MATH 431 Written Homework 7 Solution Radford 04/09/2009

1. Page 388, number 20: (20 points) $g(x) \in \mathbf{Z}_p[x]$ is irreducible and divides $x^{p^n} - x$ in $\mathbf{Z}_p[x]$. Let F be a splitting field of $x^{p^n} - x$ over \mathbf{Z}_p . Then $|F| = p^n$ and $x^{p^n} - x = \prod_{a \in F} (x - a)$; see the proof of Theorem 22.1 (4). Since g(x) divides $x^{p^n} - x$ in $\mathbf{Z}_p[x]$ it follows that g(a) = 0 for some $a \in F$ (4). Now $\text{Deg } g(x) = [\mathbf{Z}_p[a] : \mathbf{Z}_p]$ by work in class (4). From the sequence of field extensions $\mathbf{Z}_p \subseteq \mathbf{Z}_p[a] \subseteq F$ we see that $[\mathbf{Z}_p[a] : \mathbf{Z}_p]$ divides $[F : \mathbf{Z}_p]$ by Theorem 21.5 (4). Thus Deg g(x) divides $[F : \mathbf{Z}_p] = n$ (4).

2. Page 389, number 24: (20 points) Write $p(x) = \alpha p_1(x) \cdots p_r(x)$, where $p_i(x) \in \mathbb{Z}_p[x]$ is *monic* irreducible for all $1 \leq i \leq r$ and $\alpha \in \mathbb{Z}_p$ is not zero (3). Then $p_1(x), \ldots, p_r(x)$ are distinct since p(x) has no multiple zeros in one (hence all) of its splitting fields (3).

Let F be a splitting field of p(x) over \mathbf{Z}_p (3). Then F is finite-dimensional vector space over \mathbf{Z}_p . Thus $|F| = p^n$ or some positive integer n and $x^{p^n} - x = \prod_{a \in F} (x - a)$ (3).

Let $1 \leq i \leq r$. Since p(x) splits into linear factors over F it follows that $p_i(a) = 0$ for some $a \in F$ by the corollary to Theorem 18.3 and Corollary 2 to Theorem 16.2 (2). Since a is a root of $x^{p^n} - x$ also (2), $p_i(x) = \operatorname{irr}(a, \mathbb{Z})$ and thus divides $x^{p^n} - x$ in $\mathbb{Z}_p[x]$ by Theorem 21.3 (2). Since $p_1(x), \ldots, p_r(x)$ are relatively prime and each divides $x^{p^n} - x$ in $\mathbb{Z}_p[x]$ the product p(x) does as well (2).

3. Page 389, number 30: (20 points) Suppose that F is a finite field and set $p(x) = \prod_{a \in F} (x - a) + 1$. Then p(a) = 1 for all $a \in F$ and p(x) has positive degree. Therefore F is not algebraically closed.

4. Page 395, number 10: (20 points) Suppose that 40° is constructible. Then $a = \cos 40^{\circ}$ is a constructible number. Now

$$-\frac{1}{2} = \cos 120^{\circ} = \cos 3.40^{\circ} = 4\cos^3 40^{\circ} - 3\cos 40^{\circ} = 4a^3 - 3a$$

implies that a is a root of $p(x) = 8x^3 - 6x + 1 \in \mathbf{Q}[x]$ (8).

We show that $p(x) \in \mathbf{Q}[x]$ is irreducible. Suppose to the contrary that $p(x) \in \mathbf{Q}[x]$ is reducible. Then p(r) = 0 for some $r \in \mathbf{Q}$ by Theorem 17.1. Set s = 2r + 1. Then $s \in \mathbf{Q}$ and $r = \frac{1}{2}(s-1)$. Therefore

$$0 = 8r^3 - 6r + 1 = (s-1)^3 - 3(s-1) + 1 = (s^3 - 3s^2 + 3s - 1) + (-3s+3) + 1 = s^3 - 3s^2 + 3s^2$$

which implies that $x^3 - 3x^2 + 3$ has a root in \mathbf{Q} (7). But this polynomial is irreducible in $\mathbf{Q}[x]$ by the Eisenstein Criterion with p = 3, contradiction. We have shown that $p(x) \in \mathbf{Q}[x]$ is irreducible; thus

$$\operatorname{irr}(a, \mathbf{Q}) = x^3 - \frac{3}{4}x + \frac{1}{8}$$

which means $\text{Deg } a = 3 \neq 2^{\ell}$ for all $\ell \ge 0$. Therefore a is not constructible number (7).

5. Page 396, number 20: (20 points) Suppose that the cube could be quadrupled. Then there an constructible number a which satisfies $a^3 = 4$, or equivalently is a root of $x^3 - 4$. We will show that Deg a = 3 and thus is not constructible, by showing that $x^3 - 4 \in \mathbf{Q}[x]$ is irreducible.

Suppose that $x^3 - 4 \in \mathbf{Q}[x]$ is reducible. Then the polynomial has a root $r \in \mathbf{Q}$ (4). Write r = n/m, where $n, m \in \mathbf{Z}$ and are relatively prime. Then $r^3 = 4$, or equivalently $n^3 = 4m^3$. Therefore $2|n^3$; hence 2|n since 2 is a prime integer (4). Thus $n = 2\ell$ for some positive integer ℓ . Therefore $8\ell^3 = 4m^3$, or $2\ell^3 = m^3$. Thus $2|m^3$, and hence 2|m, since 2 is prime (4). This contradicts the fact that n and m are relatively prime. Therefore $x^4 - 4 \in \mathbf{Q}[x]$ is irreducible which means $\operatorname{irr}(a, \mathbf{Q}) = x^3 - 4$ (4). Thus $\operatorname{Deg} a = 3$ and consequently a is not constructible (4).