Written Homework \# 3 Solution

11/22/06

You may use results form the book in Chapters 1-4 of the text, from notes found on our course web page, and results of the previous homework.

1. (20 points total) Let G be a group and $H, K \leq G$.
(a) (7) Suppose that $H K \leq G$ and let $f: H \times K \longrightarrow H K$ be defined by $f((h, k))=h k$ for all $(h, k) \in H \times K$. Show that f is a homomorphism if and only if $h k=k h$ for all $h \in H$ and $k \in K$.

Solution: Let $h \in H$ and $k \in K$. First observe that

$$
(h, e)(e, k)=(h e, e k)=(h, k)=(e h, k e)=(e, k)(h, e) ;
$$

in particular (h, e) and (e, k) commute.
Suppose that f is a homomorphism. The last two equations give

$$
h k=f((h, k))=f((e, k)(h, e))=f((e, k)) f((h, e))=e k h e=k h .
$$

Therefore $h k=k h$ for all $h \in H$ and $k \in K$.
Conversely, suppose that $h k=k h$ for all $h \in H$ and $k \in K$. Then for $(h, k),\left(h^{\prime}, k^{\prime}\right) \in H \cap K$ we have

$$
\begin{aligned}
f\left((h, k)\left(h^{\prime}, k^{\prime}\right)\right) & =f\left(\left(h h^{\prime}, k k^{\prime}\right)\right) \\
& =\left(h h^{\prime}\right)\left(k k^{\prime}\right) \\
& =h\left(h^{\prime} k\right) k^{\prime} \\
& =h\left(k h^{\prime}\right) k^{\prime} \\
& =(h k)\left(h^{\prime} k^{\prime}\right) \\
& =f((h, k)) f\left(\left(h^{\prime}, k^{\prime}\right)\right) .
\end{aligned}
$$

Therefore f is a homomorphism.

Suppose in addition that $H, K \unlhd G$.
(b) (6) Show that $H K \unlhd G$.

Solution: First of all the calculation

$$
H K=\bigcup_{h \in H} h K=\bigcup_{h \in H} K h=K H
$$

shows that $H K \leq G$. Note that we only use $H \leq G$ and $K \unlhd G$ for this calculation. To show that $H K \unlhd G$ we let $g \in G$ and note that

$$
g(H K)=(g H) K=(H g) K=H(g K)=H(K g)=(H K) g .
$$

(c) (7) Suppose that $H \cap K=(e)$. Show that $h k=k h$ for all $h \in H$ and $k \in K$ and that the homomorphism of part (b) is an isomorphism. [Hint: For $h \in H$ and $k \in K$ consider $h k h^{-1} k^{-1}$.]

Solution: Let $h \in H$ and $k \in K$. Then $h k h^{-1} k^{-1}=\left(h k h^{-1}\right) k^{-1}=$ $h\left(k h^{-1} k^{-1}\right)$; thus $h k h^{-1} k^{-1} \in K, H$ from which $h k h^{-1} k^{-1} \in H \cap K=$ (e) follows. Multiplying both sides of $h k h^{-1} k^{-1}=e$ on the right by k and then multiplying both sides of the resulting equation on the right by h yields $h k=k h$.
To show that f is an isomorphism we need only show that f is injective in light of part (a). Suppose $(h, k),\left(h^{\prime}, k^{\prime}\right) \in H \cap K$ and $f((h, k))=$ $f\left(\left(h^{\prime}, k^{\prime}\right)\right)$. Then $h k=h^{\prime} k^{\prime}$ from which $k k^{\prime-1}=h^{-1} h^{\prime}$ follows. Thus $k k^{\prime-1} \in K \cap H=(e)$ which means $k k^{\prime-1}=e=h^{-1} h^{\prime}$. Therefore $k=k^{\prime}$ and $h=h^{\prime}$. We have shown $(h, k)=\left(h^{\prime}, k^{\prime}\right)$; thus f is injective.
2. (20 points total) Use the theory of finite cyclic groups and induction on $|G|$ to prove Cauchy's Theorem for abelian groups:

Theorem 1 Let G be a finite abelian group and suppose that p is a prime integer which divides $|G|$. Then G as an element of order p.
[Hint: Let $a \in G$ and set $H=\langle a\rangle$. Then $|G / H||H|=|G|$.]
Solution: Our proof uses two facts about finite cyclic groups. If G is cyclic and p divides $|G|$ then G has an element of order p since G has exactly one
(cyclic) subgroup for every divisor of $|G|$. If $G=\langle a\rangle$ has order m and $a^{n}=e$ then $m \mid n$.

