1. Page 377, number 6: (20 points) Regard $g(x) \in F[x]$ as a polynomial with coefficients in F[a] and let b be a zero of g(x) belonging to some field extension of F[a]. We need only show that Deg g(x) = [F[a][b]] : F[a]] (4).

Now $m = [F[a][b] : F[a]] \leq \text{Deg } g(x)$ since g(b) = 0 (3). By Theorem 21.5 note [F[a][b] : F] = [F[a][b] : F[a]][F[a] : F] = mDeg f(x) (3). On the other hand, from the relations $F \subseteq F[a], F[b] \subseteq F[a, b] = F[a][b]$ we deduce that Deg f(x) = [F[a] : F] and Deg g(x) = [F[b] : F] divide [F[a][b] : F] = mDeg f(x) by the same theorem (3). Since Deg f(x), Deg g(x) are relatively prime Deg g(x)Deg f(x) divides mDeg f(x) (3). Therefore Deg g(x) = m = [F[a][b] : F[a]] as $m \leq \text{Deg } g(x)$ (4).

2. Page 378, number 8: (20 points) First of all $\mathbf{Q}[\sqrt{15}] \subseteq \mathbf{Q}[\sqrt{3} + \sqrt{5}]$ since $(\sqrt{3} + \sqrt{5})^2 = 3 + 2\sqrt{15} + 5 = 8 + 2\sqrt{15}$ implies $\sqrt{15} \in \mathbf{Q}[\sqrt{3} + \sqrt{5}]$ (3).

We show that $\mathbf{Q}[\sqrt{3} + \sqrt{5}] = \mathbf{Q}[\sqrt{3}, \sqrt{5}]$. The left hand side of the equation is contained in the right. The right hand side is contained in the left as from the calculation $(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3}) = 5 - 2 = 2$ it follows that $\sqrt{5} + \sqrt{3}, \sqrt{5} - \sqrt{3} \neq 0, (\sqrt{5} + \sqrt{3})^{-1} = (1/2)(\sqrt{5} - \sqrt{3})$, and thus $\sqrt{5}, \sqrt{3} \in \mathbf{Q}[\sqrt{3} + \sqrt{5}]$ as these elements are rational linear combinations of $\sqrt{5} + \sqrt{3}, \sqrt{5} - \sqrt{3}$ (3).

Let $a = \sqrt{3} + \sqrt{5}$. We have shown that $a^2 - (8 + 2\sqrt{15}) = 0$. Thus *a* is a root of $p(x) = x^2 - (8 + 2\sqrt{15}) \in \mathbb{Q}[\sqrt{15}]$. Therefore $[\mathbb{Q}[\sqrt{3} + \sqrt{5}] : \mathbb{Q}[\sqrt{15}]] \leq 2$. We will show that this dimension is 2 which means *a* has degree 2 over $\mathbb{Q}[\sqrt{15}]$ and thus $\{1, \sqrt{3} + \sqrt{5}\}$ is a basis for $\mathbb{Q}[\sqrt{3} + \sqrt{5}]$ over $\mathbb{Q}(3)$.

Suppose $[\mathbf{Q}[\sqrt{3} + \sqrt{5}] : \mathbf{Q}[\sqrt{15}]] = 1$. Then $\mathbf{Q}[\sqrt{3} + \sqrt{5}] = \mathbf{Q}[\sqrt{15}] = \mathbf{Q}[\sqrt{3}, \sqrt{5}]$. Now $x^2 - 15, x^2 - 3, x^2 - 5 \in \mathbf{Q}[x]$ are irreducible by the Eisenstein Condition with p = 3, 3, 5 respectively. In particular 3, 5, 15 have no rational square roots and $\{1, \sqrt{15}\}$ is a basis for $\mathbf{Q}[\sqrt{15}]$ over \mathbf{Q} . Thus $\sqrt{5} = r1 + s\sqrt{15}$ for some $r, s \in \mathbf{Q}$. Squaring both sides of this equation we have $5 = (r^2 + 15s^2)1 + 2rs\sqrt{15}$. Therefore $5 = r^2 + 15s^2$ and 2rs = 0. Exactly one of r and s is zero. If r = 0 then $5 = s^{-2}$ and if s = 0 then $5 = r^2$. In both cases we have a contradiction. We have shown $[\mathbf{Q}[\sqrt{3} + \sqrt{5}] : \mathbf{Q}[\sqrt{15}]] = 2$ (3).

