Very Basic Definitions and Results Concerning Binary Operations

09/15/06 Radford

Here we split hairs to see what axioms are used in some basic proofs. This is a very good exercise in abstract algebra.

Let S be a non-empty set with binary operation $S \times S \longrightarrow S$ described by $(a, b) \mapsto a b$. Then $e \in S$ is a left identity element for S if $e x=x$ for all $x \in S$ and $e^{\prime} \in S$ is a right identity element for S if $x e^{\prime}=x$ for all $x \in S$. An identity element for S is an element which is both a left and right identity element for S.

Suppose further that S is a monoid with identity element e and let $a, b, c \in$ S. Then b is a left inverse for a if $b a=e$ and c is a right inverse for a if $a c=e$.

Lemma 1 Let S be a non-empty set with a binary operation.
(a) Let e, $e^{\prime} \in S$. If e is a left identity element for S and e^{\prime} is a right identity element for S then $e=e^{\prime}$. In particular S has at most one identity element.

Suppose further that S is a monoid with identity element e and let $a, b, c \in$ S. Then:
(b) If b is a left inverse for a and c is a right inverse for a then $b=c$. In particular a has at most one inverse.
(c) Suppose that a has a left inverse and $a b=a c$. Then $b=c$.
(d) Suppose that a has a right inverse and $b a=c a$. Then $b=c$.
(e) Suppose that a has a left inverse or a right inverse and $a^{2}=a$. Then $a=e$.

Proof: To show part (a) suppose that e (respectively e^{\prime}) is a left (respectively right) identity element. Since $e x=x$ for all $x \in S$ it follows that $e e^{\prime}=e^{\prime}$. Likewise, since $x e^{\prime}=x$ for all $x \in S$, it follows that $e e^{\prime}=e$. Therefore $e^{\prime}=e e^{\prime}=e$ and part (a) follows.

Now suppose S is a monoid with identity element e and $a, b, c \in S$. If $b a=e$ and $a c=e$ then

$$
b=b e=b(a c)=(b a) c=e c=c .
$$

We have established part (b). To show part (c), suppose that a has left inverse d and $a b=a c$. Then

$$
b=e b=(d a) b=d(a b)=d(a c)=(d a) c=e c=c
$$

and part (c) follows. Part (d) follows in a similar manner.
Finally, part (e) follows from parts (c) and (d). For suppose that $a^{2}=a$. Then $a a=a e$ and $a a=e a$.

Part (d) of the preceding lemma follows from part (c) applied to $S^{o p}$ which we describe below. By means of $S^{o p}$ multiplication on the right is switched to multiplication on the left.

Suppose that S is a non-empty set with a binary relation. Then we define its "opposite" binary operation by

$$
a \cdot{ }^{o p} b=b a
$$

for all $a, b \in S$ and denote S with its opposite binary relation by $S^{o p}$. Let $a, b, c, e \in S$. The calculations

$$
a^{. o p}\left(b \cdot \cdot^{o p} c\right)=a \cdot{ }^{\circ p}(c b)=(c b) a
$$

and

$$
\left(a \cdot{ }^{o p} b\right) \cdot{ }^{\circ p} c=(b a) \cdot{ }^{\circ p} c=c(b a)
$$

show that $S^{o p}$ is associative if and only if S is associative. The calculations

$$
a^{. o p} e=e a
$$

and

$$
e^{. o p} a=a e
$$

show that e is an identity element for $S^{o p}$ if and only if e is an identity element for S. In particular $S^{o p}$ is a monoid with identity element e if and only if S is a monoid with identity element e.

Suppose that S is a group. Then it is easy to see that $S^{o p}$ is a group. If $a, b \in S$ then b is an inverse of a in $S^{o p}$ if and only if b is an inverse of a in S; thus a^{-1} is unambiguous.

Now back to part (d) follows by part (c). Suppose that a has a right inverse d in S and $b a=c a$. Then d is a left inverse for a in $S^{o p}$ and $a \cdot{ }^{\circ p} b=$ $a^{\circ p} c$. Assume part (c) holds for all monoids, in particular for $S^{o p}$. Then $b=c$.

A group is a non-empty set with an associative binary operation in which certain equations can always be solved.

Proposition 1 Suppose that S is a non-empty set with associative binary operation. Then the following are equivalent:
(a) S is a group.
(b) For all $a, b \in S$ there are $x, y \in S$ such that $a x=b$ and $y a=b$.

When either (a) or (b) is satisfied then $a x=b$ and $y a=b$ have unique solutions.

Proof: We first show that part (a) implies part (b) and when part (a) is satisfied the uniqueness claim holds.

Suppose that S is a group and let $a, b, c \in S$. If $a c=b$ then multiplying both sides of the equation on left by a^{-1} yields

$$
a^{-1} b=a^{-1}(a c)=\left(a^{-1} a\right) c=e c=c .
$$

Thus the equation $a x=b$ has at most one solution in S. Since

$$
a\left(a^{-1} b\right)=\left(a^{-1} a\right) b=e b=b
$$

the equation $a x=b$ has at least one solution in S. Therefore $a x=b$ has a unique solution in S. Replacing S by the group $S^{o p}$ we conclude that $a \cdot{ }^{o p} y=$ b, or equivalently $y a=b$, has a unique solution which is $y=a^{\circ p} b=b a^{-1}$.

To complete the proof we show that part (b) implies part (a). Suppose that part (b) holds. Note that $S^{o p}$ is associative and part (b) holds for $S^{o p}$
also. Since S is not empty there exists an element $a \in S$. By assumption there is an element $e_{a} \in S$ such that $a e_{a}=a$. Let $b \in S$. Then $y a=b$ for some $y \in S$ by assumption. By associativity

$$
b e_{a}=(y a) e_{a}=y\left(a e_{a}\right)=y a=b .
$$

Therefore e_{a} is a right identity element for S. Replacing S by $S^{o p}$ we conclude that $S^{o p}$ has a right identity element f_{a}. Now f_{a} is a left identity element for S. By part (a) of Lemma 1 it follows that $e_{a}=f_{a}$ and is thus $e=e_{a}$ is an identity element for S.

Now let a be any element of S. By assumption there are $c, b \in S$ such that $a c=e$ and $b a=e$. Thus $b=c$ by part (b) of Lemma 1 . We have shown that a has an inverse in S.

The axioms for a group can ostensibly be weakened.
Proposition 2 Let S be a set with associative binary operation. Suppose that S has a left identity element e and that every element $a \in S$ has a left inverse a^{\prime}, meaning $a^{\prime} a=e$. Then S is a group.

Proof: (Sketch). Let e be a left identity element of S. Then the equation $x^{2}=x$ has exactly one solution in S, namely $x=e$. Let $a \in S$ and suppose that $a^{\prime} \in S$ is a left inverse for a. Then $a a^{\prime}$ satisfies the equation $x^{2}=x$ which means $a a^{\prime}=e$. Thus $a^{\prime} a=e=a a^{\prime}$. The calculation $a e=a\left(a^{\prime} a\right)=$ $\left(a a^{\prime}\right) a=e a=a$ shows that e is a right identity element for S as well and therefore is an identity element for S.

