [Hint: Recall that P2 is an index 4
subgroup of Z2

p.
c) Conclude Z∗p t Z∗p ∼ Z∗p.

Exercise 7.40 a) Z(1)
p is definable. [Hint: First show that

{xp−1 : x ∈ Z∗p} = {x : ac(x) = 1 ∧ (p− 1)|vp(x)}.]
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b) Show that Z(1)
p = P

(1)
2 ∪ pP (1)

2 .

Exercise 7.41 Show Zp t Z(1)
p ∼ Z(1)

p . [Hint: send x ∈ Zp to 1 + px and send

x ∈ Z(1)
p to px.]

Definition 7.42 LetM be any structure. Let D(M) be the set of all definable
subsets of Mn for n ≥ 1. Let F be the free abelian group with generators

bXc = {Y ∈ DM) : X ∼ Y }

for X ∈ D(M) and let R be the subgroup generated by relations bX ∪ Y c −
bXc−bY c+bX∩Y c. The Grothendieck group ofM is the quotient F/E. We let
[X] = bXc/E. There is a natural multiplication induced by [X][Y ] = [X × Y ]
making it a ring which we call the Grothendieck ring and denote by K0(M).

Corollary 7.43 K0(Qp) is trivial.

Proof By Exercise 7.39
[Z∗p] = [Z∗p] + [Z∗p].

Thus [Zp]∗ = 0. By Exercise 7.41,

[Zp] + [Z(1)
p ] = [Z(1)

p ].

Thus [Zp] = 0. It follows that [{0}] = 0. But then for any set X ∈ D(M)

[X] = [X × {0}] = [X][{0}] = 0.

�
This answered a question Denef asked at a meeting in 1999. At the same

meeting Bélair asked if Zp ∼ Z∗p. The next Exercise shows the answer is yes.

Exercise 7.44 a) Define f1 : p2Z∗p t (1 + p2Z∗p)→ (1 + p2Z∗p) by

f1(y) =


1 + p2(mx2) for y = 1 + pmx, x ∈ Z(1)

p , 1 ≤ m < p

1 + p3mx2 for y = 1 + p2mx, x ∈ Z(1)
p , 1 ≤ m < p

. Show that f1 is a bijection.

b) Define f2 : pZp t (p+ p2Z(1)
p → p+ p2Z(1)

p by

f2(x) =

{
p+ p2(1 + px) for x ∈ Zp
p+ p3x for x ∈ Z(1)

p

.

Show that f2 is a bijection.

c) Let W = (1 + p2Z∗p) t p2Zp t (p+ p2Z(1)
p ). Define f : W →W \ {0} by

f(x) =

{
f−1

1 (x) for x ∈ 1 + p2Z∗p
f2(x) for x ∈ p2Zp t (p+ p2Z(1)

p )
.
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Show that f is a bijection.

d) Extend f to a definable bijection between Zp and Z∗p.

This is the tip of the iceberg.

Theorem 7.45 (Cluckers [5]) Two infinite subsets of Qp are in definable bi-
jection if and only if they have the same dimension.

Cell decomposition

Lemma 7.46 If U ⊆ Qmp is open definable and f : U → Qp is definable, then
{x : f is discontinuous at x} has dimension at most m− 1. Moreover, there is
a definable open V ⊆ U such that f |V is analytic and dim (U \ V ) < m.

Proof We first proof that if U is open, then there is x ∈ U such that f is
continuous at x. If there is an open U1 ⊂ U such that f |U1 is constant, then we
are done so we assume that there is no such set.

Let B0 be a closed ball in U . Given Bn open, let W be the image of Bn.
Then, by assumptions on f dim f−1(w) has dimension at most m − 1 for all
w ∈W . If there are only finitely many fibers of dimension m−1, then dim Bn ≤
m − 1. So {w : dim f−1(w) = m − 1} in infinite, and hence has interior. We
can find Jn ⊂W0 open of radius at most 1/pn. Then {x ∈ Bn : f(x) ∈ Jn} has
dimension m and thus contains a closed ball Bn+1. Since Qp is locally compact,
there is x ∈

⋂
Bn and, by construction, f is continuous at s.

