1. Page 540, number 2: (**30 points**) 2 (**10**), 3 (**10**), 3 (**10**) respectively.

2. Page 540, number 4: (30 points) Write $u = (a_1, ..., a_n)$ and $v = (b_1, ..., b_n)$. Then $d(u, v) = |\{i \mid 1 \le i \le n, a_i \ne b_i\}|$ and thus

$$d(u, v) = n - |\{i \mid 1 \le i \le n, a_i = b_i\}|.$$
(1)

(a) For $1 \le i \le n$, $a_i = b_i$ if and only if $b_i = a_i$. Therefore d(u, v) = d(v, u) by (1) (10).

(b) By (1) observe that d(u, v) = 0 if and only if $|\{i \mid 1 \le i \le n, a_i = b_i\}| = n$ if and only if $a_i = b_i$ for all $1 \le i \le n$ if and only if u = v (10).

(c) Write $w = (c_1, \ldots, c_n)$. Then $u + w = (a_1 + c_1, \ldots, a_n + c_n)$ and $v + w = (b_1 + c_1, \ldots, b_n + c_n)$. Let $1 \le i \le n$. Since $a_i + c_i = b_i + c_i$ if and only if $a_i = b_i$, d(u + w, v + w) = d(u, v) by (1) again (10).

3. Page 541, number 14: (40 points) Let $F = \mathbb{Z}_2$ and $V \subseteq F^n$ be the binary code. Fix $1 \leq i \leq n$. Then the map $\pi : V \longrightarrow F$ defined by $\pi(a_1, \ldots, a_n) = a_i$ is a homomorphism of additive groups. Note that

$$\operatorname{Ker} \pi = \{(a_1, \dots, a_n) \in V \mid a_i = 0\}$$

and thus consists of the elements of V whose i^{th} component is 0 (10).

Suppose that $\text{Im}\pi = (0)$. Then $\text{Ker}\pi = V$ which means that all code words (elements of V) have 0 in the i^{th} component (10).

Suppose that $\text{Im}\pi \neq (0)$. Then $\text{Im}\pi = F$ as the latter has 2 elements. Since $V/\text{Ker}\pi \simeq F$ by the First Isomorphism Theorem for groups (10), the calculation $|V| = [V : \text{Ker}\pi]|\text{Ker}\pi| = 2|\text{Ker}\pi|$ shows that half of the element of V have 0 in the i^{th} component (10).