1. Page 377, number 6: (20 points) Regard $g(x) \in F[x]$ as a polynomial with coefficients in $F[a]$ and let b be a zero of $g(x)$ belonging to some field extension of $F[a]$. We need only show that $\operatorname{Deg} g(x)=[F[a][b]]: F[a]]$ (4).

Now $m=[F[a][b]: F[a]] \leq \operatorname{Deg} g(x)$ since $g(b)=0(3)$. By Theorem 21.5 note $[F[a][b]: F]=[F[a][b]: F[a]][F[a]: F]=m \operatorname{Deg} f(x)(3)$. On the other hand, from the relations $F \subseteq F[a], F[b] \subseteq F[a, b]=F[a][b]$ we deduce that $\operatorname{Deg} f(x)=[F[a]: F]$ and $\operatorname{Deg} g(x)=[F[b]: F]$ divide $[F[a][b]: F]=m \operatorname{Deg} f(x)$ by the same theorem (3). Since $\operatorname{Deg} f(x), \operatorname{Deg} g(x)$ are relatively prime $\operatorname{Deg} g(x) \operatorname{Deg} f(x)$ divides $m \operatorname{Deg} f(x)(\mathbf{3})$. Therefore $\operatorname{Deg} g(x)=m=[F[a][b]: F[a]]$ as $m \leq \operatorname{Deg} g(x)$ (4).
2. Page 378, number 8: ($\mathbf{2 0}$ points) First of all $\mathbf{Q}[\sqrt{15}] \subseteq \mathbf{Q}[\sqrt{3}+\sqrt{5}]$ since $(\sqrt{3}+$ $\sqrt{5})^{2}=3+2 \sqrt{15}+5=8+2 \sqrt{15}$ implies $\sqrt{15} \in \mathbf{Q}[\sqrt{3}+\sqrt{5}](\mathbf{3})$.

We show that $\mathbf{Q}[\sqrt{3}+\sqrt{5}]=\mathbf{Q}[\sqrt{3}, \sqrt{5}]$. The left hand side of the equation is contained in the right. The right hand side is contained in the left as from the calculation $(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=5-2=2$ it follows that $\sqrt{5}+\sqrt{3}, \sqrt{5}-\sqrt{3} \neq 0,(\sqrt{5}+\sqrt{3})^{-1}=$ $(1 / 2)(\sqrt{5}-\sqrt{3})$, and thus $\sqrt{5}, \sqrt{3} \in \mathbf{Q}[\sqrt{3}+\sqrt{5}]$ as these elements are rational linear combinations of $\sqrt{5}+\sqrt{3}, \sqrt{5}-\sqrt{3}(3)$.

Let $a=\sqrt{3}+\sqrt{5}$. We have shown that $a^{2}-(8+2 \sqrt{15})=0$. Thus a is a root of $p(x)=x^{2}-(8+2 \sqrt{15}) \in \mathbf{Q}[\sqrt{15}]$. Therefore $[\mathbf{Q}[\sqrt{3}+\sqrt{5}]: \mathbf{Q}[\sqrt{15}]] \leq 2$. We will show that this dimension is 2 which means a has degree 2 over $\mathbf{Q}[\sqrt{15}]$ and thus $\{1, \sqrt{3}+\sqrt{5}\}$ is a basis for $\mathbf{Q}[\sqrt{3}+\sqrt{5}]$ over $\mathbf{Q}(\mathbf{3})$.

Suppose $[\mathbf{Q}[\sqrt{3}+\sqrt{5}]: \mathbf{Q}[\sqrt{15}]]=1$. Then $\mathbf{Q}[\sqrt{3}+\sqrt{5}]=\mathbf{Q}[\sqrt{15}]=\mathbf{Q}[\sqrt{3}, \sqrt{5}]$. Now $x^{2}-15, x^{2}-3, x^{2}-5 \in \mathbf{Q}[x]$ are irreducible by the Eisenstein Condition with $p=3,3,5$ respectively. In particular $3,5,15$ have no rational square roots and $\{1, \sqrt{15}\}$ is a basis for $\mathbf{Q}[\sqrt{15}]$ over \mathbf{Q}. Thus $\sqrt{5}=r 1+s \sqrt{15}$ for some $r, s \in \mathbf{Q}$. Squaring both sides of this equation we have $5=\left(r^{2}+15 s^{2}\right) 1+2 r s \sqrt{15}$. Therefore $5=r^{2}+15 s^{2}$ and $2 r s=0$. Exactly one of r and s is zero. If $r=0$ then $5=s^{-2}$ and if $s=0$ then $5=r^{2}$. In both cases we have a contradiction. We have shown $[\mathbf{Q}[\sqrt{3}+\sqrt{5}]: \mathbf{Q}[\sqrt{15}]]=2(\mathbf{3})$.

