MATH 431 Written Homework 5 Solution Radford 04/09/2009

1. Page 349, number 30: (20 points) Let $w \in W$ (5). Then T(v) = w for some $v \in V$ since T is onto (5). Since $\{v_1, \ldots, v_n\}$ spans V there are $a_1, \ldots, a_n \in F$ such that $v = a_1v_1 + \cdots + a_nv_n$ (5). Since T is linear $w = T(v) = T(a_1v_1 + \cdots + a_nv_n) = aT(v_1) + \cdots + a_nT(v_n)$ (5). Therefore $\{T(v_1), \ldots, T(v_n)\}$ spans W.

2. Page 365, number 2: (20 points) First note $\mathbf{Q}(\sqrt{2},\sqrt{3})$ is the smallest subfield of \mathbf{R} which contains $\mathbf{Q} \cup \{\sqrt{2},\sqrt{3}\}$, more informally which contains $\mathbf{Q},\sqrt{2}$, and $\sqrt{3}$. Likewise $\mathbf{Q}(\sqrt{2}+\sqrt{3})$ is the smallest subfield of \mathbf{R} which contains \mathbf{Q} and $\sqrt{2}+\sqrt{3}$. To show $\mathbf{Q}(\sqrt{2}+\sqrt{3}) = \mathbf{Q}(\sqrt{2},\sqrt{3})$ we show both are contained in each other.

Since $\sqrt{2}, \sqrt{3} \in \mathbf{Q}(\sqrt{2}, \sqrt{3}), \sqrt{2} + \sqrt{3} \in \mathbf{Q}(\sqrt{2}, \sqrt{3})$ and consequently $\mathbf{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbf{Q}(\sqrt{2}, \sqrt{3})$ (5).

Now

$$\frac{1}{\sqrt{2}+\sqrt{3}} = \left(\frac{1}{\sqrt{2}+\sqrt{3}}\right) \left(\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right) = \frac{\sqrt{2}-\sqrt{3}}{2-3} = \sqrt{3}-\sqrt{2}$$

Since $(\sqrt{2} + \sqrt{3})^{-1} \in \mathbf{Q}(\sqrt{2} + \sqrt{3}), \sqrt{3} - \sqrt{2}, \sqrt{3} + \sqrt{2} \in \mathbf{Q}(\sqrt{2} + \sqrt{3})$ which means

$$\sqrt{3} = \frac{1}{2}((\sqrt{3} - \sqrt{2}) + (\sqrt{3} + \sqrt{2})) \in \mathbf{Q}(\sqrt{2} + \sqrt{3})$$
 (5)

and thus $\sqrt{2} = (\sqrt{3} + \sqrt{2}) - \sqrt{3} \in \mathbf{Q}(\sqrt{2} + \sqrt{3})$ also (5). Since $\sqrt{2}, \sqrt{3} \in \mathbf{Q}(\sqrt{2} + \sqrt{3})$, $\mathbf{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbf{Q}(\sqrt{2} + \sqrt{3})$ (5).

Comment: Noting that

$$(\sqrt{2} + \sqrt{3})^3 = \sqrt{2}^3 + 3\sqrt{2}^2\sqrt{3} + 3\sqrt{2}\sqrt{3}^2 + \sqrt{3}^3$$

= $2\sqrt{2} + 6\sqrt{3} + 9\sqrt{2} + 3\sqrt{3}$
= $11\sqrt{2} + 9\sqrt{3}$

one can also show that $\sqrt{2}, \sqrt{3} \in \mathbf{Q}(\sqrt{2} + \sqrt{3})$.

3. Page 365, number 4: (20 points) Suppose $\omega \in \mathbb{C}$ satisfies $\omega^4 = -1$. Then ω is a root of $x^4 + 1$. Let $i = \sqrt{-1}$. Since $(i^\ell)^4 = (i^4)^\ell = 1^\ell = 1$ for all $\ell \in \mathbb{Z}$, $(i^\ell \omega)^4 = (i^\ell)^4 \omega^4 = 1(-1) = -1$. Thus $\omega, i\omega, i^2\omega, i^3\omega$ are 4 distinct roots of $x^4 + 1$. Therefore

$$x^4 + 1 = (x - \omega)(x - \imath\omega)(x - \imath^2\omega)(x - \imath^3\omega).$$

Thus a splitting field of $x^4 + 1$ over \mathbf{Q} is $F = \mathbf{Q}(\omega, \imath \omega, \imath^2 \omega, \imath^3 \omega)$. Since $\omega^4 = -1, \, \omega^2 = \pm \imath$. Therefore $F = \mathbf{Q}(\omega)$. We may take $\omega = \sqrt{\imath}$.

Comment: Note that $\omega^8 = (\omega^4)^2 = (-1)^2 = 1$. We may take

$$\omega = e^{2\pi i/8} = \cos(2\pi/8) + i\sin(2\pi/8) = \frac{1}{\sqrt{2}}(1+i).$$

Show that the square of $\frac{1}{\sqrt{2}}(1+i)$ is *i*.

4. Page 366, number 12: (20 points) This was a challenge. We use the fact that π is transcendental over \mathbf{Q} , that is if $f(x) \in \mathbf{Q}[x]$ is not zero then $f(\pi) \neq 0$. Elements of $F = \mathbf{Q}(\pi^3)$ are quotients $f(\pi^3)/g(\pi^3)$, where $f(x), g(x) \in \mathbf{Q}[x]$. Note that π is a root of $x^3 - \pi^3 \in F[x]$. Thus $\{1, \pi, \pi^2\}$ spans $F(\pi)$ as a vector space

Note that π is a root of $x^3 - \pi^3 \in F[x]$. Thus $\{1, \pi, \pi^2\}$ spans $F(\pi)$ as a vector space over F (15).

To show that $\{1, \pi, \pi^2\}$ is independent over F, observe by clearing denominators that a non-trivial dependence relation yields an expression

$$f_0(\pi^3) + f_1(\pi^3)\pi + f_2(\pi^3)\pi^2 = 0 \tag{1}$$

for some $f_0(x), f_1(x), f_2(x) \in \mathbf{Q}[x]$, not all of which are zero. Since $f_i(x^3)x^i$ is in the span of $\{x^{3\ell+i} | \ell \geq 0\}$ it follows that

$$h(x) = f_0(x^3) + f_1(x^3)x + f_2(x^3)x^2 \neq 0.$$

But $h(\pi) = 0$ by (??), a contradiction. Therefore $\{1, \pi, \pi^2\}$ is linearly independent over F. We have shown that $\{1, \pi, \pi^2\}$ is a basis for $F(\pi)$ over F (5).

5. Page 366, number 26: (20 points) $x^8 - x = x(x-1)(x^3 + x^2 + 1)(x^3 + x + 1)$. The cubics are irreducible over \mathbb{Z}_2 since they have roots in \mathbb{Z}_2 .