Let R be a commutative ring with unity. Recall that R^{\times}denotes the multiplicative group of units of R. Let $a \in R$. Throughout $R=D$ is an integral domain.

1. Page 334, number 22: ($\mathbf{2 0}$ points) We base our solution on the discussion of Example 1 on page 321 of the text.
$D=\mathbf{Z}[\sqrt{5}]$. By the Eisenstein Criterion $x^{2}-5 \in \mathbf{Q}[x]$ is irreducible. Therefore all elements of $x \in D$ have a unique expression $x=m+n \sqrt{5}$, where $m, n \in \mathbf{Z}$. In particular $N: D \longrightarrow\{0,1,2,3, \ldots\}$ defined by

$$
N(m+n \sqrt{5})=|(m+n \sqrt{5}) \overline{(m+n \sqrt{5})}|=|(m+n \sqrt{5})(m-n \sqrt{5})|\left|m^{2}-5 n^{2}\right|
$$

is multiplicative and $x \in D^{\times}$if and only if $N(x)=1$.
Note that

$$
\begin{equation*}
2 \cdot 2=4=(1+\sqrt{5})(-1+\sqrt{5}) \tag{1}
\end{equation*}
$$

and $2,1+\sqrt{5},-1+\sqrt{5}$ are distinct. We first show that these elements are irreducible.
Observe that $4=N(2)=N(1+\sqrt{5})=N(-1+\sqrt{5})=4$. Since $N()$ is multiplicative, to show that $2,1+\sqrt{5},-1+\sqrt{5}$ are irreducible we need only show that $N(x)=2$ is not possible for $x=m+n \sqrt{2} \in D(5)$.

Suppose that $N(x)=2$; that is $m^{2}-5 n^{2}= \pm 2$. Then m, n are even or m, n are odd. In the first case $m=2 \ell$ and $n=2 k$, for some $k, \ell \in \mathbf{Z}$. Therefore $m^{2}-5 n^{2}=$ $4 k^{2}-5\left(4 \ell^{2}\right)=4\left(k^{2}-5 \ell^{2}\right)$ which does not divide ± 2. In the second case $m=2 k+1$ and $n=2 \ell+1$ for some $k, \ell \in \mathbf{Z}$. But then

$$
m^{2}-5 n^{2}=\left(4 k^{2}+4 k+1\right)-5\left(4 \ell^{2}+4 \ell+1\right)=4\left(k^{2}+k-\ell^{2}-\ell-1\right)
$$

does not divide ± 2. Therefore $N(x)=2$ is not possible (5). We have shown that $2,1+\sqrt{5},-1+\sqrt{5}$ are irreducible.

Now we show that these elements are not prime. Suppose that 2 is prime. Then from (1) we conclude that 2 divides $1+\sqrt{5}$ or $-1+\sqrt{5}$; that is $2(m+n \sqrt{5})$ is $1+\sqrt{5}$ or $-1+\sqrt{5}$ for some $m, n \in \mathbf{Z}$. But $2 m= \pm 1$ is not possible. Therefore 2 is not prime (5).

Suppose that $1+\sqrt{5}$ is prime. Then from (1) we see that $2=(1+\sqrt{5})(m+n \sqrt{5})=$ $(m+5 n)+(m+n) \sqrt{5}$, for some $m, n \in \mathbf{Z}$. But then $m+5 n=2$ and $m+n=0$ from which we conclude that $m=-n$ and $4 n=2$, a contradiction. Therefore $1+\sqrt{5}$ is not prime (5).
2. Page 334, number 32: (20 points) The hypothesis is equivalent to every descending chain of ideals of D must terminate (stabilize).

Let $a \in D$ be a non-zero element. Then the descending chain of ideals

$$
R a \supseteq R a^{2} \supseteq R a^{3} \supseteq R a^{4} \supseteq
$$

must stabilize (5). Therefore $R a^{n}=R a^{n+1}$ for some $n \geq 1$ (5). Since $a^{n}=1 a^{n} \in R a^{n}=$ $R a^{n+1}$ there is an $r \in D$ such that $1 a^{n}=a^{n}=r a^{n+1}=r a a^{n}(5)$. Now $a^{n} \neq 0$ since $a \neq 0$. By cancellation $1=r a$. We have shown that $a \in D^{\times}(\mathbf{5})$. Therefore D is a field.
3. Page 335, number 36: (20 points) Set $D=\mathbf{Z}[\sqrt{2}]$. Since $x^{2}-2 \in \mathbf{Q}[x]$ is irreducible by the Eisenstein Criterion, all $a \in D$ have a unique representation $a=m+n \sqrt{2}$, where $m, n \in \mathbf{Z}$. Since $(1+\sqrt{2})(-1+\sqrt{2})=-1^{2}+2=1$ it follows that $1+\sqrt{2}$ has a multiplicative inverse in D which is $-1+\sqrt{2}(7)$.

We show that $1+\sqrt{2}$ has infinite order. Suppose that $(1+\sqrt{2})^{n}=k+\ell \sqrt{2}$, where $k, \ell>0$. This is the case when $n=1$. Then

$$
(1+\sqrt{2})^{n+1}=(1+\sqrt{2})(1+\sqrt{2})^{n}=(1+\sqrt{2})(k+\ell \sqrt{2})=(k+2 \ell)+(k+\ell) \sqrt{2}
$$

which shows that $(1+\sqrt{2})^{n+1}=k^{\prime}+\ell^{\prime} \sqrt{2}$, where $k^{\prime}, \ell^{\prime}>0(5)$. Thus $(1+\sqrt{2})^{n} \neq 1=$ $1+0 \sqrt{2}$ for $n>0$ by uniqueness of expression (5) since the coefficient of $\sqrt{2}$ on the left is never 0 . Thus $1+\sqrt{2}$ has infinite order (5).
4. Page 349, number 22: ($\mathbf{2 0}$ points) Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. By Exercise 4 every $v \in V$ has a unique expansion $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$, where $a_{1}, \ldots, a_{n} \in \mathbf{Z}_{p}$ (5). Therefore there is a bijection from V to the set $\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{1}, \ldots, a_{n} \in \mathbf{Z}_{p}\right\}$ given by

$$
\begin{equation*}
a_{1} v_{1}+\cdots a_{n} v_{n} \mapsto\left(a_{1}, \ldots, a_{n}\right) . \tag{5}
\end{equation*}
$$

The latter has

$$
\begin{equation*}
\underbrace{p \cdot \cdots \cdot p}_{n-\text { factors }}=p^{n} \tag{5}
\end{equation*}
$$

elements. We have shown $|V|=p^{n}$ (5).
5. Page 349, number 24: ($\mathbf{2 0}$ points) We first show that $U \cap W$ is a subspace of V. Since U, W are additive subgroups of V it follows that $U \cap W$ is an additive subgroup of V from group theory (5). Let $a \in F$ and $v \in U \cap W$. Then $v \in U, W$. As these are subspaces of V we conclude $r v \in U, W(5)$. Therefore $r v \in U \cap W$. We have shown that $U \cap W$ is a subspace of V.

Next we show that $U+W$ is a subspace of V. Since V ia an additive abelian group, all subgroups of V are normal. It follows that $U+W$ is an additive subgroup of V from group theory (5). Let $v \in U+W$ and $r \in F$. Then $v=u+w$ for some $u \in U$ and $w \in W$. Since U, W are subspaces of V it follows that $r u \in U$ and $r w \in W$ (5). Therefore $r(u+w)=r u+r w \in U+W$. We have shown that $U+W$ is a subspace of V.

