1. Page 415, number 36: ($\mathbf{3 0}$ points) H is a normal subgroup of a finite group G and $|H|=p^{\ell}$ for some positive prime p and $\ell \geq 0$. We may assume that $\ell>0$. By Sylow's Second Theorem $H \subseteq K$ for some Sylow p-subgroup K of $G(10)$. Any Sylow p-subgroup of G has the form $g K g^{-1}$ for some $g \in G$ by Sylow's Third Theorem (10). Thus $H=g H^{-1} \subseteq g K g^{-1}$ since H is normal and $H \subseteq K(\mathbf{1 0})$. We have shown that H is contained in every Sylow p-subgroup of G.
2. Page 415, number 40: ($\mathbf{3 0}$ points) If $|G|=1$ then $|G|=p^{0}$ is a power of p. Suppose $|G|>1$ and q is a positive prime divisor of $|G|(\mathbf{7})$. Then G has an element a of order q by Cauchy's Theorem (7). But the order of a is p^{ℓ} for some $\ell \geq 0$ by assumption. Therefore $q=p^{\ell}$ which implies $q=p$ (8). Since p is the only positive prime which divides $|G|$ it follows that $|G|$ is a power of $p(8)$.
3. Page 415, number 44: (40 points) Suppose $|G|=45=3^{2} \cdot 5$. Let H be a Sylow 3 -subgroup of G. Then $|H|=3^{2}$ and is thus abelian by the corollary to Theorem 24.4. Let K be a Sylow 5 -subgroup of G. Then $|H|=5$ and is thus abelian since it is cyclic (6).

Let n_{p} be the number of Sylow p-subgroups of G for $p=3,5$. Since $n_{5} \mid 3^{2}$ and $n_{5}=1+5 \ell$ for some $\ell \geq 0$ it follows that $n_{5}=1$. Likewise $n_{3} \mid 5$ and $n_{3}=1+3 \ell$ for some $\ell \geq 0$ which implies $n_{3}=1$. Thus H, K are normal subgroups of G by the corollary to Theorem 24.5 (6)

Now $H \cap K \subseteq H, K$ implies $|H \cap K|$ divides $|H|=9$ and $|K|=5$ by Lagrange's Theorem. Therefore $|H \cap K|=1$ which means $H \cap K=(e)$. Since $|H K|=|H||K| /|H \cap K|=$ $|H||K|=|G|$ it follows that $H K=G(6)$. Since H, K are normal and $H \cap K=(e)$ recall that $h k=k h$ by $\square \square$ on page 411 of the text (6).

We show that G is abelian. Let $g, g^{\prime} \in G$. Then $g=h k$ and $g^{\prime}=h^{\prime} k^{\prime}$ for some $h, h^{\prime} \in H$ and $k, k^{\prime} \in G$. Therefore

$$
g g^{\prime}=h k h^{\prime} k^{\prime}=h \underline{k} \underline{h^{\prime}} k^{\prime}=h h^{\prime} k k^{\prime}=\underline{h h^{\prime}} \underline{k k^{\prime}}=h^{\prime} h k^{\prime} k=h^{\prime} \underline{h k^{\prime}} k=h^{\prime} k^{\prime} h k=g^{\prime} g
$$

which shows that G is abelian (6).
Since G is abelian $G \simeq \mathbf{Z}_{3} \times \mathbf{Z}_{3} \times \mathbf{Z}_{5}$ (5) or $G \simeq \mathbf{Z}_{3^{2}} \times \mathbf{Z}_{5}$ (5) by the Fundamental Theorem for Finite Abelian Groups.