Since {x ∈ U : f is discontinuous at x} has no interior it must have dimension
at most m − 1. We argued before that there is a non-zero polynomial F such
that F (x, f(x)) = 0. Except for a set of dimension at most m − 1 at each x
there is an open V ⊂ U such that x ∈ V and there is a polynomial F (X, Y )
such that on V : f is continuous, F (x, f(x)) = 0 and ∂F

∂Y (x, f(x)) 6= 0. Then,
by the Implicit Function Theorem, f is analytic on V . �

We can now prove a cell decomposition theorem due to Scowcroft and van
den Dries [13].

Theorem 7.47 Let A ⊆ Qmp and f : A→ Qp be definable. There is a partition
of A into definable sets U,B1, . . . , Bn such that U is open, f |U is analytic,
dim Bi = ki < m, and there is a projection πi : Qmp → Qkip such that πi|Bi is a
diffeomorphism and f ◦ π−1|πi(Bi) is analytic.

Proof We call the above statement Φm and prove this by induction on m.
From earlier arguments it is easy to see that Φ1 holds.

We will also prove the following intermediate claim which we call Ψm. If
g1, . . . , gs ∈ Qp[X1, . . . , Xm] are nonzero polynomials and

V = {x ∈ Qmp : g1(x) = · · · = gs(x) = 0},

then V can be partitioned into finitely many pieces each of which is analytically
homeomorphic via a projection to an open set in some Qkp with k < m. Note
that Ψ1 is trivially true.
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We will show that from Φi and Ψi for i ≤ m we can prove Ψm+1 and then
show that from Φ1, . . . ,Φm−1 and Ψ1, . . . ,Ψm+1 we can prove Φm+1.

Φ1, . . .Φm,Ψ1, . . .Ψm ⇒ Ψm+1 Let g1, . . . , gs ∈ Qp[X1, . . . , Xm, Y ] and let

V = {(x, y) ∈ Qmp : g1(x, y) = · · · = gm(x, y) = 0}.

Suppose

gi(X, Y ) =

di∑
j=0

hi,j(X)Y j

where hi,j ∈ Qp[X]. Let

V0 = {x ∈ Qmp :
∧
i,j

hi,j(x) = 0.}

Then V0 × Qp ⊆ V and there is a bound N such that if x 6∈ V0, then |{y :
(x, y) ∈ V }| ≤ N is finite. This allows us to partition V = X1 ∪ · · · ∪XN ∪X∞
where for i ≤ N , Xi = {(x, y) ∈ V : there are exactly i distinct z ∈ Qp with
(x, z) ∈ V }. and X∞ = V0 ×Qp. We deal with each Xi separately.

X∞: We can apply Ψm to V0 to partition it into finitely many setsA0, . . . , Am
where eachAi is analytically isomorphic to an open set in sum Qkip where ki < m.
Let Bi = Ai ×Qp. This gives the desired decomposition of X∞ = V0 ×Qp.

Xk: Let
C = {x ∈ Qmp : |{z ∈ Qp : (x, z) ∈ V }| = k}.

We can find definable Skolem functions f1, . . . , fk : C → Qp such that

Xk = {(x, fi(x)) : x ∈ C, i = 1, . . . , k}.

By induction we can partition C into definable sets D0, . . . , Ds such that D0 is
open (possibly empty) and all of the fi are analytic on D0 and otherwise Dj is
analytically isomorphic via a projection πj to an open subset of Qrjp for rj < m
and each fj ◦ π−1

j |πj(Dj) is analytic. Then we can partition Xk into the union
of the graphs of the fi on C and the Djs and apply induction.

Φ1, . . .Φm,Ψ1, . . .Ψm ⇒ Φm+1 By the previous lemma, we can find U ⊆ Qm+1
p

open such that f |U is analytic and dim (A\U) < m. Since A\U has no interior,
there is g ∈ Qp[X1, . . . , Xm+1] such that A \U is contained in the hypersurface
V given by g(X) = 0. Apply Ψm to V to obtain a partition C1, . . . , Cs where
for each j, there is a projection πj that is an analytic isomorphism to an open

set in Qkjp . Let Dj = πj((A \ U) ∩ Cj). Using Φkj we can definably partition

Dj into finitely many nice pieces, then we lift these using π−1
j . �

We will later state a different cell decomposition theorem due to Denef.
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7.3 Rationality of Poincaré Series

Fix f1, . . . , fr ∈ Qp[X1, . . . , Xn]. Let

Nk = |{y ∈ Z/pkZ : ∃x ∈ Znp f1(x) = · · · = fr(x) = 0 ∧
∧
xi = yi(mod pk)}.9

We will consider the Poincaré series

P (T ) =

∞∑
k=0

NkT
k.