We proceed by induction on $|G|$. The case $|G|=1$ is vacuous since p does not divide $|G|$ in this case. Suppose $m \geq 1$ and that the theorem holds for all abelian groups of order less than or equal to m. Let G be an abelian group such that $|G| \leq m+1$ and suppose that p divides $|G|$. Then $|G|>1$ so we may chose an $a \in G$ with $a \neq e$. If p divides $|\langle a\rangle|$ then $\langle a\rangle$, hence G, has an element of order p.

Suppose p does not divide $|\langle a\rangle|$. Since G is abelian $H=\langle a\rangle \unlhd G$. Since $|G|=|G / H||H|$ and $|H|>1$ it follows that p divides $|G / H|$ and $|G / H|<$ $|G|$. Since G / H is abelian, by our induction hypothesis there is an element $b H \in G / H$ or order p. Let $n=|\langle b\rangle|$. Then $(b H)^{n}=b^{n} H=e H=H$ from which we deduce $p \mid n$. Thus $\langle b\rangle$ has an element of order p.

We have shown the conclusion of the theorem holds when $|G| \leq m+1$. Thus the theorem follows by induction.
3. (20 points total) Let G be a finite group. For every positive divisor d of $|G|$ let n_{d} denote the number of cyclic subgroup of G of order d. Show that

$$
|G|=\sum_{d| | G \mid} \varphi(d) n_{d}
$$

where φ is the Euler phi-function. [Hint: Consider the equivalence relation on G defined by $a \sim b$ if and only if $\langle a\rangle=\langle b\rangle$.]
Solution: Since " $=$ " is an equivalence relation " \sim " is also. Let \mathcal{C} be the set of cyclic subgroups of G. Then the set of equivalence classes \mathcal{E} of \sim is in bijective correspondence with \mathcal{C} via

$$
[x] \mapsto<x>
$$

for all $x \in G$. (Indeed, if $f: G \longrightarrow \mathcal{C}$ is the surjective function given by $f(x)=\langle x\rangle$ then $[x]=f^{-1}(\langle x\rangle)$.) Let $E=[x]$ and $C=\langle x\rangle$. Since E consists of the generators of C it follows that $|E|=\varphi(|C|)$. By Lagrange's Theorem $|C|$ divides $|G|$. Thus

$$
\begin{aligned}
|G| & =\sum_{E \in \mathcal{E}}|E| \\
& =\sum_{C \in \mathcal{C}} \varphi(|C|)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d| | G \mid}\left(\sum_{C \in \mathcal{C}, d=|C|} \varphi(|C|)\right) \\
& =\sum_{d| | G \mid}\left(\sum_{C \in \mathcal{C}, d=|C|} \varphi(d)\right) \\
& =\sum_{d| | G \mid} n_{d} \varphi(d) .
\end{aligned}
$$

Comment: When G is cyclic of order n observe that the formula is

$$
n=\sum_{d \mid n} \varphi(d)
$$

since G has exactly one subgroup (which is cyclic) of order d for all divisors of n.
4. (20 points total) Let G be a finite group of order $p q r$, where p, q, r are primes and $p<q<r$.
(a) (10) Show that G is not simple.
(b) (10) Show that G has a subgroup of prime index.
[Hint: See the text's discussion of groups of order $30=2 \cdot 3 \cdot 5$. If needed, you may use the formula of Exercise 3.]

Solution: Let n_{s} be the number of Sylow-s subgroups of G, where $s=p, q, r$. For each s, by the Sylow Theorems $n_{s} \mid$ divides $|G|$ and $n_{s}=1+k s$ for some integer k. In particular s does not divide n_{s}.

