Spring 2009

MATH 431

Radford

Written Homework #12 (Revised)

Due at the beginning of class 04/29/2009

The problems are from our text. You may use the following:

(A) Suppose that E is a field extension of F and $f(x) \in F[x]$. Then $\sigma \in \text{Gal}(E/F)$ permutes the roots of f(x) in E.

(B) Suppose that E is a field extension of F and E = F(S). If $\sigma, \tau \in \text{Gal}(E/F)$ and $\sigma(s) = \tau(s)$ for all $s \in S$ then $\sigma = \tau$.

(C) Let $p, q \in \mathbf{Z}$ be distinct primes (positive or negative). Then $[\mathbf{Q}(\sqrt{p}, \sqrt{q}) : \mathbf{Q}] = 4$.

(D) Suppose E is a field extension of F and $a, b \in E$ satisfy [F(a) : F], [F(b) : F] are finite and are relatively prime. Then [F(a, b) : F] is finite and [F(a, b) : F] = [F(a) : F][F(b) : F].

1. Page 560, number 4.

4. Page 561, number 16.

^{2.} Page 560, number 10.

^{3.} Page 561, number 12. Find generators and relations for the Galois group of $x^3 - 2$ over **Q**.