We could also consider

Ñk = |{y ∈ Z/pk : fi(y) = 0(mod pk)}, i = 1, . . . , r}

and P̃ (T ) =
∑∞
k=0 ÑkT

k.

Igusa [21], [22] (for r = 1) and Meuser [31] (for general r), proved that P̃ (T )
is a rational function of T . Denef answered a question of Serre and Oesterlé by
proving the rationality of P (T ).

Theorem 7.48 (Denef [8]) P (T ) is a rational function of T .

Igusa’s proof used resolution of singularities to simply certain p-adic inte-
grals. Denef’s gave two proofs, the first also using resolution of singularities but
the second used quantifier elimination to avoid resolution of singularities.

p-adic integration

The p-adics under addition are a locally compact group and thus come equipped
with a Haar measure µ.. Let B be the σ-algebra generated by the compact
subsets of Qp. There is a unique σ-additive measure µ : B → R such that:

i) µ(Zp) = 1;
ii) (translation invariance) µ(a+A) = µ(A) for a ∈ Qp, A ∈ B;
iii) for every A ∈ B and ε > 0 there is an open set U and a closed set F such

that F ⊆ X ⊆ U and µ(U \ F ) < ε.

Exercise 7.49 µ({a}) = 0 for all a ∈ Qp.

Let m be the maximal ideal. Then

m ∪ (1 + m) ∪ · · · ∪ ((p− 1) + m) = Zp.

Thus by additivity and translation invariance µ(m) = 1/p.

Exercise 7.50 Show that µ({x : v(x− a) ≥ r}) = p−r.

Example 7.51 Let A be the set of squares in Zp where p 6= 2.

9This is a little unclear if k = 0, in which case we mean that N0 = 1 if f1 = · · · = fm = 0
has a zero in Zn

p and otherwise N0 = 0.
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Let Ak = {x ∈ A : v(x) = 2k}. Then A = {0} ∪
⋃
Ak and

µ(A) =

∞∑
k=0

µ(Ak).

If x ∈ Ak if and only if x = p2ky where v(y) = 0 and res(y) is a square in Fp.
Since there are p−1

2 squares in Fp we can find z1, . . . , z p−1
2
∈ Zp such that Ak is

the disjoint union B1 ∪ · · · ∪B p−1
2

where

Bi = {x− zi : vp(x) ≥ 2k + 1}.

We have µ(Bi) = p−2k−1. Thus

µ(A) =

∞∑
k=0

p− 1

2
p−2k−1

=
p− 1

2p

∞∑
k=0

p−2k

=
p− 1

2p

(
1

1− p−2

)
=

p

2(1 + p)
.

Exercise 7.52 Calculate the Haar measure of the set of squares when p = 2.

There is a Haar measure µm on Zmp . This is just the usual product measure,
and we will usually write µ rather than µm.

Suppose A ∈ B and f : A → R is a B-measurable function, we can define
the integral ∫

A

f dµ.

We give two illustrative examples.

Example 7.53 Suppose p 6= 2. Let A be the set of squares in Zp and let
f(x) = |xs|p.

Let Ak = {x ∈ Ak : v(x) = 2k}. Then∫
A

|xs|p dµ =

∞∑
k=0

∫
Ak

|xs|p dµ

=

∞∑
k=0

∫
Ak

p−2sk dµ

=

∞∑
k=0

p−2skµ(Ak).
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We saw above that µ(Ak) = p−1
2 p−2k−1. Thus∫

A

|xs|p dµ =
p− 1

2p

∞∑
k=0

(p−2s−2)k

=
p− 1

2p

(
1

1− p−2s−2

)
Exercise 7.54 Calculate

∫
A
|xs| dµ when p = 2.

Example 7.55 Suppose p = 3(mod 4). Let f(x) = |x+ 1|p and let A again by
the squares in Zp.

Since p = 3(mod 4), -1 is a square in Fp and hence in Zp. Let B = {x ∈ Zp :
v(x + 1)}. Then every y ∈ B is a square. If we partition A into B and A \ B,
then ∫

A

|x+ 1|p dµ =

∫
B

|x+ 1|p dµ+

∫
A\B
|x+ 1|p dµ.

But on A \B, |x+ 1|p = 1. Hence∫
A\B
|x+ 1|p dµ =

∫
A\B

1 dµ = µ(A)− µ(B) =
p

2(1 + p)
− 1

p
.

