1. Page 349, number 30: (20 points) Let $w \in W$ (5). Then $T(v)=w$ for some $v \in V$ since T is onto (5). Since $\left\{v_{1}, \ldots, v_{n}\right\}$ spans V there are $a_{1}, \ldots, a_{n} \in F$ such that $v=a_{1} v_{1}+\cdots+a_{n} v_{n}(5)$. Since T is linear $w=T(v)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=$ $a T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)(5)$. Therefore $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ spans W.
2. Page 365 , number 2: ($\mathbf{2 0}$ points) First note $\mathbf{Q}(\sqrt{2}, \sqrt{3})$ is the smallest subfield of \mathbf{R} which contains $\mathbf{Q} \cup\{\sqrt{2}, \sqrt{3}\}$, more informally which contains $\mathbf{Q}, \sqrt{2}$, and $\sqrt{3}$. Likewise $\mathbf{Q}(\sqrt{2}+\sqrt{3})$ is the smallest subfield of \mathbf{R} which contains \mathbf{Q} and $\sqrt{2}+\sqrt{3}$. To show $\mathbf{Q}(\sqrt{2}+\sqrt{3})=\mathbf{Q}(\sqrt{2}, \sqrt{3})$ we show both are contained in each other.

Since $\sqrt{2}, \sqrt{3} \in \mathbf{Q}(\sqrt{2}, \sqrt{3}), \sqrt{2}+\sqrt{3} \in \mathbf{Q}(\sqrt{2}, \sqrt{3})$ and consequently $\mathbf{Q}(\sqrt{2}+\sqrt{3}) \subseteq$ $\mathbf{Q}(\sqrt{2}, \sqrt{3})(5)$.

Now

$$
\frac{1}{\sqrt{2}+\sqrt{3}}=\left(\frac{1}{\sqrt{2}+\sqrt{3}}\right)\left(\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right)=\frac{\sqrt{2}-\sqrt{3}}{2-3}=\sqrt{3}-\sqrt{2} .
$$

Since $(\sqrt{2}+\sqrt{3})^{-1} \in \mathbf{Q}(\sqrt{2}+\sqrt{3}), \sqrt{3}-\sqrt{2}, \sqrt{3}+\sqrt{2} \in \mathbf{Q}(\sqrt{2}+\sqrt{3})$ which means

$$
\begin{equation*}
\sqrt{3}=\frac{1}{2}((\sqrt{3}-\sqrt{2})+(\sqrt{3}+\sqrt{2})) \in \mathbf{Q}(\sqrt{2}+\sqrt{3}) \tag{5}
\end{equation*}
$$

and thus $\sqrt{2}=(\sqrt{3}+\sqrt{2})-\sqrt{3} \in \mathbf{Q}(\sqrt{2}+\sqrt{3})$ also (5). Since $\sqrt{2}, \sqrt{3} \in \mathbf{Q}(\sqrt{2}+\sqrt{3})$, $\mathbf{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbf{Q}(\sqrt{2}+\sqrt{3})(5)$.
Comment: Noting that

$$
\begin{aligned}
(\sqrt{2}+\sqrt{3})^{3} & =\sqrt{2}^{3}+3 \sqrt{2}^{2} \sqrt{3}+3 \sqrt{2} \sqrt{3}^{2}+\sqrt{3}^{3} \\
& =2 \sqrt{2}+6 \sqrt{3}+9 \sqrt{2}+3 \sqrt{3} \\
& =11 \sqrt{2}+9 \sqrt{3}
\end{aligned}
$$

one can also show that $\sqrt{2}, \sqrt{3} \in \mathbf{Q}(\sqrt{2}+\sqrt{3})$.
3. Page 365, number 4: (20 points) Suppose $\omega \in \mathbf{C}$ satisfies $\omega^{4}=-1$. Then ω is a root of $x^{4}+1$. Let $\imath=\sqrt{-1}$. Since $\left(\imath^{\ell}\right)^{4}=\left(\imath^{4}\right)^{\ell}=1^{\ell}=1$ for all $\ell \in \mathbf{Z},\left(\imath^{\ell} \omega\right)^{4}=\left(\imath^{\ell}\right)^{4} \omega^{4}=$ $1(-1)=-1$. Thus $\omega, \imath \omega, \imath^{2} \omega, \imath^{3} \omega$ are 4 distinct roots of $x^{4}+1$. Therefore

$$
x^{4}+1=(x-\omega)(x-\imath \omega)\left(x-\imath^{2} \omega\right)\left(x-\imath^{3} \omega\right) .
$$

Thus a splitting field of $x^{4}+1$ over \mathbf{Q} is $F=\mathbf{Q}\left(\omega, \imath \omega, \imath^{2} \omega, \imath^{3} \omega\right)$. Since $\omega^{4}=-1, \omega^{2}= \pm \imath$. Therefore $F=\mathbf{Q}(\omega)$. We may take $\omega=\sqrt{2}$.
Comment: Note that $\omega^{8}=\left(\omega^{4}\right)^{2}=(-1)^{2}=1$. We may take

$$
\omega=e^{2 \pi \imath / 8}=\cos (2 \pi / 8)+\imath \sin (2 \pi / 8)=\frac{1}{\sqrt{2}}(1+\imath) .
$$

Show that the square of $\frac{1}{\sqrt{2}}(1+\imath)$ is \imath.
4. Page 366, number 12: ($\mathbf{2 0}$ points) This was a challenge. We use the fact that π is transcendental over \mathbf{Q}, that is if $f(x) \in \mathbf{Q}[x]$ is not zero then $f(\pi) \neq 0$. Elements of $F=\mathbf{Q}\left(\pi^{3}\right)$ are quotients $f\left(\pi^{3}\right) / g\left(\pi^{3}\right)$, where $f(x), g(x) \in \mathbf{Q}[x]$.

Note that π is a root of $x^{3}-\pi^{3} \in F[x]$. Thus $\left\{1, \pi, \pi^{2}\right\}$ spans $F(\pi)$ as a vector space over F (15).

To show that $\left\{1, \pi, \pi^{2}\right\}$ is independent over F, observe by clearing denominators that a non-trivial dependence relation yields an expression

$$
\begin{equation*}
f_{0}\left(\pi^{3}\right)+f_{1}\left(\pi^{3}\right) \pi+f_{2}\left(\pi^{3}\right) \pi^{2}=0 \tag{1}
\end{equation*}
$$

for some $f_{0}(x), f_{1}(x), f_{2}(x) \in \mathbf{Q}[x]$, not all of which are zero. Since $f_{i}\left(x^{3}\right) x^{i}$ is in the span of $\left\{x^{3 \ell+i} \mid \ell \geq 0\right\}$ it follows that

$$
h(x)=f_{0}\left(x^{3}\right)+f_{1}\left(x^{3}\right) x+f_{2}\left(x^{3}\right) x^{2} \neq 0 .
$$

But $h(\pi)=0$ by (??), a contradiction. Therefore $\left\{1, \pi, \pi^{2}\right\}$ is linearly independent over F. We have shown that $\left\{1, \pi, \pi^{2}\right\}$ is a basis for $F(\pi)$ over $F(5)$.
5. Page 366, number 26: (20 points) $x^{8}-x=x(x-1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)$. The cubics are irreducible over \mathbf{Z}_{2} since they have roots in \mathbf{Z}_{2}.

