Math 180 Fall 2004 Final Examination Solution; reformatted by Radford 12/12/04

1. ($\mathbf{1 5}$ points total) Find the derivative of each of the following functions. Do NOT simplify after taking derivatives.
(a) $\ln \left(e^{x}+1\right)$
(b) $e^{2 x} \sinh (3 x)$
(c) $\frac{x^{2}}{x+2}$

Solution: (a) $\frac{e^{x}}{e^{x}+1}\left(\mathbf{5}\right.$ points) (b) $2 e^{2 x} \sinh (3 x)+3 e^{2 x} \cosh (3 x)\left(5\right.$ points) (c) $\frac{2 x(x+2)-x^{2}}{(x+2)^{2}}$ (5 points)
2. (25 points total) A curve is given by the equation $y^{2}+2 y=x^{3}-4 x$.
(a) Use implicit differentiation to find a formula for $\frac{d y}{d x}$.

Solution: $2 y y^{\prime}+2 y^{\prime}=3 x^{2}-4$, so $y^{\prime}(2 y+2)=3 x^{2}-4$. Thus $y^{\prime}=\left(3 x^{2}-4\right) /(2 y+2)$. points)
(b) Find the equation of the tangent line to this curve at the point $(2,-2)$.

Solution: At $(2,-2)$ the slope is $(3 * 4-4) /(-4+2)=-4$. Tangent line is: $(y+2) /(x-2)=-4$ or $y=-4 x+6$. ($\mathbf{1 0}$ points)
(c) Use part (b) to find the approximate value of y when $x=1.98$.

Solution: If $x=1.98$, then y is approximately $-4(1.98)+6=-1.92$. Or using the linear approximation: $-2+-4(1.98-2)=-1.92$. (5 points)
3. ($\mathbf{2 5}$ points total) Let $f(x)=x^{2} e^{-2 x}$. You must use calculus and show all your work in this problem.
(a) Find and classify all critical points of f (as to local maximum, local minimum, or neither)

Solution: $f^{\prime}(x)=2 x e^{-2 x}-2 x^{2} e^{-2 x}=2 x e^{-2 x}(1-x)$. Critical points are $f^{\prime}(x)=0$, so $x=0$ and $x=1$ are the only critical points. At $x=0$ the value of f^{\prime} changes from - to + so $x=0$ (or $(0,0)$) is a local minimum. At $x=1$ the value of f^{\prime} changes from + to - so $x=1$ or $\left(1, e^{-2}\right)$ is a local maximum. Can also be done using the second derivative test. ($\mathbf{1 5}$ points)
(b) Find the global maximum and global minimum of f for $-1 \leq x \leq 2$.

Solution: $f(0)=0, f(1)=e^{-2} \approx .135, f(-1)=e^{2}$ and $f(2) \approx .073$. So $e^{2} \approx 7.39$ is the global max and 0 is the global minimum. ($\mathbf{1 0}$ points)

4. (20 points total)

(a) If a is a constant, use algebra to find $\lim _{h \rightarrow 0} \frac{(a+h)^{2}+2(a+h)-a^{2}-2 a}{h}$.

Solution: The fraction simplifies to $\left(2 a h+h^{2}+2 h\right) / h=2 a+h+2$. As $h \rightarrow 0$ this becomes $2 a+2$. (10 points)
(b) Use L'Hôpital's Rule to find $\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{x^{2}}$.

Solution: At $x=0$ we have $0 / 0$. L'Hopital gives $2 \sin (2 x) / 2 x=\sin (2 x) / x$. Again we have $0 / 0$ at $x=0$ so use L'Hopital again to get $2 \cos (2 x) / 1$. The limit as $x \rightarrow 0$ of this is 2 . ($\mathbf{1 0}$ points)
5. (20 points total) Let $f(x)=\left\{\begin{array}{ll}3-x & \text { if } x<3 ; \\ x^{2}+x+b & \text { if } x \geq 3 .\end{array}\right.$.
(i) Find a value for b so that $f(x)$ is a continuous function.

Solution: We need $3-3=3^{2}+3+b$. So $b=-12$. ($\mathbf{1 0}$ points)
(ii) If b is as in part (i), is $f(x)$ differentiable for all x ? Justify your answer.