Suppose that no Sylow- s subgroup is normal. Then $n_{s} \geq 1+s$ for $s=$ p, q, r. Since n_{p} is among $q, r, q r$ and $q<r$ we conclude $n_{p} \geq q$. Since n_{q} is among $p, r, p r$ and $p<q, r \leq q r$ we conclude $n_{q} \geq r$. Since n_{r} is among $p, q, p q$ and $p, q<r$ we have $n_{r}=p q$. Since each Sylow- s subgroup of G is cyclic of prime order, each of these subgroups has $s-1$ elements of order s. Counting the elements of order p, q, and r respectively gives the estimate

$$
q(p-1)+r(q-1)+p q(r-1) \leq p q r
$$

or

$$
-q-r+q r \leq 0
$$

which means

$$
q r \leq q+r \leq 2 r .
$$

From the last inequality we have $q r \leq 2 r$ or $q \leq 2$, a contradiction. Therefore some Sylow s-subgroup of G is normal. We have shown G is not simple and part (a) is established.

As for part (b), by part (a) there exists $N \unlhd G$ or prime order. Let $H \leq G$ be a Sylow- s subgroup, where $s \neq|N|$. Then $|H|=s$ and $H N \leq G$ since $H \leq G=\mathrm{N}_{G}(N)$. Now $H \cap N \leq H, K$; thus $|H \cap N|$ divides $|H|,|N|$ by Lagrange's Theorem. Thus since $|H|$ and $|N|$ are relatively prime $|H \cap N|=1$. Therefore $|H||N|=|H N||H \cap N|=|H N|$. Now $|G|$ is the product of three primes, two of which are $|H|$ and $|N|$. Thus

$$
|G: H N|=\frac{|G|}{|H N|}=\frac{|G|}{|H||N|}
$$

is the third prime.
5. (20 points total) Let G be a finite group of order $p q r$, where p, q, r are primes, $p<q<r$, and $r \not \equiv 1(\bmod q)$. Show that G has a subgroup of index p.

Solution: The solution to Problem 4 suffices when H and N are Sylow- q and Sylow- r subgroups, or vice versa. Thus we need only show that G has a normal Sylow- q subgroup or a normal Sylow- r subgroup.

Suppose that G has neither a normal Sylow- q subgroup nor a normal Sylow- r subgroup. Then $n_{r}=p q$ and n_{q} is among $p, r, p r$. Since $p<q$ and $r \not \equiv 1(\bmod q)$ necessarily $n_{q}=p r$. Estimating the number of elements of order q or r we derive

$$
p r(q-1)+p q(r-1) \leq p q r
$$

or

$$
-p r-p q+p q r \leq 0
$$

Therefore

$$
q r \leq r+q<2 r
$$

from which $q<2$ follows. This contradiction shows that one of the Sylow- q subgroups of G or one of the Sylow- r subgroups of G is normal.

Comment: The counting arguments for Problems 4 and 5 involved a few types of elements. By taking into account more, a common solution can be given for both. Several of you did this. In particular the special condition in Problem 5 does not have to be used and thus it is not necessary. Here is a sketch.

Suppose that no Sylow q-subgroup of G an no Sylow r-subgroup of G is normal. Then $n_{q}, n_{r}>1$ which means $n_{q} \geq r$ and $n_{r}=p q$. Since $n_{p} \geq 1$ in any case, the number of element of G of orders p, q, or r account for at least $1(p-1)+r(q-1)+p q(r-1)$ elements of the $p r q$ elements of G. But

$$
\begin{aligned}
1(p-1)+r(q-1)+p q(r-1) & =p-r+q r-p q-1+p q r \\
& =(p-r)(1-q)-1+p q r \\
& =(r-p)(q-1)-1+p q r \\
& >p r q
\end{aligned}
$$

since $(r-p)(q-1) \geq 2$. This contradiction shows that G has a normal Sylow q-subgroup of a normal Sylow q-subgroup.