Partition B = {−1} ∪B1 ∪B2 ∪ . . . where Bi = {x : v(x+ 1) = i} Then∫
B

|x+ 1|p dµ =

∞∑
k=1

∫
Bi

|x+ 1|p dµ

=

∞∑
k=1

∫
Bi

p−k dµ

=

∞∑
k=1

p−kµ(Bi)

=

∞∑
k=1

p−k
(

1

pk
− 1

pk+1

)

=
p− 1

p3

∞∑
k=0

p−2k

=
p− 1

p3(1− p−2)2

Thus ∫
A

|1 + x|p dµ =
p− 1

p3(1− p−2)2
+

p

2(1 + p)
− 1

p
.

The next lemma is the link between integration and Poincaré series. Let
f1, . . . , fr ∈ Zp[X], where X = (X1, . . . , Xn) and let P be the associated
Poincaré series. Let

D = {(x, y) ∈ Zn+1
p : ∃z ∈ Znp f1(z) = · · · = fr(z) = 0 ∧

∧
v(xi − zi) ≥ v(y)}
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and for s ∈ R, s > 0, define

I(s) =

∫
D

|y|s dµ.

Lemma 7.56 I(s) = p−1
p P (p−n−1p−s).

Proof Let Dk = {(x, y) ∈ D : v(y) = k}. Then

I(s) =

∞∑
k=0

∫
Dk

|y|s dµ

=

∞∑
k=0

∫
Dk

p−sk dµ

=

∞∑
k=0

p−skµ(Dk)

For each z(mod pk) with f1(z) = · · · = fr(z) = 0.

µ({x : z = x(mod pk)} = p−nk

and

µ({y : v(y) = k} =
p− 1

pk+1
.

Thus

µ(Dk) = Nk
p− 1

p
p−nk−k,

as for each of the Nk zeros mod pk we can find a ball (in m-space) of measure
p−mk. Thus

I(s) =
p− 1

p

∞∑
k=0

Nk(p−s−n−1)k =
p− 1

p
P (p−s−n−1).

�

We will prove that there is a rational function Q(T ) such that I(s) = Q(p−s).
Letting Y = p−s we have

Q(Y ) =
p− 1

p
P (p−n−1Y ).

Then letting T = p−n−1Y

P (T ) =
p

p− 1
Q(pn+1T ).

Hence P (T ) is a rational function.

Denef proved the following general rationality theorem.
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Theorem 7.57 (Denef) Suppose A ⊆ Qmp is definable and contained in a
compact set and h : A → Qp is a definable function. Suppose natural number
M and v(h(x)) is either divisible by M or +∞ for all x ∈ A. Then

ZA(s) =

∫
A

|h(x)|s/Mp dµ

is a rational function in p−s for s ∈ (0,+∞).

Denef’s Cell Decomposition

The proof of Theorem 7.57 needs an analysis of definable functions from Qmp to
the value group and a refined cell decomposition/preparation theorem.

Definition 7.58 Suppose A ⊆ Qmp is definable. We say that a defiinable
θ : A → Z ∪ {+∞} is simple if there is a finite partition of A into definable
sets such that for each set B in the partition, there is an integer M and f, g ∈
Qp[X1, . . . , Xm] such that θ(x) = 1

M (v(f(x))− v(g(x))) on B.

Lemma 7.59 Suppose A ⊆ Qm+1
p is definable, B = {x ∈ Qmp : ∃y (x, y) ∈ A

and for all x ∈ B v is constant on Ax = {y : (x, y) ∈ A}. Let θ : B → Z∪{+∞}
by the function where θ(x) = v(y) for all (x, y) ∈ A. Then θ is simple.

Proof Without loss of generality, assume that if (x, y) ∈ A, then y 6= 0. If
not Z = {(x, y) ∈ A : y = 0}, then θ|Z is constant and replace A by A \ Z.
Since p-adically closed fields, have definable Skolem functions there is a definable
f : B → Qp such that (x, f(x)) ∈ A for all x ∈ B. By Exercise 7.22, there is a
polynomial F (X, Y ) such that F (x, f(x)) = 0 for all x ∈ A and F (x, Y ) is not
identically zero. Let

F (X, Y ) =

d∑
i=0

gi(X)Y i.