Solution: Must have $(3-x)^{\prime}=\left(x^{2}+x=12\right)^{\prime}$ at $x=3$. Then $-1=2 * 3+1$, which is impossible. So answer is NO. Other justifications: graph has sharp corner at $x=$, slopes of the tangent lines to $3-x$ and $x^{2}+x+12$ are different. ($\mathbf{1 0}$ points)
6. ($\mathbf{2 5}$ points total) Consider the following table of values for the function $y=f(x)$.
(a) Estimate $\int_{0}^{3} f(x) d x$ using the Left-hand Sum for $a=0, b=3$, and $n=3$ rectangles;

Solution: $\Delta x=(b-a) / n=(3-0) / 3=1$. Thus $L S=(2+3+4) * 1=9$. (12 points)
(b) Estimate $\int_{.5}^{3} f(x) d x$ using the Right-hand Sum for $a=0.5, b=3$, and $n=5$ rectangles.

Solution: $\Delta x=(b-a) / n=(3-.5) / 5=.5$. Thus $R S=(3+7+4-11+110)(.5)=113 / 2=56.5$. (13 points)

t	0	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3.0
$\mathrm{f}(\mathrm{t})$	2	3	1	-4	3	10	7	6	4	3	-11	98	110

7. ($\mathbf{2 5}$ points total) The graph below is a graph of f^{\prime} (NOT the graph of f). Use the graph of f^{\prime} to answer the following questions about the function f. To receive full credit you must justify your answers.

(a) Write down all x-values of critical points of f.

Solution: Critical points are where $f^{\prime}(x)=0$. Answer: $-3,-1,2$. (5 points)
(b) Write down all x-values for which $f^{\prime \prime}(x)=0$.

Solution: $f^{\prime \prime}(x)=0$ at critical point for $f^{\prime}(x)$, where tangent line to f^{\prime} is has slope 0 . Answer: $-2,0,2$. ($\mathbf{5}$ points)
(c) For each critical point, indicate whether f has a local maximum, a local minimum, or neither at that point.

Solution: f^{\prime} changes from + to - at $x=-3$, so $x=3$ is a local max. f^{\prime} changes from - to +
at $x=-1$, so $x=-1$ is local min. f^{\prime} does not change sign at $x=2$, so neither local max nor local min. (5 points)
(d) For each value of x for which $f^{\prime \prime}(x)=0$, indicate whether it is an inflection point of f.

Solution: All three of $-2,0,2$ are inflection points since f^{\prime} changes from an increasing function to a decreasing function or from a decreasing function to an increasing function at each point.
(5 points)
(e) For which value of x is $f(x)$ decreasing most rapidly.

Solution: f^{\prime} is the most negative at $x=-2$. (5 points)
8. ($\mathbf{2 5}$ points total) A farmer has 1,200 feet of fencing and she wants use this fencing to form a rectangular pen consisting of two sections sharing a common side as in the diagram. Let x and y be the lengths as shown in the diagram.
(a) Express the area of the pen as a function of x.

Solution: $A=2 x y$ and $y=(1200-4 x) / 3$. So $A(x)=2 x(1200-4 x) / 3=800 x-8 x^{2} / 3$. (5 points)
(c) If x and y are as in the diagram, what values of x and y give the maximum total area of the pen?

Solution: $A^{\prime}(x)=800-16 x / 3$. So $A^{\prime}(x)=0$ at $x=3 * 800 / 16=150 \mathrm{ft}$. This is a global maximum since $A=0$ when $x=0$ or $x=1200 / 4$ (since $y=0$ in that case). If $x=150$ then $y=600 / 3=200 \mathrm{ft}$. (15 points)
(b) What is the maximum area that the pen can have?

Solution: $A=2 * 150 * 200=60,000$ square feet. (5 points)

9. (20 points total) Let $f(x)=3 x^{2}+2 x$.
(a) Write a definite integral whose value is the area of the region that is bounded on the left by the vertical line $x=1$, bounded on the right by the vertical line $x=\pi$, bounded above by the curve $y=f(x)$ and bounded below by the x-axis.

Solution: $\int_{1}^{\pi}\left(3 x^{2}+2 x\right) d x$. (5 points)
(b) Find the exact value of the area of the region described in part (a). (Your answer should involve π.)

Solution: $\int_{1}^{\pi}\left(3 x^{2}+2 x\right)=\pi^{3}+\pi^{2}-\left(1^{3}+1^{2}\right)=\pi^{3}+\pi^{2}-2$. (10 points $)$
(c) Find the average value of $y=f(x)$ on the interval $[1, \pi]$.

Solution: $\frac{1}{\pi-1} \int_{1}^{\pi} f(x) d x=\left(\pi^{3}+\pi^{2}-2\right) /(\pi-1),(5$ points $)$ or $\pi^{2}+2 \pi+2 \approx 18.153$.

