
Math 516 Fall 2006 Radford

Written Homework # 3 Solution
11/22/06

You may use results form the book in Chapters 1–4 of the text, from
notes found on our course web page, and results of the previous homework.

1. (20 points total) Let G be a group and H, K ≤ G.

(a) (7) Suppose that HK ≤ G and let f : H×K −→ HK be defined by
f((h, k)) = hk for all (h, k) ∈ H×K. Show that f is a homomorphism
if and only if hk = kh for all h ∈ H and k ∈ K.

Solution: Let h ∈ H and k ∈ K. First observe that

(h, e)(e, k) = (he, ek) = (h, k) = (eh, ke) = (e, k)(h, e);

in particular (h, e) and (e, k) commute.

Suppose that f is a homomorphism. The last two equations give

hk = f((h, k)) = f((e, k)(h, e)) = f((e, k))f((h, e)) = ekhe = kh.

Therefore hk = kh for all h ∈ H and k ∈ K.

Conversely, suppose that hk = kh for all h ∈ H and k ∈ K. Then for
(h, k), (h′, k′) ∈ H∩K we have

f((h, k)(h′, k′)) = f((hh′, kk′))

= (hh′)(kk′)

= h(h′k)k′

= h(kh′)k′

= (hk)(h′k′)

= f((h, k))f((h′, k′)).

Therefore f is a homomorphism.
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Suppose in addition that H,K £ G.

(b) (6) Show that HK £ G.

Solution: First of all the calculation

HK =
⋃

h∈H

hK =
⋃

h∈H

Kh = KH

shows that HK ≤ G. Note that we only use H ≤ G and K £ G for
this calculation. To show that HK £ G we let g ∈ G and note that

g(HK) = (gH)K = (Hg)K = H(gK) = H(Kg) = (HK)g.

(c) (7) Suppose that H∩K = (e). Show that hk = kh for all h ∈ H and
k ∈ K and that the homomorphism of part (b) is an isomorphism.
[Hint: For h ∈ H and k ∈ K consider hkh−1k−1.]

Solution: Let h ∈ H and k ∈ K. Then hkh−1k−1 = (hkh−1)k−1 =
h(kh−1k−1); thus hkh−1k−1 ∈ K,H from which hkh−1k−1 ∈ H∩K =
(e) follows. Multiplying both sides of hkh−1k−1 = e on the right by k
and then multiplying both sides of the resulting equation on the right
by h yields hk = kh.

To show that f is an isomorphism we need only show that f is injective
in light of part (a). Suppose (h, k), (h′, k′) ∈ H∩K and f((h, k)) =
f((h′, k′)). Then hk = h′k′ from which kk′−1 = h−1h′ follows. Thus
kk′−1 ∈ K∩H = (e) which means kk′−1 = e = h−1h′. Therefore k = k′

and h = h′. We have shown (h, k) = (h′, k′); thus f is injective.

2. (20 points total) Use the theory of finite cyclic groups and induction on
|G| to prove Cauchy’s Theorem for abelian groups:

Theorem 1 Let G be a finite abelian group and suppose that p is a prime
integer which divides |G|. Then G as an element of order p.

[Hint: Let a ∈ G and set H = <a>. Then |G/H||H| = |G|.]
Solution: Our proof uses two facts about finite cyclic groups. If G is cyclic
and p divides |G| then G has an element of order p since G has exactly one
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(cyclic) subgroup for every divisor of |G|. If G = <a> has order m and
an = e then m|n.

We proceed by induction on |G|. The case |G| = 1 is vacuous since p
does not divide |G| in this case. Suppose m ≥ 1 and that the theorem holds
for all abelian groups of order less than or equal to m. Let G be an abelian
group such that |G| ≤ m + 1 and suppose that p divides |G|. Then |G| > 1
so we may chose an a ∈ G with a 6= e. If p divides |<a>| then <a>, hence
G, has an element of order p.

Suppose p does not divide |<a>|. Since G is abelian H = <a>£G. Since
|G| = |G/H||H| and |H| > 1 it follows that p divides |G/H| and |G/H| <
|G|. Since G/H is abelian, by our induction hypothesis there is an element
bH ∈ G/H or order p. Let n = |<b>|. Then (bH)n = bnH = eH = H from
which we deduce p|n. Thus <b> has an element of order p.

We have shown the conclusion of the theorem holds when |G| ≤ m + 1.
Thus the theorem follows by induction.

3. (20 points total) Let G be a finite group. For every positive divisor d of
|G| let nd denote the number of cyclic subgroup of G of order d. Show that

|G| = ∑

d| |G|
ϕ(d)nd,

where ϕ is the Euler phi-function. [Hint: Consider the equivalence relation
on G defined by a ∼ b if and only if <a> = <b>.]

