Notes on Galois Theory

Math 431 04/28,/2009 Radford

We outline the foundations of Galois theory. Most proofs are well beyond
the scope of the our course and are therefore omitted. The symbols < and <
in the context of groups denote subgroup and normal subgroup respectively.

1 The Galois Group, Roots of Polynomials,
and Splitting Fields

For a ring E with unity Aut(E) denotes the group of ring automorphisms of
E under function composition. Observe that Aut(E) < Sym(FE), the group
of permutations on the set E under composition.

For the remainder of these notes £ is field. F C E will mean F'is a field
and F is a field extension of F'.

Suppose F' C E. The subset of automorphisms o € Aut(F) which fix
F pointwise, that is satisfy o(a) = a for all @ € F, is denoted Gal(E/F).
Observe that Gal(E/F) < Aut(E). Recall that E is a vector space over F
where scalar multiplication is defined by multiplication in £; that is a-a = a«
foralla € Frand o € E. For such a, o, and for 0 € Gal(E/F'), the calculation

o(a-a) = o(aa) = o(a)o(a) = ao(a) = a-o(a)

shows that o is F-linear.

Here is our first important connection between the Galois group and roots
of polynomials. The roots of p(x) € F|z] which are contained in E are
permuted by all 0 € Gal(E/F).

Lemma 1 Suppose F C E, p(z) € Flz]|, a € E, and 0 € Gal(E/F). Then
o(p(a)) = p(o(a)). In particular p(a) = 0 implies p(c(a)) = 0. Thus o
permutes the roots of p(x) in E.



Proor: Write p(z) = ag+ajz+---+apz", where n > 0 and ay, ... ,a, € F.
Then o(a;) = a; for all 0 < i < n since o € Gal(E/F). The calculation

o(p(a)) = o(ag+aa+---+a,a”)
= o(ap) +o(aa) +---+ o(a,a™)

= o(ag) +o(ar)o(a)+ -+ ola,)o(a™)
= a+ao(a)+---+ayo(a)’
= plo(a))

establishes o(p(a)) = p(o(a)). The remaining details are left to the reader.
O

If 0,7 € Gal(E/F) then 0 = 7 when o and 7 agree on generators of E as
a field extension of F.

Lemma 2 Suppose FF C E and E = F(S), where S C E, and o,7 €
Gal(E/F) satisfy o(s) =7(s) for alls € S. Then o =T.

PROOF: Since 0,7 € Aut(F) the set D ={a € F|o(a) = 7(a)} is a subfield
of E. We need only show D = E.

By assumption S € D. Now F C D since o,7 fix the elements of F'.
Therefore FUS C D which means the subfield F'(S) of E generated by FUS
is contained in D. Since F = F(S), D=FE. O

Let H C Gal(E/F). Then |Eg ={a € E|o(a)=a Yo € H}|is a sub-
field of ' and F' C Ey C E. In particular ' C Egag/r)- When the latter
two fields are equal minimal polynomials over F' split into distinct linear
factors.

Proposition 1 Suppose that F' C E and F' = Egag/r); that is if a €
E and o(a) = a for all 0 € Gal(E/F) then a € F. Suppose that a €
E is algebraic over and has minimal polynomial p(x) € F[z]. Then S =

{o(a)|o € Gal(E/F)} is finite and p(x) = [T,eq(z — 5).

PROOF: S consists of roots of p(x) by Lemma 1. Now S is finite since
p(z) # 0. Set g(x) = [Iseg(x — s). Then g(z) divides p(x) in E[z] as each
factor does.



Let 7 € Gal(E/F). Since S is finite 7(S) = S. Since 7 € Aut(F) it
induces a ring automorphism 7 : E[z] — Flz| defined by

T(ag+ a1z + -+ a,z™) = 7(ag) + 7(ar)x + - - - + 7(a,)x"

for all h(z) = ap + a1z + -+ -+ a,a™ € E[z]. Observe that 7(h(x)) = h(z) for
all 7 € Gal(E/F) if and only if h(z) € F[z] since F' = Eqa(g/r)-
For all 7 € Gal(E/F) the calculation

Tg@) =7(][(@=s) = [ 7(z = 5) = [[(x = 7(s)) = [[ (= = ) = g(2)

seS SES seS seS

shows that g(z) € F[z]. Since g(a) = 0 it follows that p(x) divides g(x) in
F[z]. Therefore the monic polynomials p(z) and g(z) divide each other in
E[z] which means that p(z) = g(z). O

Theorem 1 Suppose F' C E and E is a finite extension of F'. Then Gal(E/F)
is a finite group and [E : F| = |Gal(E/F)|[Ecae/r : F]. O

Let E be a finite extension of F. Then E'is a Galois extensionif [E : F| =
|Gal(E/F)| or equivalently F' = Egag/r). Thus E is a Galois extension of
Fiffora € E, o(a) = a for all 0 € Gal(E/F') implies a € F.