Since F (x, f(x)) = 0 for each x ∈ A, there is an i < j such that v(gi(x))+iv(y) =
vj(gj(X)) + jv(y). For i < j ≤ d, let

Ai,j = {(x, y) ∈ A : (i, j) is minimal such that v(y) =
v(gi(x))− v(gj)(x)

j − i
}.

Then (Ai,j : i < j ≤ d) is a partition of A showing that θ is simple. �

Denef proved the following cell decomposition/preparation theorem. We
refer the reader to [8] §7 for the proof.

Theorem 7.60 Suppose f1, . . . , fr ∈ Qp[X, Y ], where X = (X1, . . . , Xm) and
N > 1, then Qm+1

p can be partitioned into finitely many definable sets of the
form

A = {(x, y) ∈ Qm+1
p : x ∈ C, v(a1(x))�1 v(y − c(x))�2 v(a2(x))}
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where C ⊆ Qmp is definable, a1, a2 and c are definable functions, �i is either
<, ≤ or no restriction, and there is are definable function hj : C → Qp for
j = 1, . . . , r such that

fj(x, y) = uj(x, t)
Nhi(x)(y − c(x))vj

function where uj(x, y) is a unit.

In the following proofs we will be interested in knowing of the value of
fj(x, y) or if fj(x, y) is an N th-power. Since uj(x, y)N is always a unit and an
N th-power, we have reduced the question to understanding hj(x)(y − cx)vj .

The following lemma is the key step in Denef’s proof.

Lemma 7.61 Suppose A ⊆ Qmp is definable and contained in a compact set
and h : A → Qp is a definable function such that for some natural number M
v(h(x)) is either divisible by M or +∞ for all x ∈ A. Then

ZA(s) =

∫
A

|h(x)|s/Mp dµ

is a linear combination of series of the form∑
(k1,...,km)∈L
ki=λi(mod Ni)

p−(q1k1+···+qmkm)s−k1−···−km

where k1, . . . , km, λi ∈ Z, Ni ∈ N, q1, . . . , qm ∈ Q and L is defined by a system
of linear inequalities with rational coefficients.

Any function of this form is rational in p−s

Proof (Sketch) The result is trivial if m = 0. We write points in Qm+1
p as

(x, y).
Since

∫
A∪B =

∫
A

+
∫
B
−
∫
A∩B , we can always take Boolean combinations.

We first apply Lemma 7.59 to partition A. Without loss of generality, we
may assume

|h(x, y)|1/Mp =

∣∣∣∣g1(x, y)

g2(x, y)

∣∣∣∣ 1
M′

p

where g1, g2 ∈ Qp[X, Y ] and M ′ > 0. Further, by quantifier elimination and
Exercise 7.17 we may assume that A is defined by a conjunction∧

j=1,...,r

±Pnj (fj(x, y)).

We apply Theorem 7.60 to the functions f1, . . . , fr, g1 and g2 where N =∏
nj . So, by further partitioning, we may assume A is defined by

x ∈ C ∧ v(a1(x))�1 v(y − c(x))�2 v(a2(x))
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and on A
|h(x, y)|1/Mp = |h0(x)|1/M

′

p |p|y − c(x)|v/M
′

p

and fj(x, y) is an nth
j -power if and only if hj(x)(y − c(x))vj is.

We can further refine our partition so that the coset of N th-powers of each
hj(x) and (y−c(x) is fixed on each set in the partition. Without loss of generality
they are constant on A. Let z = y − c(x). Suppose z ∈ λ(mod P×N ). Then∫
A

|h|s/Mp dy dx =

∫
A

|h(x, y)|s/M
′

p dy dx

=

∫
C

|h0(x)|s/M
′

p

∫
v(a1(x))�1v(z)�2v(a2(x))

z=λ (mod P×N )

|z|sv/M
′

p

 dz dx

=

∫
C

|h0(x)|s/M
′

p

∑
v(a1(x))�1k�2v(a2(x))

p−kvs/M
′

∫
v(z)=k

z=λ (mod P×N )

1 dz

 dx

Let w = p−kz. Then∫
v(z)=k

z=λ(mod P×N )

1 dz = p−k
∫

v(w)=0

w=p−kλ (mod P×N )

1 dw.

