
Notes on Galois Theory
Math 431 04/28/2009 Radford

We outline the foundations of Galois theory. Most proofs are well beyond
the scope of the our course and are therefore omitted. The symbols ≤ and £

in the context of groups denote subgroup and normal subgroup respectively.

1 The Galois Group, Roots of Polynomials,

and Splitting Fields

For a ring E with unity Aut(E) denotes the group of ring automorphisms of
E under function composition. Observe that Aut(E) ≤ Sym(E), the group
of permutations on the set E under composition.

For the remainder of these notes E is field. F ⊆ E will mean F is a field
and E is a field extension of F .

Suppose F ⊆ E. The subset of automorphisms σ ∈ Aut(E) which fix
F pointwise, that is satisfy σ(a) = a for all a ∈ F , is denoted Gal(E/F ).
Observe that Gal(E/F ) ≤ Aut(E). Recall that E is a vector space over F
where scalar multiplication is defined by multiplication in E; that is a·α = aα
for all a ∈ F and α ∈ E. For such a, α, and for σ ∈ Gal(E/F ), the calculation

σ(a·α) = σ(aα) = σ(a)σ(α) = aσ(α) = a·σ(α)

shows that σ is F -linear.
Here is our first important connection between the Galois group and roots

of polynomials. The roots of p(x) ∈ F [x] which are contained in E are
permuted by all σ ∈ Gal(E/F ).

Lemma 1 Suppose F ⊆ E, p(x) ∈ F [x], a ∈ E, and σ ∈ Gal(E/F ). Then
σ(p(a)) = p(σ(a)). In particular p(a) = 0 implies p(σ(a)) = 0. Thus σ
permutes the roots of p(x) in E.
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Proof: Write p(x) = a0 +a1x+ · · ·+anxn, where n ≥ 0 and a0, . . . , an ∈ F .
Then σ(ai) = ai for all 0 ≤ i ≤ n since σ ∈ Gal(E/F ). The calculation

σ(p(a)) = σ(a0 + a1a + · · ·+ ana
n)

= σ(a0) + σ(a1a) + · · ·+ σ(ana
n)

= σ(a0) + σ(a1)σ(a) + · · ·+ σ(an)σ(an)

= a0 + a1σ(a) + · · ·+ anσ(a)n

= p(σ(a))

establishes σ(p(a)) = p(σ(a)). The remaining details are left to the reader.
2

If σ, τ ∈ Gal(E/F ) then σ = τ when σ and τ agree on generators of E as
a field extension of F .

Lemma 2 Suppose F ⊆ E and E = F (S), where S ⊆ E, and σ, τ ∈
Gal(E/F ) satisfy σ(s) = τ(s) for all s ∈ S. Then σ = τ .

Proof: Since σ, τ ∈ Aut(E) the set D = {a ∈ E |σ(a) = τ(a)} is a subfield
of E. We need only show D = E.

By assumption S ⊆ D. Now F ⊆ D since σ, τ fix the elements of F .
Therefore F∪S ⊆ D which means the subfield F (S) of E generated by F∪S
is contained in D. Since E = F (S), D = E. 2

Let H ⊆ Gal(E/F ). Then EH = {a ∈ E | σ(a) = a ∀ σ ∈ H} is a sub-

field of E and F ⊆ EH ⊆ E. In particular F ⊆ EGal(E/F ). When the latter
two fields are equal minimal polynomials over F split into distinct linear
factors.

Proposition 1 Suppose that F ⊆ E and F = EGal(E/F ); that is if a ∈
E and σ(a) = a for all σ ∈ Gal(E/F ) then a ∈ F . Suppose that a ∈
E is algebraic over and has minimal polynomial p(x) ∈ F [x]. Then S =
{σ(a) |σ ∈ Gal(E/F )} is finite and p(x) =

∏
s∈S(x− s).

Proof: S consists of roots of p(x) by Lemma 1. Now S is finite since
p(x) 6= 0. Set g(x) =

∏
s∈S(x − s). Then g(x) divides p(x) in E[x] as each

factor does.
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Let τ ∈ Gal(E/F ). Since S is finite τ(S) = S. Since τ ∈ Aut(E) it
induces a ring automorphism τ : E[x] −→ E[x] defined by

τ(a0 + a1x + · · ·+ anx
n) = τ(a0) + τ(a1)x + · · ·+ τ(an)xn

for all h(x) = a0 + a1x + · · ·+ anx
n ∈ E[x]. Observe that τ(h(x)) = h(x) for

all τ ∈ Gal(E/F ) if and only if h(x) ∈ F [x] since F = EGal(E/F ).
For all τ ∈ Gal(E/F ) the calculation

τ(g(x)) = τ(
∏

s∈S

(x− s)) =
∏

s∈S

τ(x− s) =
∏

s∈S

(x− τ(s)) =
∏

s∈S

(x− s) = g(x)

shows that g(x) ∈ F [x]. Since g(a) = 0 it follows that p(x) divides g(x) in
F [x]. Therefore the monic polynomials p(x) and g(x) divide each other in
E[x] which means that p(x) = g(x). 2

Theorem 1 Suppose F ⊆ E and E is a finite extension of F . Then Gal(E/F )
is a finite group and [E : F ] = |Gal(E/F )|[EGal(E/F ) : F ]. 2

Let E be a finite extension of F . Then E is a Galois extension if [E : F ] =
|Gal(E/F )| or equivalently F = EGal(E/F ). Thus E is a Galois extension of
F if for a ∈ E, σ(a) = a for all σ ∈ Gal(E/F ) implies a ∈ F .