As a result of Theorem 1 and Proposition 1:

Corollary 1 Suppose F' C E is finite extension which is Galois. Then E is
a splitting field of some polynomial f(z) € F[z| over F. O
In characteristic zero the converse is true.

Theorem 2 Suppose that F is a field of characteristic zero, ' C E and
|E : F) is finite. If E is a splitting field of some non-zero f(x) € F|x] over
F then E is a Galois extension of F. O

2 The Galois Correspondence

Suppose FF C K C E. Then Gal(E/K) < Gal(E/F). Thus there is an
inclusion reversing map

K — Gal(E/K)

3



from extensions F' C K C E to subgroups of Gal(E/F'). Likewise
H— EH

is an inclusion reversing map from subgroups of Gal(E/F) to extensions of
F which are subfields of E. If F' C E is a finite Galois extension then these
are inverses.

3 The Fundamental Theorem of Galois The-
ory

Theorem 3 Suppose that F is a field of characteristic zero and F' C E is a
finite Galois extension. Then:

(a) There is an inclusion reversing bijection
{subgroups of Gal(E/F)} — {K|F C K C E}
described by H — Eg whose inverse is given by K — Gal(E/K).
Suppose F C K C E.
(b) E is a Galois extension of K. Thus

[E: K] = Gal(E/K)| and [K :F]=[Gal(E/F): Gal(E/K)].

(¢) K is a Galois extension of F if and only if o(K) = K for all 0 €
Gal(E/F) if and only if Gal(E/K) < Gal(E/K). In this case

Gal(E/F)/Gal(E/K) ~ Gal(K/F).

PROOF: Part (a), which we will assume, is the heart of the theorem. Let
FCKCE.

We show part (b). By Corollary 1 E is a splitting field of some f(x) € F|x]
over F. Thus f(x) € K[z] and E is a splitting field of f(z) over K. This
means F' is a Galois extension of K by Theorem 2 and therefore [E : K| =
|Gal(E/K)|. The second equation of part (b) follows from the first and the
equation |Gal(E/F)|=[E: F|=[E: K|[K : F].
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To show part (c), assume that K is a Galois extension of F'. Then K is a
splitting field of some g(z) € F[x] over F. Let o € Gal(E/F). Then o fixes
a € F and by Lemma 1 permutes the roots of g(x). Therefore o(K) C K.
Now o is injective and a F-linear map. Since K is a finite-dimensional vector
space over F' it follows that o(K) = K.

Assume that o(K) = K for all 0 € Gal(E/F). Then the restriction
map 7 : Gal(F/F) — Gal(K/F') given by 7(c) = 0|k is well-defined and
a group homomorphism. Note Kerm = Gal(E/K). Since 7 induces an
injection Gal(E/F)/Gal(E/K) — Gal(K/F), by part (b) and Theorem 1
it follows that [K : F] = |Gal(K/F)|. Therefore K is a Galois extension
of F. To complete the proof of part (¢) we use part (a) and note that
0(Ey) = E,pgo—1 for all 0 € Gal(E/F) and H < Gal(E/F). O

4 Solvability of Polynomials by Radicals

The goal of this section is to prove:

Proposition 2 Let F' be a field of characteristic zero, F C E C F(ay,...,a,),
where E is a finite Galois extension of F', r > 1, and there are ny,...,n, >0
such that af* € F and aj" € F(ay,...,a;_1) for all 1 < i < r. Then
Gal(E/F) is solvable.

First commentary on splitting fields of 2™ — 1 and 2™ — a over F', where
ac k.

Let E’ be a splitting field of f(x) = 2™ — 1 over F. We may assume
n > 1. Now f(x) has no multiple zeros since f'(a) = na"~! # 0 for all
non-zero a € E. Therefore the set of roots G of f(x) in E’ has n-elements.
Since G is a finite subgroup of the group of units of E’ it follows that G is
cyclic. Thus G = (w), w is a primitive n' root of unity since it generates G,

and E' = F(w).
A splitting field of 2™ —a over F has the form F(w,a'/™), where (a'/™)" =
a. Note that 2" — a has n distinct roots a*/™, wa'/™, ... w* *a'/™. Thus
n—1 )
2" —a=[[(z —w'a/™).
=0

Lemma 3 Let n > 1. Then Gal(F(w)/F) is abelian, hence solvable, where
w is a primitive n' root of unity.



