MATH 431 Written Homework 9 Solution Radford 04/09/2009

1. Page 415, number 36: (30 points) H is a normal subgroup of a finite group G and $|H| = p^{\ell}$ for some positive prime p and $\ell \ge 0$. We may assume that $\ell > 0$. By Sylow's Second Theorem $H \subseteq K$ for some Sylow p-subgroup K of G (10). Any Sylow p-subgroup of G has the form gKg^{-1} for some $g \in G$ by Sylow's Third Theorem (10). Thus $H = gHg^{-1} \subseteq gKg^{-1}$ since H is normal and $H \subseteq K$ (10). We have shown that H is contained in every Sylow p-subgroup of G.

2. Page 415, number 40: (**30 points**) If |G| = 1 then $|G| = p^0$ is a power of p. Suppose |G| > 1 and q is a positive prime divisor of |G| (**7**). Then G has an element a of order q by Cauchy's Theorem (**7**). But the order of a is p^{ℓ} for some $\ell \ge 0$ by assumption. Therefore $q = p^{\ell}$ which implies q = p (**8**). Since p is the only positive prime which divides |G| it follows that |G| is a power of p (**8**).

3. Page 415, number 44: (40 points) Suppose $|G| = 45 = 3^2 \cdot 5$. Let H be a Sylow 3-subgroup of G. Then $|H| = 3^2$ and is thus abelian by the corollary to Theorem 24.4. Let K be a Sylow 5-subgroup of G. Then |H| = 5 and is thus abelian since it is cyclic (6).

Let n_p be the number of Sylow *p*-subgroups of *G* for p = 3, 5. Since $n_5|3^2$ and $n_5 = 1 + 5\ell$ for some $\ell \ge 0$ it follows that $n_5 = 1$. Likewise $n_3|5$ and $n_3 = 1 + 3\ell$ for some $\ell \ge 0$ which implies $n_3 = 1$. Thus *H*, *K* are normal subgroups of *G* by the corollary to Theorem 24.5 (**6**)

Now $H \cap K \subseteq H, K$ implies $|H \cap K|$ divides |H| = 9 and |K| = 5 by Lagrange's Theorem. Therefore $|H \cap K| = 1$ which means $H \cap K = (e)$. Since $|HK| = |H||K|/|H \cap K| = |H||K| = |G|$ it follows that HK = G (6). Since H, K are normal and $H \cap K = (e)$ recall that hk = kh by $\Box \Box$ on page 411 of the text (6).

We show that G is abelian. Let $g, g' \in G$. Then g = hk and g' = h'k' for some $h, h' \in H$ and $k, k' \in G$. Therefore

$$gg' = hkh'k' = h\underline{k}\underline{h'}k' = hh'kk' = \underline{h}\underline{h'}\underline{k}\underline{k'} = h'hk'k = h'\underline{h}\underline{k'}k = h'k'hk = g'g$$

which shows that G is abelian (6).

Since G is abelian $G \simeq \mathbf{Z}_3 \times \mathbf{Z}_3 \times \mathbf{Z}_5$ (5) or $G \simeq \mathbf{Z}_{3^2} \times \mathbf{Z}_5$ (5) by the Fundamental Theorem for Finite Abelian Groups.