Solution: Since “=” is an equivalence relation “∼” is also. Let C be the
set of cyclic subgroups of G. Then the set of equivalence classes E of ∼ is in
bijective correspondence with C via

[x] 7→ <x>

for all x ∈ G. (Indeed, if f : G −→ C is the surjective function given by
f(x) = <x> then [x] = f−1(<x>).) Let E = [x] and C = <x>. Since E
consists of the generators of C it follows that |E| = ϕ(|C|). By Lagrange’s
Theorem |C| divides |G|. Thus

|G| =
∑

E∈E
|E|

=
∑

C∈C
ϕ(|C|)
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=
∑

d||G|


 ∑

C∈C,d=|C|
ϕ(|C|)




=
∑

d||G|


 ∑

C∈C,d=|C|
ϕ(d)




=
∑

d||G|
ndϕ(d).

Comment: When G is cyclic of order n observe that the formula is

n =
∑

d|n
ϕ(d)

since G has exactly one subgroup (which is cyclic) of order d for all divisors
of n.

4. (20 points total) Let G be a finite group of order pqr, where p, q, r are
primes and p < q < r.

(a) (10) Show that G is not simple.

(b) (10) Show that G has a subgroup of prime index.

[Hint: See the text’s discussion of groups of order 30 = 2·3·5. If needed, you
may use the formula of Exercise 3.]

Solution: Let ns be the number of Sylow-s subgroups of G, where s = p, q, r.
For each s, by the Sylow Theorems ns| divides |G| and ns = 1 + ks for some
integer k. In particular s does not divide ns.

Suppose that no Sylow-s subgroup is normal. Then ns ≥ 1 + s for s =
p, q, r. Since np is among q, r, qr and q < r we conclude np ≥ q. Since nq

is among p, r, pr and p < q, r ≤ qr we conclude nq ≥ r. Since nr is among
p, q, pq and p, q < r we have nr = pq. Since each Sylow-s subgroup of G is
cyclic of prime order, each of these subgroups has s− 1 elements of order s.
Counting the elements of order p, q, and r respectively gives the estimate

q(p− 1) + r(q − 1) + pq(r − 1) ≤ pqr

or
−q − r + qr ≤ 0
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which means
qr ≤ q + r ≤ 2r.

From the last inequality we have qr ≤ 2r or q ≤ 2, a contradiction. Therefore
some Sylow s-subgroup of G is normal. We have shown G is not simple and
part (a) is established.

As for part (b), by part (a) there exists N £ G or prime order. Let
H ≤ G be a Sylow-s subgroup, where s 6= |N |. Then |H| = s and HN ≤ G
since H ≤ G = NG(N). Now H∩N ≤ H, K; thus |H∩N | divides |H|, |N | by
Lagrange’s Theorem. Thus since |H| and |N | are relatively prime |H∩N | = 1.
Therefore |H||N | = |HN ||H∩N | = |HN |. Now |G| is the product of three
primes, two of which are |H| and |N |. Thus

|G : HN | = |G|
|HN | =

|G|
|H||N |

is the third prime.

5. (20 points total) Let G be a finite group of order pqr, where p, q, r are
primes, p < q < r, and r 6≡ 1 (mod q). Show that G has a subgroup of index
p.

Solution: The solution to Problem 4 suffices when H and N are Sylow-q
and Sylow-r subgroups, or vice versa. Thus we need only show that G has a
normal Sylow-q subgroup or a normal Sylow-r subgroup.

Suppose that G has neither a normal Sylow-q subgroup nor a normal
Sylow-r subgroup. Then nr = pq and nq is among p, r, pr. Since p < q and
r 6≡ 1 (mod q) necessarily nq = pr. Estimating the number of elements of
order q or r we derive

pr(q − 1) + pq(r − 1) ≤ pqr

or
−pr − pq + pqr ≤ 0

Therefore
qr ≤ r + q < 2r

from which q < 2 follows. This contradiction shows that one of the Sylow-q
subgroups of G or one of the Sylow-r subgroups of G is normal.
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Comment: The counting arguments for Problems 4 and 5 involved a few
types of elements. By taking into account more, a common solution can be
given for both. Several of you did this. In particular the special condition in
Problem 5 does not have to be used and thus it is not necessary. Here is a
sketch.

Suppose that no Sylow q-subgroup of G an no Sylow r-subgroup of G is
normal. Then nq, nr > 1 which means nq ≥ r and nr = pq. Since np ≥ 1 in
any case, the number of element of G of orders p, q, or r account for at least
1(p− 1) + r(q − 1) + pq(r − 1) elements of the prq elements of G. But

1(p− 1) + r(q − 1) + pq(r − 1) = p− r + qr − pq − 1 + pqr

= (p− r)(1− q)− 1 + pqr

= (r − p)(q − 1)− 1 + pqr

> prq

since (r−p)(q−1) ≥ 2. This contradiction shows that G has a normal Sylow
q-subgroup of a normal Sylow q-subgroup.
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