n_{p} denotes the number of Sylow p-subgroups in a finite group G.

1. Page 413, number 8: ($\mathbf{2 0}$ points) Since $\left|A_{4}\right|=4!/ 2=12=2^{2} \cdot 3$, each Sylow 3subgroup of A_{4} has 3 elements, and is thus generated by s3-cycle, (2) and the number of these subgroups is 1 or $4(\mathbf{2})$. There are 4 of them:

$$
\begin{aligned}
<(123)> & =\{\mathrm{I},(123),(132)\}(\mathbf{4}) \\
<(124)> & =\{\mathrm{I},(124),(142)\}(\mathbf{4}) \\
<(134)> & =\{\mathrm{I},(134),(143)\}(\mathbf{4}) \\
<(234)> & =\{\mathrm{I},(234),(243)\}(\mathbf{4})
\end{aligned}
$$

2. Page 413, number 10: (20 points) H is a normal subgroup of $\mathrm{N}(H)(6)$. Let K be a subgroup of G and suppose that $H \subseteq K$. Then H is a Sylow p-subgroup of K as $|K|$ divides $|G|(\mathbf{7})$.

Let L be a Sylow p-subgroup of G and suppose $L \subseteq \mathrm{~N}(H)$. Then L is a Sylow p-subgroup of $\mathrm{N}(H)$. By Sylow's Third Theorem $L=g \mathrm{Hg}^{-1}$ for some $g \in \mathrm{~N}(H)$. Since $a H a^{-1}=H$ for all $a \in \mathrm{~N}(H)$ it follows that $L=H(\mathbf{7})$.
3. Page 413, number 12: ($\mathbf{2 0}$ points) $|G|=56=2^{3} .7$. Let n_{7} be the number of Sylow 7 -subgroups of G. Then $n_{7} \mid 2^{3}$ and $n_{7}=1+7 \ell$ for some $\ell \geq 0$. Therefore $n_{7}=1$ or $n_{7}=8$.

Suppose that $n_{7}=1$. Then the Sylow 7 -subgroup is a 7 -element normal subgroup of G by the corollary to Theorem 24.5 (4).

Suppose that $n_{7}=8$ and let H, K be two different Sylow 7 -subgroups of G. Then every element of H, except e, has order 7 and generates H. Thus $H \cap K=(e)$. Note every element of G of order 7 generates a Sylow 7 -subgroup of G. Thus G has $8 \cdot 6=48$ elements of order 7 (4).

Let S be the subset of G consisting of the elements of G whose order is not 7. Then $|S|=|G|-48=56-48=8(4)$. Let L be a Sylow 2 -subgroup of G. Then elements of L have order a power of 2 ; thus $L \subseteq S$. Since $|L|=8=|S|$ necessarily $L=S$ (4). We have shown that G has a unique Sylow 2-subgroup which is thus a normal subgroup of G by the corollary to Sylow's Third Theorem again (4).
4. Page 414, number 18: (20 points) $|G|=175=5^{2} \cdot 7$. Since $n_{5} \mid 7$ and $n_{5}=1+5 \ell$ for some $\ell \geq 0$ it follows that $n_{5}=1$. Likewise $n_{7} \mid 5^{2}$ and $n_{7}=1+7 \ell$ for some $\ell \geq 0$; therefore $n_{7}=1$. By the corollary to Theorem 24.5 there is a unique Sylow 5 -subgroup H of G and a unique Sylow 7 -subgroup K of G and both are normal subgroups of G (4). Note H is abelian and K is cyclic. That $G=H K$ and is abelian is the argument of Problem 3 of Written Homework \#9 (16).
5. Page 414, number 22: ($\mathbf{2 0}$ points) $|G|=375=3 \cdot 5^{3}$. Here we need to glean an observation from the proof Sylow's Third Theorem; $n_{p}=[G: \mathrm{N}(H)]$, where H is a Sylow p-subgroup of $G(5)$. (This I will grant without proof.)

Consider $p=3$. Then $n_{3} \mid 5^{3}$, thus $n_{3}=1,5,25$, or 125 , and $n_{3}=1+3 \ell$ for some $\ell \geq 0$. Therefore $n_{3}=1$ or $n_{3}=25$ (5).

Suppose $n_{3}=1$. Then $G=\mathrm{N}(H)$, that is H is a normal subgroup of G. By Cauchy's Theorem there is an element $a \in G$ of order 5 . Thus $K=\langle a\rangle$ has order 5. Now $H K$ is a subgroup of G since H is a normal subgroup of G. Since 3,5 divide $|H K| \leq|H||K|=15$, it follows that $|H K|=15$ (5).

Suppose that $n_{3}=25$. Then $25=[G: \mathrm{N}(H)]=|G| /|\mathrm{N}(H)|=125 /|\mathrm{N}(H)|$ implies that $|\mathrm{N}(H)|=15$ (5).

