1. Page 388, number 20: (20 points) $g(x) \in \mathbf{Z}_{p}[x]$ is irreducible and divides $x^{p^{n}}-x$ in $\mathbf{Z}_{p}[x]$. Let F be a splitting field of $x^{p^{n}}-x$ over \mathbf{Z}_{p}. Then $|F|=p^{n}$ and $x^{p^{n}}-x=$ $\prod_{a \in F}(x-a)$; see the proof of Theorem 22.1 (4). Since $g(x)$ divides $x^{p^{n}}-x$ in $\mathbf{Z}_{p}[x]$ it follows that $g(a)=0$ for some $a \in F(\mathbf{4})$. Now $\operatorname{Deg} g(x)=\left[\mathbf{Z}_{p}[a]: \mathbf{Z}_{p}\right]$ by work in class (4). From the sequence of field extensions $\mathbf{Z}_{p} \subseteq \mathbf{Z}_{p}[a] \subseteq F$ we see that $\left[\mathbf{Z}_{p}[a]: \mathbf{Z}_{p}\right]$ divides $\left[F: \mathbf{Z}_{p}\right]$ by Theorem 21.5 (4). Thus $\operatorname{Deg} g(x)$ divides $\left[F: \mathbf{Z}_{p}\right]=n$ (4).
2. Page 389, number 24: (20 points) Write $p(x)=\alpha p_{1}(x) \cdots p_{r}(x)$, where $p_{i}(x) \in \mathbf{Z}_{p}[x]$ is monic irreducible for all $1 \leq i \leq r$ and $\alpha \in \mathbf{Z}_{p}$ is not zero (3). Then $p_{1}(x), \ldots, p_{r}(x)$ are distinct since $p(x)$ has no multiple zeros in one (hence all) of its splitting fields (3).

Let F be a splitting field of $p(x)$ over $\mathbf{Z}_{p}(\mathbf{3})$. Then F is finite-dimensional vector space over \mathbf{Z}_{p}. Thus $|F|=p^{n}$ or some positive integer n and $x^{p^{n}}-x=\prod_{a \in F}(x-a)$ (3).

Let $1 \leq i \leq r$. Since $p(x)$ splits into linear factors over F it follows that $p_{i}(a)=0$ for some $a \in F$ by the corollary to Theorem 18.3 and Corollary 2 to Theorem 16.2 (2). Since a is a root of $x^{p^{n}}-x$ also $(\mathbf{2}), p_{i}(x)=\operatorname{irr}(a, \mathbf{Z})$ and thus divides $x^{p^{n}}-x$ in $\mathbf{Z}_{p}[x]$ by Theorem $21.3(\mathbf{2})$. Since $p_{1}(x), \ldots, p_{r}(x)$ are relatively prime and each divides $x^{p^{n}}-x$ in $\mathbf{Z}_{p}[x]$ the product $p(x)$ does as well (2).
3. Page 389, number 30: ($\mathbf{2 0}$ points) Suppose that F is a finite field and set $p(x)=$ $\prod_{a \in F}(x-a)+1$. Then $p(a)=1$ for all $a \in F$ and $p(x)$ has positive degree. Therefore F is not algebraically closed.
4. Page 395, number 10: ($\mathbf{2 0}$ points) Suppose that 40° is constructible. Then $a=$ $\cos 40^{\circ}$ is a constructible number. Now

$$
-\frac{1}{2}=\cos 120^{\circ}=\cos 3 \cdot 40^{\circ}=4 \cos ^{3} 40^{\circ}-3 \cos 40^{\circ}=4 a^{3}-3 a
$$

implies that a is a root of $p(x)=8 x^{3}-6 x+1 \in \mathbf{Q}[x]$ (8).
We show that $p(x) \in \mathbf{Q}[x]$ is irreducible. Suppose to the contrary that $p(x) \in \mathbf{Q}[x]$ is reducible. Then $p(r)=0$ for some $r \in \mathbf{Q}$ by Theorem 17.1. Set $s=2 r+1$. Then $s \in \mathbf{Q}$ and $r=\frac{1}{2}(s-1)$. Therefore
$0=8 r^{3}-6 r+1=(s-1)^{3}-3(s-1)+1=\left(s^{3}-3 s^{2}+3 s-1\right)+(-3 s+3)+1=s^{3}-3 s^{2}+3$
which implies that $x^{3}-3 x^{2}+3$ has a root in $\mathbf{Q}(\mathbf{7})$. But this polynomial is irreducible in $\mathbf{Q}[x]$ by the Eisenstein Criterion with $p=3$, contradiction. We have shown that $p(x) \in \mathbf{Q}[x]$ is irreducible; thus

$$
\operatorname{irr}(a, \mathbf{Q})=x^{3}-\frac{3}{4} x+\frac{1}{8}
$$

which means $\operatorname{Deg} a=3 \neq 2^{\ell}$ for all $\ell \geq 0$. Therefore a is not constructible number (7).
5. Page 396, number 20: ($\mathbf{2 0}$ points) Suppose that the cube could be quadrupled. Then there an constructible number a which satisfies $a^{3}=4$, or equivalently is a root of $x^{3}-4$. We will show that $\operatorname{Deg} a=3$ and thus is not constructible, by showing that $x^{3}-4 \in \mathbf{Q}[x]$ is irreducible.

Suppose that $x^{3}-4 \in \mathbf{Q}[x]$ is reducible. Then the polynomial has a root $r \in \mathbf{Q}$ (4). Write $r=n / m$, where $n, m \in \mathbf{Z}$ and are relatively prime. Then $r^{3}=4$, or equivalently $n^{3}=4 m^{3}$. Therefore $2 \mid n^{3}$; hence $2 \mid n$ since 2 is a prime integer (4). Thus $n=2 \ell$ for some positive integer ℓ. Therefore $8 \ell^{3}=4 m^{3}$, or $2 \ell^{3}=m^{3}$. Thus $2 \mid m^{3}$, and hence $2 \mid m$, since 2 is prime (4). This contradicts the fact that n and m are relatively prime. Therefore $x^{4}-4 \in \mathbf{Q}[x]$ is irreducible which means $\operatorname{irr}(a, \mathbf{Q})=x^{3}-4(4)$. Thus $\operatorname{Deg} a=3$ and consequently a is not constructible (4).

