Written Homework \#12 (Revised)

Due at the beginning of class 04/29/2009
The problems are from our text. You may use the following:
(A) Suppose that E is a field extension of F and $f(x) \in F[x]$. Then $\sigma \in \operatorname{Gal}(E / F)$ permutes the roots of $f(x)$ in E.
(B) Suppose that E is a field extension of F and $E=F(S)$. If $\sigma, \tau \in \operatorname{Gal}(E / F)$ and $\sigma(s)=\tau(s)$ for all $s \in S$ then $\sigma=\tau$.
(C) Let $p, q \in \mathbf{Z}$ be distinct primes (positive or negative). Then $[\mathbf{Q}(\sqrt{p}, \sqrt{q}): \mathbf{Q}]=4$.
(D) Suppose E is a field extension of F and $a, b \in E$ satisfy $[F(a): F],[F(b): F]$ are finite and are relatively prime. Then $[F(a, b): F]$ is finite and $[F(a, b): F]=[F(a): F][F(b): F]$.

1. Page 560, number 4.
2. Page 560, number 10 .
3. Page 561, number 12. Find generators and relations for the Galois group of $x^{3}-2$ over Q.
4. Page 561, number 16.
