1. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify.
(a) $x^{1066}+x^{1 / 2}-x^{-2}$,
(b) $e^{\sqrt{x}}$,
(c) $\frac{\sin (x)}{5+x^{2}}$.
2. Differentiate, writing your answers as in problem 1.
(a) $e^{3 x} \cos (5 x)$,
(b) $\ln \left(x^{2}+x+1\right)$,
(c) $\tan \left(\frac{1}{x}\right)$.
3. Use calculus to find the exact x - and y-coordinates of any local maxima, local minima, and inflection points of the function $f(x)=x^{3}-12 x+5$.
4. Use implicit differentiation to find the slope of the line tangent to the curve

$$
x^{2}+x y+y^{2}=7
$$

at the point $(2,1)$.
5. Estimate the integral $\int_{0}^{40} f(t) d t$ using the left Riemann sum with four subdivisions. Some values of the function f are given in the table:

$$
\begin{array}{cccccc}
t & 0 & 10 & 20 & 30 & 40 \\
f(t) & 5.3 & 5.1 & 4.6 & 3.7 & 2.3
\end{array}
$$

If the function f is known to be decreasing, could the integral be larger than your estimate? Explain why or why not?
6. Write the integral which gives the area of the region between $x=0$ and $x=2$, above the x-axis, and below the curve $y=9-x^{2}$.
Evaluate your integral exactly to find the area.
7. Find the average value of the function $f(x)=\frac{1}{x^{2}}$ on the interval $2 \leq x \leq 6$.
8. Find

$$
\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{x^{2}}
$$

Explain how you obtain your answer.
9. The function $f(x)$ has the following properties:

- $f(5)=2$,
- $f^{\prime}(5)=0.6$,
- $f^{\prime \prime}(5)=-0.4$.
(a) Find the tangent line to $y=f(x)$ at the point $(5,2)$.
(b) Use (a) to estimate $f(5.2)$.
(c) If f is known to be concave down, could your estimate in (b) be greater than actual $f(5.2)$? Give a reason supporting your answer.

10. The point (x, y) lies on the curve $y=\sqrt{x}$.
(a) Find the distance from (x, y) to $(2,0)$ as a function $f(x)$ of x alone.
(a) Find the value of x that makes this distance the smallest.