For the second part observe that $\mathbf{Q}\left[2^{1 / 2}, 2^{1 / 3}, 2^{1 / 4}\right]=\mathbf{Q}\left[2^{1 / 3}, 2^{1 / 4}\right]$ since $\left(2^{1 / 4}\right)^{2}=2^{1 / 2}$. Now $x^{3}-2, x^{4}-2 \in \mathbf{Q}[x]$ are irreducible by the Eisenstein condition with $p=2$. Thus $\left[\mathbf{Q}\left[2^{1 / 3}, 2^{1 / 4}\right]: \mathbf{Q}\right]=12(\mathbf{2})$ by our solution to Problem 1 above; $\left[\mathbf{Q}\left[2^{1 / 3}, 2^{1 / 4}\right]: \mathbf{Q}\left[2^{1 / 3}\right]\right]=$ 4 and $\mathbf{Q}\left[2^{1 / 3}, 2^{1 / 4}\right]$ has basis $\left\{1,2^{1 / 4}, 2^{2 / 4}, 2^{3 / 4}\right\}$ over $\mathbf{Q}\left[2^{1 / 3}\right](\mathbf{2}) ;\left[\mathbf{Q}\left[2^{1 / 3}\right]: \mathbf{Q}\right]=3$ and $\mathbf{Q}\left[2^{1 / 3}\right]$ has basis $\left\{1,2^{1 / 3}, 2^{2 / 3}\right\}$ over $\mathbf{Q}(\mathbf{2})$. A basis for $\mathbf{Q}\left[2^{1 / 3}, 2^{1 / 4}\right]$ over \mathbf{Q} is obtained by multiplying these two bases (2).
3. Page 378, number 14: ($\mathbf{2 0}$ points) Let $a=\sqrt{-3}+\sqrt{2}=\sqrt{2}+\sqrt{3} \imath$ and $F=\mathbf{Q}[a]$. By the calculation $(\sqrt{2}+\sqrt{3} \imath)(\sqrt{2}-\sqrt{3} \imath)=(\sqrt{2})^{2}-(\sqrt{3} \imath)^{2}=5$ we deduce neither factor is zero and $a^{-1}=(1 / 5)(\sqrt{2}-\sqrt{3} \imath)$. Therefore $\sqrt{2}+\sqrt{3} \imath, \sqrt{2}-\sqrt{3} \imath \in F$ which means $\sqrt{2}, \sqrt{3} \imath \in F$ and $F=\mathbf{Q}[\sqrt{2}, \sqrt{3} \imath]$ (4).

Now $\mathbf{Q}[\sqrt{2}: \mathbf{Q}]=2$ as $\sqrt{2}$ is a root of $x^{2}-2 \in \mathbf{Q}[x]$ and is irreducible by the Eisenstein Criterion with $p=2(\mathbf{4})$. Since $\sqrt{3} \imath \notin \mathbf{Q}[\sqrt{2}]$ and $(\sqrt{3} \imath)^{2}=-3 \in \mathbf{Q}[\sqrt{2}]$ it follows that $[\mathbf{Q}[\sqrt{2}][\sqrt{3} \imath]: \mathbf{Q}[\sqrt{2}]]=2(\mathbf{4})$. Therefore $[F: \mathbf{Q}]=4$ by Theorem 21.5 (4).

Therefore the minimal polynomial of a over \mathbf{Q} has degree 4 ; it is the only monic polynomial of degree 4 which has a as a root. $a^{2}=(\sqrt{2}+\sqrt{3} \imath)^{2}=2+2 \sqrt{6} \imath-3$, so $a^{2}+1=2 \sqrt{6} \imath$. Hence $\left(a^{2}+1\right)^{2}=-24$ so $a^{4}+2 a^{2}+25=0$. The minimal polynomial of a over \mathbf{Q} is $x^{4}+2 x^{2}+25$ (4).
4. Page 378, number 18: ($\mathbf{2 0}$ points) We need to assume $E \subseteq \mathbf{C}$ for this problem. Since $[E: \mathbf{Q}]=2$ there is an $\alpha \in E \backslash \mathbf{Q}$. Choose any such α. Then $E=\mathbf{Q}[\alpha]$ and α is a root of a quadratic $x^{2}+b x+c \in \mathbf{Q}[x]$ (4). The completing the square calculation

$$
0=\alpha^{2}+b \alpha+c=(\alpha+b / 2)^{2}+\left(c-b^{2} / 4\right)
$$

shows that $\beta=\alpha+b / 2$ is a root of $x^{2}-r \in \mathbf{Q}[x]$, where $r=b^{2} / 4-c(4)$. Note $E=\mathbf{Q}[\beta]$.
Write $\beta^{2}=m / n$ where $m, n \in \mathbf{Z}$ and $n>0$ (4). Since $\sqrt{m / n}=(1 / n) \sqrt{m n}$, $E=\mathbf{Q}[\beta]=\mathbf{Q}[\sqrt{m / n}]=\mathbf{Q}[\sqrt{m n}]$ (4). Write $m n=\ell^{2} d$, where $\ell, d \in \mathbf{Z}$ and d is square free. Since $\sqrt{m n}= \pm \ell \sqrt{d}$ we have $E=\mathbf{Q}[\sqrt{m n}]=\mathbf{Q}[\sqrt{d}]$ as required (4).
5. Page 379, number 28: ($\mathbf{2 0}$ points) Since $a \in \mathbf{C}$ is algebraic over $\mathbf{Q}, F=\mathbf{Q}[a]$ is an algebraic extension of $\mathbf{Q}(\mathbf{7})$. Write $r=m / n$ where $m, n \in \mathbf{Z}$ and $n>0$. Since $a^{1 / n}$ is a root of $x^{n}-a \in F[x], E=F\left[a^{1 / n}\right]$ is an algebraic extension of $F(\mathbf{7})$. Therefore E is an algebraic extension of \mathbf{Q} by Theorem 21.7. Since $a^{r}=\left(a^{1 / n}\right)^{m} \in E$ it follows that a^{r} is algebraic over $\mathbf{Q}(\mathbf{6})$.

