1. Page 540, number 2: ($\mathbf{3 0}$ points) 2 ($\mathbf{1 0}$), 3 ($\mathbf{1 0}$), 3 ($\mathbf{1 0}$) respectively.
2. Page 540, number 4: ($\mathbf{3 0}$ points) Write $u=\left(a_{1}, \ldots, a_{n}\right)$ and $v=\left(b_{1}, \ldots, b_{n}\right)$. Then $d(u, v)=\left|\left\{i \mid 1 \leq i \leq n, a_{i} \neq b_{i}\right\}\right|$ and thus

$$
\begin{equation*}
d(u, v)=n-\left|\left\{i \mid 1 \leq i \leq n, a_{i}=b_{i}\right\}\right| . \tag{1}
\end{equation*}
$$

(a) For $1 \leq i \leq n, a_{i}=b_{i}$ if and only if $b_{i}=a_{i}$. Therefore $d(u, v)=d(v, u)$ by (1) (10).
(b) By (1) observe that $d(u, v)=0$ if and only if $\left|\left\{i \mid 1 \leq i \leq n, a_{i}=b_{i}\right\}\right|=n$ if and only if $a_{i}=b_{i}$ for all $1 \leq i \leq n$ if and only if $u=v(\mathbf{1 0)}$.
(c) Write $w=\left(c_{1}, \ldots, c_{n}\right)$. Then $u+w=\left(a_{1}+c_{1}, \ldots, a_{n}+c_{n}\right)$ and $v+w=\left(b_{1}+c_{1}, \ldots, b_{n}+c_{n}\right)$. Let $1 \leq i \leq n$. Since $a_{i}+c_{i}=b_{i}+c_{i}$ if and only if $a_{i}=b_{i}, d(u+w, v+w)=d(u, v)$ by (1) again (10).
3. Page 541, number 14: (40 points) Let $F=\mathbf{Z}_{2}$ and $V \subseteq F^{n}$ be the binary code. Fix $1 \leq i \leq n$. Then the map $\pi: V \longrightarrow F$ defined by $\pi\left(a_{1}, \ldots, a_{n}\right)=a_{i}$ is a homomorphism of additive groups. Note that

$$
\operatorname{Ker} \pi=\left\{\left(a_{1}, \ldots, a_{n}\right) \in V \mid a_{i}=0\right\}
$$

and thus consists of the elements of V whose $i^{\text {th }}$ component is $0(\mathbf{1 0})$.
Suppose that $\operatorname{Im} \pi=(0)$. Then $\operatorname{Ker} \pi=V$ which means that all code words (elements of V) have 0 in the $i^{\text {th }}$ component (10).

Suppose that $\operatorname{Im} \pi \neq(0)$. Then $\operatorname{Im} \pi=F$ as the latter has 2 elements. Since $V / \operatorname{Ker} \pi \simeq F$ by the First Isomorphism Theorem for groups (10), the calculation $|V|=[V: \operatorname{Ker} \pi]|\operatorname{Ker} \pi|=$ $2|\operatorname{Ker} \pi|$ shows that half of the element of V have 0 in the $i^{\text {th }}$ component (10).