PRrROOF: Let 0 € Gal(F(w)/F). Then o(G) = G by Lemma 1. Thus the
restriction map 7 : Gal(F(w)/F) — Aut(G) given by 7(0) = ol is a group
homomorphism. Since w generates F'(w) as a field extension of F' necessarily
7 is injective by Lemma 2. Since G is a finite-cyclic group Aut(G) is abelian.

Therefore Gal(F(w)/F) is abelian. O

Lemma 4 Let n > 1. Suppose F contains a primitive n'" root of unity and

0+#a € F. Then Gal(F(a*™)/F) is abelian, hence solvable, where a'/™ is a
root of " — a.

PrOOF: Note that F(a'/) is a splitting field of 2" — a over Fv since F
contains a primitive n* root of unity w. Let o € Gal(F(a'/"/F). Then
o(a'/™) is a root of 2™ —a. Therefore o(a'/") = wia'/™ for a unique 0 < i < n.
Define 7 : Gal(F(a'/"/F) — Z, by n(c) = i. Then 7 is a homomorphism
to the additive group Z, which is injective since a'/" generates F(a'/") as a
field extension of F. Thus Gal(F(a'/"/F) is cyclic. O

Suppose that F' C K C L, where K and L are finite Galois extensions of
F. Then Gal(L/K) 9 Gal(L/F) and Gal(L/F)/Gal(L/K) ~ Gal(K/F) by
part (c) of Theorem 3. Therefore

Lemma 5 Suppose that F© C K C L, where K and L are finite Galois
extensions of F'. Then Gal(L/F) is solvable if and only if Gal(L/K) and
Gal(K/F) are solvable. O

We will establish Proposition 2 by a series of reductions to Lemmas 3 and 4.
Let n be the least common multiple of ny,...,n,. Since F is a finite Galois
extension of F' it is a splitting field over F' by Proposition 1. Let f(z) € F[z]
be a polynomial such that E is a splitting field of f(x) in F(a4,...,a,).

h

Lemma 6 If Proposition 2 holds whenever F contains a primitive n'" root

of unity then it holds in general.

PROOF: Let L be a splitting field of 2™ — 1 over F(ay,...,a,). Then L
contains a primitive n'* root of unity w. Regard F(w) as the base field and
consider the extensions F'(w) C F(w) C F(w)(ai,...,a,) C L. Since E is a
splitting field of f(z) over F' and f(z) € F(w)[x], it follows that F(w) is a
splitting field of f(x) over F(w) in F(w)(ay,...,a.).
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Observe that F(w) C F(w) C F(w)(ay,...,a,) satisfies the hypothesis
of Proposition 2 and F(w) contains a primitive n'* root of unity. Assume
that Gal(E(w)/F(w)) is solvable. The sequence F' C F(w) C E(w) satisfies
the hypothesis of Lemma 5 since F'(w) and F(w) are splitting fields of 2™ —
1, f(z)(z™ — 1) € Flx] respectively over F. Since Gal(F(w)/F) is solvable
by Lemma 3, Gal(E(w)/F) is solvable by Lemma 5. Applying the same to
F C E C E(w) we conclude that Gal(E/F) is solvable. O

Lemma 7 Suppose F contains a primitive n'* root of unity w. Then Propo-
sition 2 holds then it holds when r = 1.

PROOF: The sequence of Proposition 2 is F C E C F(ay). Since w™™ is
a primitive n{" root of unity F(a) is a splitting field of 2™ — a}* over F.
Thus Gal(F'(a;)/F) is solvable by Lemma 4 and hence Gal(E/F) is solvable
by Lemma 5. O

We now complete the proof of Proposition 2. By virtue of Lemmas 6
and 7 we may assume I contains a primitive n'® root of unity and r > 1.
Consider the sequence F(ay) C E(ay) C F(ay)(ag,...,a,). Note that E(a,)
is a Galois extension of F'(a;) since it is a splitting field of f(x)(z™ — ai*)
over F', hence over F'(a;). The hypothesis of Proposition 2 applies to this
sequence with base field F'(a;). Thus by induction in r we conclude that
Gal(E(ay)/F(ay)) is solvable. Now F(ay) is a splitting field of 2™ — aj* over
F. We can apply Lemma 5 to F' C F(a;) C E(a;) and FF C E C E(ay) to
conclude that Gal(E/F) is solvable. O