For the second part observe that $\mathbf{Q}[2^{1/2}, 2^{1/3}, 2^{1/4}] = \mathbf{Q}[2^{1/3}, 2^{1/4}]$ since $(2^{1/4})^2 = 2^{1/2}$. Now $x^3 - 2, x^4 - 2 \in \mathbf{Q}[x]$ are irreducible by the Eisenstein condition with p = 2. Thus $[\mathbf{Q}[2^{1/3}, 2^{1/4}] : \mathbf{Q}] = 12$ (2) by our solution to Problem 1 above; $[\mathbf{Q}[2^{1/3}, 2^{1/4}] : \mathbf{Q}[2^{1/3}]] = 4$ and $\mathbf{Q}[2^{1/3}, 2^{1/4}]$ has basis $\{1, 2^{1/4}, 2^{2/4}, 2^{3/4}\}$ over $\mathbf{Q}[2^{1/3}]$ (2); $[\mathbf{Q}[2^{1/3}] : \mathbf{Q}] = 3$ and $\mathbf{Q}[2^{1/3}]$ has basis $\{1, 2^{1/3}, 2^{2/3}\}$ over \mathbf{Q} (2). A basis for $\mathbf{Q}[2^{1/3}, 2^{1/4}]$ over \mathbf{Q} is obtained by multiplying these two bases (2).

3. Page 378, number 14: (20 points) Let $a = \sqrt{-3} + \sqrt{2} = \sqrt{2} + \sqrt{3}i$ and $F = \mathbf{Q}[a]$. By the calculation $(\sqrt{2} + \sqrt{3}i)(\sqrt{2} - \sqrt{3}i) = (\sqrt{2})^2 - (\sqrt{3}i)^2 = 5$ we deduce neither factor is zero and $a^{-1} = (1/5)(\sqrt{2} - \sqrt{3}i)$. Therefore $\sqrt{2} + \sqrt{3}i, \sqrt{2} - \sqrt{3}i \in F$ which means $\sqrt{2}, \sqrt{3}i \in F$ and $F = \mathbf{Q}[\sqrt{2}, \sqrt{3}i]$ (4). Now $\mathbf{Q}[\sqrt{2} : \mathbf{Q}] = 2$ as $\sqrt{2}$ is a root of $x^2 - 2 \in \mathbf{Q}[x]$ and is irreducible by the Eisenstein Criterion with p = 2 (4). Since $\sqrt{3} i \notin \mathbf{Q}[\sqrt{2}]$ and $(\sqrt{3} i)^2 = -3 \in \mathbf{Q}[\sqrt{2}]$ it follows that $[\mathbf{Q}[\sqrt{2}][\sqrt{3}i] : \mathbf{Q}[\sqrt{2}]] = 2$ (4). Therefore $[F : \mathbf{Q}] = 4$ by Theorem 21.5 (4).

Therefore the minimal polynomial of a over \mathbf{Q} has degree 4; it is the only monic polynomial of degree 4 which has a as a root. $a^2 = (\sqrt{2} + \sqrt{3}i)^2 = 2 + 2\sqrt{6}i - 3$, so $a^2 + 1 = 2\sqrt{6}i$. Hence $(a^2 + 1)^2 = -24$ so $a^4 + 2a^2 + 25 = 0$. The minimal polynomial of a over \mathbf{Q} is $x^4 + 2x^2 + 25$ (4).

4. Page 378, number 18: (20 points) We need to assume $E \subseteq \mathbf{C}$ for this problem. Since $[E : \mathbf{Q}] = 2$ there is an $\alpha \in E \setminus \mathbf{Q}$. Choose any such α . Then $E = \mathbf{Q}[\alpha]$ and α is a root of a quadratic $x^2 + bx + c \in \mathbf{Q}[x]$ (4). The completing the square calculation

$$0 = \alpha^2 + b\alpha + c = (\alpha + b/2)^2 + (c - b^2/4)$$

shows that $\beta = \alpha + b/2$ is a root of $x^2 - r \in \mathbf{Q}[x]$, where $r = b^2/4 - c$ (4). Note $E = \mathbf{Q}[\beta]$.

Write $\beta^2 = m/n$ where $m, n \in \mathbf{Z}$ and n > 0 (4). Since $\sqrt{m/n} = (1/n)\sqrt{mn}$, $E = \mathbf{Q}[\beta] = \mathbf{Q}[\sqrt{m/n}] = \mathbf{Q}[\sqrt{mn}]$ (4). Write $mn = \ell^2 d$, where $\ell, d \in \mathbf{Z}$ and d is square free. Since $\sqrt{mn} = \pm \ell \sqrt{d}$ we have $E = \mathbf{Q}[\sqrt{mn}] = \mathbf{Q}[\sqrt{d}]$ as required (4).

5. Page 379, number 28: (20 points) Since $a \in \mathbf{C}$ is algebraic over \mathbf{Q} , $F = \mathbf{Q}[a]$ is an algebraic extension of \mathbf{Q} (7). Write r = m/n where $m, n \in \mathbf{Z}$ and n > 0. Since $a^{1/n}$ is a root of $x^n - a \in F[x]$, $E = F[a^{1/n}]$ is an algebraic extension of F (7). Therefore E is an algebraic extension of \mathbf{Q} by Theorem 21.7. Since $a^r = (a^{1/n})^m \in E$ it follows that a^r is algebraic over \mathbf{Q} (6).