As a result of Theorem 1 and Proposition 1:

Corollary 1 Suppose F ⊆ E is finite extension which is Galois. Then E is
a splitting field of some polynomial f(x) ∈ F [x] over F . 2

In characteristic zero the converse is true.

Theorem 2 Suppose that F is a field of characteristic zero, F ⊆ E and
[E : F ] is finite. If E is a splitting field of some non-zero f(x) ∈ F [x] over
F then E is a Galois extension of F . 2

2 The Galois Correspondence

Suppose F ⊆ K ⊆ E. Then Gal(E/K) ≤ Gal(E/F ). Thus there is an
inclusion reversing map

K 7→ Gal(E/K)
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from extensions F ⊆ K ⊆ E to subgroups of Gal(E/F ). Likewise

H 7→ EH

is an inclusion reversing map from subgroups of Gal(E/F ) to extensions of
F which are subfields of E. If F ⊆ E is a finite Galois extension then these
are inverses.

3 The Fundamental Theorem of Galois The-

ory

Theorem 3 Suppose that F is a field of characteristic zero and F ⊆ E is a
finite Galois extension. Then:

(a) There is an inclusion reversing bijection

{subgroups of Gal(E/F )} −→ {K |F ⊆ K ⊆ E}
described by H 7→ EH whose inverse is given by K 7→ Gal(E/K).

Suppose F ⊆ K ⊆ E.

(b) E is a Galois extension of K. Thus

[E : K] = Gal(E/K)| and [K : F ] = [Gal(E/F ) : Gal(E/K)].

(c) K is a Galois extension of F if and only if σ(K) = K for all σ ∈
Gal(E/F ) if and only if Gal(E/K) £ Gal(E/K). In this case

Gal(E/F )/Gal(E/K) ' Gal(K/F ).

Proof: Part (a), which we will assume, is the heart of the theorem. Let
F ⊆ K ⊆ E.

We show part (b). By Corollary 1 E is a splitting field of some f(x) ∈ F [x]
over F . Thus f(x) ∈ K[x] and E is a splitting field of f(x) over K. This
means E is a Galois extension of K by Theorem 2 and therefore [E : K] =
|Gal(E/K)|. The second equation of part (b) follows from the first and the
equation |Gal(E/F )| = [E : F ] = [E : K][K : F ].
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To show part (c), assume that K is a Galois extension of F . Then K is a
splitting field of some g(x) ∈ F [x] over F . Let σ ∈ Gal(E/F ). Then σ fixes
a ∈ F and by Lemma 1 permutes the roots of g(x). Therefore σ(K) ⊆ K.
Now σ is injective and a F -linear map. Since K is a finite-dimensional vector
space over F it follows that σ(K) = K.

Assume that σ(K) = K for all σ ∈ Gal(E/F ). Then the restriction
map π : Gal(E/F ) −→ Gal(K/F ) given by π(σ) = σ|K is well-defined and
a group homomorphism. Note Ker π = Gal(E/K). Since π induces an
injection Gal(E/F )/Gal(E/K) ↪→ Gal(K/F ), by part (b) and Theorem 1
it follows that [K : F ] = |Gal(K/F )|. Therefore K is a Galois extension
of F . To complete the proof of part (c) we use part (a) and note that
σ(EH) = EσHσ−1 for all σ ∈ Gal(E/F ) and H ≤ Gal(E/F ). 2

4 Solvability of Polynomials by Radicals

The goal of this section is to prove:

Proposition 2 Let F be a field of characteristic zero, F ⊆ E ⊆ F (a1, . . . , ar),
where E is a finite Galois extension of F , r ≥ 1, and there are n1, . . . , nr > 0
such that an1

1 ∈ F and ani
i ∈ F (a1, . . . , ai−1) for all 1 < i ≤ r. Then

Gal(E/F ) is solvable.

First commentary on splitting fields of xn − 1 and xn − a over F , where
a ∈ F .

Let E ′ be a splitting field of f(x) = xn − 1 over F . We may assume
n > 1. Now f(x) has no multiple zeros since f ′(a) = nan−1 6= 0 for all
non-zero a ∈ E. Therefore the set of roots G of f(x) in E ′ has n-elements.
Since G is a finite subgroup of the group of units of E ′ it follows that G is
cyclic. Thus G = (ω), ω is a primitive nth root of unity since it generates G,
and E ′ = F (ω).