The righthand side is 0 if k 6= v(λ)(mod N)) and otherwise is p−kγ where γ
does not depend on k. Thus

ZA(s) = γ

∫
C

|h0(x)|s/M
′

p

∑
va1(x))�1k�2v(a2(x))

k=v(λ)(mod N)

p−(kvs)/M ′−k

 dx

= γ
∑

k=v(λ)(mod N)

p−(kvs)/M ′−k
∫

x∈C
v(a1(x))�1k�2v(a2(x))

|h0(x)|s/M
′

p dx

 .

We have succeeded in getting rid of the y variable. We next try to elimi-
nate the variable xm We apply cell decomposition with the functions a1(x) and
a2(x). After some change of variables and further partitioning we are looking at
something like {(v(x), k) : a1(x)�1k�2a2(x)}. This set is defined by a Boolean
combination of congruence conditions and linear inequalities. Proceeding with
care we get the desired result. �
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The end of the proof contains quite a bit of “hand waving” that is tricky to
carefully formulate as an inductive argument. We give one more hopefully illus-
trative example where this works out. We’ve chosen things so that we already
done cell decompositon and don’t need to partition further to get functions in
the right form, but most of the other tricks in Denef’s proof arise here. Also the
argument given at the end to go from the power series to the rational function
uses most of the ideas found in a proof of the general result.

Example 7.62
Suppose p ≡ 1(mod 3) and let

A = {(x, y) ∈ Z2
p : x is a cube, y is a square and 0 ≤ v(y) ≤ v(x3)}

and let h(x, y) = xy. We will calculate

ZA(s) =

∫
A

|h(x, y)|p dµ.

Let D = {x ∈ Zp : x is a cube} . Then

ZA(s) =

∫
x∈D
|x|s

∫
y a square
v(y)≤v(x3)

|y|s dy dx

=

∫
x∈D

|x|s ∑
k≥0

k≤v(x3)

p−ks
∫

v(y)=k
y a square

1 dy

 dx.

We can calculate

µ({y : v(y) = k, y a square}) =

{
0 k odd(
p−1
2p

)
p−k k even

.

There are p−1
2 squares in F×p . Thus the set of squares of value k is the union

of p−1
2 balls of radius p−k−1 and hence has measure p−1

2p p
−k. Thus

ZA(s) =
p− 1

2p

∑
k even

p−ks−k
∫

x∈D
k≤v(x3)

|x|s dx


But ∫

x∈D
k≤v(x3)

|x|s dx =
∑
0≤l
k≤3l

∫
v(x)=l
l a cube

1 dx

=
p− 1

3p

∑
0≤l,3|l
k≤3l

p−ls−l
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since there are (p−1)
3 cubes in F×p . Thus

ZA(s) =
(p− 1)2

6p2

∑
2|k,3|l

0≤k≤3l

p−ls−ks−l−k.

It suffices to show that ∑
2|k,3|l

0≤k≤3l

p−ls−ks−l−k

is a rational function in p−s. We start by making the substitutions k = 2i,
l = 3j. ∑

2|k,3|l
0≤k≤3l

p−ls−ks−l−k =
∑

0≤2i≤9j

p−(3s+3)j−(2s+2)i

Every value of j is either of the form 2r or 2r + 1. In the first case 2k ≤ 9j if
and only if k ≤ 9r. In the second case

2k ≤ 9j ⇔ 2k ≤ 18r + 9⇔ k ≤ 9r + 4.

Thus we can break the sum above up into∑
0≤i≤9r

p−(6s+6)r−(2s+2)i +
∑

0≤i≤9r+4

p−6sr−3s−6r−3−(2s+2)i

We will show the first summand is a rational function in p−s and leave the
second summand as an exercise.∑

0≤i≤9r

p−(6s+6)r−(2s+2)i =

∞∑
r=0

(
p−(6s+6)r

9r∑
s=0

p−(2s+2)i

)
.

Knowing how to sum geometric series we see that

9r∑
s=0

p−(2s+2)i =
1− (p−(2s+2))9r+1

1− p−(2s+2)

So∑
0≤i≤9r

p−(6s+6)r−(2s+2)i =
1

1− p2s+2

( ∞∑
r=0

p−(6s+6)r +

∞∑
r=0

p−(6s−6)rp−(2s+2)(9r+1)

)

=
1

1− p2s+2

( ∞∑
r=0

p−(6s+6)r +

∞∑
r=0

p−24sr−2s−24r−2

)

These are both geometric series and give rise to a rational function in p−s.
The tricks used in this calculation work in general to show that any series

of the type arising in the proof of Lemma 7.61 is a rational function in p−s.
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