
MATH 431 Written Homework 6 Solution Radford 04/13/2009

1. Page 377, number 6: (20 points) Regard g(x) ∈ F [x] as a polynomial with coefficients
in F [a] and let b be a zero of g(x) belonging to some field extension of F [a]. We need
only show that Deg g(x) = [F [a][b]] : F [a]] (4).

Now m = [F [a][b] : F [a]] ≤ Deg g(x) since g(b) = 0 (3). By Theorem 21.5 note
[F [a][b] : F ] = [F [a][b] : F [a]][F [a] : F ] = mDeg f(x) (3). On the other hand, from
the relations F ⊆ F [a], F [b] ⊆ F [a, b] = F [a][b] we deduce that Deg f(x) = [F [a] : F ]
and Deg g(x) = [F [b] : F ] divide [F [a][b] : F ] = mDeg f(x) by the same theorem (3).
Since Deg f(x), Deg g(x) are relatively prime Deg g(x)Deg f(x) divides mDeg f(x) (3).
Therefore Deg g(x) = m = [F [a][b] : F [a]] as m ≤ Deg g(x) (4).

2. Page 378, number 8: (20 points) First of all Q[
√

15] ⊆ Q[
√

3 +
√

5] since (
√

3 +√
5)2 = 3 + 2

√
15 + 5 = 8 + 2

√
15 implies

√
15 ∈ Q[

√
3 +

√
5] (3).

We show that Q[
√

3 +
√

5] = Q[
√

3,
√

5]. The left hand side of the equation is
contained in the right. The right hand side is contained in the left as from the calculation
(
√

5+
√

3)(
√

5−√3) = 5− 2 = 2 it follows that
√

5+
√

3,
√

5−√3 6= 0, (
√

5+
√

3)−1 =
(1/2)(

√
5 − √3), and thus

√
5,
√

3 ∈ Q[
√

3 +
√

5] as these elements are rational linear
combinations of

√
5 +

√
3,
√

5−√3 (3).
Let a =

√
3 +

√
5. We have shown that a2 − (8 + 2

√
15) = 0. Thus a is a root of

p(x) = x2− (8 + 2
√

15) ∈ Q[
√

15]. Therefore [Q[
√

3 +
√

5] : Q[
√

15]] ≤ 2. We will show
that this dimension is 2 which means a has degree 2 over Q[

√
15] and thus {1,√3+

√
5}

is a basis for Q[
√

3 +
√

5] over Q (3).
Suppose [Q[

√
3 +

√
5] : Q[

√
15]] = 1. Then Q[

√
3 +

√
5] = Q[

√
15] = Q[

√
3,
√

5].
Now x2 − 15, x2 − 3, x2 − 5 ∈ Q[x] are irreducible by the Eisenstein Condition with
p = 3, 3, 5 respectively. In particular 3, 5, 15 have no rational square roots and {1,√15}
is a basis for Q[

√
15] over Q. Thus

√
5 = r1 + s

√
15 for some r, s ∈ Q. Squaring both

sides of this equation we have 5 = (r2 + 15s2)1 + 2rs
√

15. Therefore 5 = r2 + 15s2 and
2rs = 0. Exactly one of r and s is zero. If r = 0 then 5 = s−2 and if s = 0 then 5 = r2.
In both cases we have a contradiction. We have shown [Q[

√
3 +

√
5] : Q[

√
15]] = 2 (3).

For the second part observe that Q[21/2, 21/3, 21/4] = Q[21/3, 21/4] since (21/4)2 = 21/2.
Now x3 − 2, x4 − 2 ∈ Q[x] are irreducible by the Eisenstein condition with p = 2. Thus
[Q[21/3, 21/4] : Q] = 12 (2) by our solution to Problem 1 above; [Q[21/3, 21/4] : Q[21/3]] =
4 and Q[21/3, 21/4] has basis {1, 21/4, 22/4, 23/4} over Q[21/3] (2); [Q[21/3] : Q] = 3 and
Q[21/3] has basis {1, 21/3, 22/3} over Q (2). A basis for Q[21/3, 21/4] over Q is obtained
by multiplying these two bases (2).

3. Page 378, number 14: (20 points) Let a =
√−3 +

√
2 =

√
2 +

√
3 ı and F = Q[a].

By the calculation (
√

2 +
√

3 ı)(
√

2 − √3 ı) = (
√

2)2 − (
√

3 ı)2 = 5 we deduce neither
factor is zero and a−1 = (1/5)(

√
2 −√3 ı). Therefore

√
2 +

√
3 ı,

√
2 −√3 ı ∈ F which

means
√

2,
√

3 ı ∈ F and F = Q[
√

2,
√

3 ı] (4).

1



Now Q[
√

2 : Q] = 2 as
√

2 is a root of x2 − 2 ∈ Q[x] and is irreducible by the
Eisenstein Criterion with p = 2 (4). Since

√
3 ı 6∈ Q[

√
2] and (

√
3 ı)2 = −3 ∈ Q[

√
2] it

follows that [Q[
√

2][
√

3 ı] : Q[
√

2]] = 2 (4). Therefore [F : Q] = 4 by Theorem 21.5 (4).
Therefore the minimal polynomial of a over Q has degree 4; it is the only monic

polynomial of degree 4 which has a as a root. a2 = (
√

2 +
√

3 ı)2 = 2 + 2
√

6 ı − 3, so
a2 + 1 = 2

√
6 ı. Hence (a2 + 1)2 = −24 so a4 + 2a2 + 25 = 0. The minimal polynomial

of a over Q is x4 + 2x2 + 25 (4).

4. Page 378, number 18: (20 points) We need to assume E ⊆ C for this problem. Since
[E : Q] = 2 there is an α ∈ E\Q. Choose any such α. Then E = Q[α] and α is a root
of a quadratic x2 + bx + c ∈ Q[x] (4). The completing the square calculation

0 = α2 + bα + c = (α + b/2)2 + (c− b2/4)

shows that β = α+b/2 is a root of x2−r ∈ Q[x], where r = b2/4−c (4). Note E = Q[β].

Write β2 = m/n where m,n ∈ Z and n > 0 (4). Since
√

m/n = (1/n)
√

mn,

E = Q[β] = Q[
√

m/n] = Q[
√

mn] (4). Write mn = `2d, where `, d ∈ Z and d is square

free. Since
√

mn = ±`
√

d we have E = Q[
√

mn] = Q[
√

d] as required (4).

5. Page 379, number 28: (20 points) Since a ∈ C is algebraic over Q, F = Q[a] is an
algebraic extension of Q (7). Write r = m/n where m,n ∈ Z and n > 0. Since a1/n is
a root of xn − a ∈ F [x], E = F [a1/n] is an algebraic extension of F (7). Therefore E is
an algebraic extension of Q by Theorem 21.7. Since ar = (a1/n)m ∈ E it follows that ar

is algebraic over Q (6).
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