A splitting field of xn−a over F has the form F (ω, a1/n), where (a1/n)n =
a. Note that xn − a has n distinct roots a1/n, ωa1/n, . . . , ωn−1a1/n. Thus

xn − a =
n−1∏

i=0

(x− ωia1/n).

Lemma 3 Let n ≥ 1. Then Gal(F (ω)/F ) is abelian, hence solvable, where
ω is a primitive nth root of unity.
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Proof: Let σ ∈ Gal(F (ω)/F ). Then σ(G) = G by Lemma 1. Thus the
restriction map π : Gal(F (ω)/F ) −→ Aut(G) given by π(σ) = σ|G is a group
homomorphism. Since ω generates F (ω) as a field extension of F necessarily
π is injective by Lemma 2. Since G is a finite-cyclic group Aut(G) is abelian.
Therefore Gal(F (ω)/F ) is abelian. 2

Lemma 4 Let n ≥ 1. Suppose F contains a primitive nth root of unity and
0 6= a ∈ F . Then Gal(F (a1/n)/F ) is abelian, hence solvable, where a1/n is a
root of xn − a.

Proof: Note that F (a1/n) is a splitting field of xn − a over Fv since F
contains a primitive nth root of unity ω. Let σ ∈ Gal(F (a1/n/F ). Then
σ(a1/n) is a root of xn−a. Therefore σ(a1/n) = ωia1/n for a unique 0 ≤ i < n.
Define π : Gal(F (a1/n/F ) −→ Zn by π(σ) = i. Then π is a homomorphism
to the additive group Zn which is injective since a1/n generates F (a1/n) as a
field extension of F . Thus Gal(F (a1/n/F ) is cyclic. 2

Suppose that F ⊆ K ⊆ L, where K and L are finite Galois extensions of
F . Then Gal(L/K) £ Gal(L/F ) and Gal(L/F )/Gal(L/K) ' Gal(K/F ) by
part (c) of Theorem 3. Therefore

Lemma 5 Suppose that F ⊆ K ⊆ L, where K and L are finite Galois
extensions of F . Then Gal(L/F ) is solvable if and only if Gal(L/K) and
Gal(K/F ) are solvable. 2

We will establish Proposition 2 by a series of reductions to Lemmas 3 and 4.
Let n be the least common multiple of n1, . . . , nr. Since E is a finite Galois
extension of F it is a splitting field over F by Proposition 1. Let f(x) ∈ F [x]
be a polynomial such that E is a splitting field of f(x) in F (a1, . . . , ar).

Lemma 6 If Proposition 2 holds whenever F contains a primitive nth root
of unity then it holds in general.

Proof: Let L be a splitting field of xn − 1 over F (a1, . . . , ar). Then L
contains a primitive nth root of unity ω. Regard F (ω) as the base field and
consider the extensions F (ω) ⊆ E(ω) ⊆ F (ω)(a1, . . . , ar) ⊆ L. Since E is a
splitting field of f(x) over F and f(x) ∈ F (ω)[x], it follows that E(ω) is a
splitting field of f(x) over F (ω) in F (ω)(a1, . . . , ar).
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Observe that F (ω) ⊆ E(ω) ⊆ F (ω)(a1, . . . , ar) satisfies the hypothesis
of Proposition 2 and F (ω) contains a primitive nth root of unity. Assume
that Gal(E(ω)/F (ω)) is solvable. The sequence F ⊆ F (ω) ⊆ E(ω) satisfies
the hypothesis of Lemma 5 since F (ω) and E(ω) are splitting fields of xn −
1, f(x)(xn − 1) ∈ F [x] respectively over F . Since Gal(F (ω)/F ) is solvable
by Lemma 3, Gal(E(ω)/F ) is solvable by Lemma 5. Applying the same to
F ⊆ E ⊆ E(ω) we conclude that Gal(E/F ) is solvable. 2

Lemma 7 Suppose F contains a primitive nth root of unity ω. Then Propo-
sition 2 holds then it holds when r = 1.

Proof: The sequence of Proposition 2 is F ⊆ E ⊆ F (a1). Since ωn/n1 is
a primitive nth

1 root of unity F (a1) is a splitting field of xn1 − an1
1 over F .

Thus Gal(F (a1)/F ) is solvable by Lemma 4 and hence Gal(E/F ) is solvable
by Lemma 5. 2

We now complete the proof of Proposition 2. By virtue of Lemmas 6
and 7 we may assume F contains a primitive nth root of unity and r > 1.
Consider the sequence F (a1) ⊆ E(a1) ⊆ F (a1)(a2, . . . , ar). Note that E(a1)
is a Galois extension of F (a1) since it is a splitting field of f(x)(xn1 − an1

1 )
over F , hence over F (a1). The hypothesis of Proposition 2 applies to this
sequence with base field F (a1). Thus by induction in r we conclude that
Gal(E(a1)/F (a1)) is solvable. Now F (a1) is a splitting field of xn1 − an1

1 over
F . We can apply Lemma 5 to F ⊆ F (a1) ⊆ E(a1) and F ⊆ E ⊆ E(a1) to
conclude that Gal(E/F ) is solvable. 2
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