Math 516

Fall 2006

Radford

Written Homework # 5 Solution

12/12/06

Throughout R is a ring with unity.

Comment: It will become apparent that the module properties $0 \cdot m = 0$, $-(r \cdot m) = (-r) \cdot m$, and $(r - r') \cdot m = r \cdot m - r' \cdot m$ are vital details in some problems.

1. (20 total) Let M be an (additive) abelian group and End(M) be the set of group homomorphisms $f: M \longrightarrow M$.

(a) (12) Show $\operatorname{End}(M)$ is a ring with unity, where (f+g)(m) = f(m)+g(m)and (fg)(m) = f(g(m)) for all $f, g \in \operatorname{End}(M)$ and $m \in M$.

Solution: This is rather tedious, but not so unusual as a basic algebra exercise. The trick is to identify all of the things, large and small, which need to be verified.

We know that the composition of group homomorphisms is a group homomorphism. Thus $\operatorname{End}(M)$ is *closed* under function composition. Moreover $\operatorname{End}(M)$ is a monoid since composition is an associative operation and the identity map I_M of M is a group homomorphism.

Let $f, g, h \in \text{End}(M)$. The sum $f + g \in \text{End}(M)$ since M is abelian as

$$(f+g)(m+n) = f(m+n) + g(m+n) = f(m) + f(n) + g(m) + g(n) = f(m) + g(m) + f(n) + g(n) = (f+g)(m) + (f+g)(n)$$

for all $m, n \in M$. Thus End (M) is *closed* under function addition.

Addition is commutative since f + g = g + f as (f + g)(m) = f(m) + g(m) = g(m) + f(m) = (g + f)(m) for all $m \in M$. In a similar manner one shows that addition is associative which boils down to ((f + g) + h)(m) = (f + (g + h))(m) for all $m \in M$.

We have seen from group theory that the zero function $\mathbf{0} : M \longrightarrow M$, defined by $\mathbf{0}(m) = 0$ for all $m \in M$, is a group homomorphism. Thus $\mathbf{0} \in \text{End}(M)$. The zero function serves as a neutral element for addition since function addition is commutative and $f + \mathbf{0} = f$ as $(f + \mathbf{0})(m) = f(m) + \mathbf{0}(m) = f(m) + 0 = f(m)$ for all $m \in M$.

Note that $-f: M \longrightarrow M$ defined by (-f)(m) = -f(m) for all $m \in M$ is a group homomorphism since

$$(-f)(m+n) = -(f(m+n))$$

= -(f(m) + f(n))
= (-f(n)) + (-f(m))
= (-f(m)) + (-f(n))
= (-f)(m) + (-f)(n)

for all $m, n \in M$. The reader is left to show that -f is an additive inverse for f. We have finally shown that $\operatorname{End}(M)$ is a group under addition.

To complete the proof that $\operatorname{End}(M)$ is a ring with unity we need to establish the distributive laws. First of all $(f+g)\circ h = f\circ h+g\circ h$ follows by definition of function composition and function addition since

$$\begin{array}{rcl} ((f+g) \circ h)(m) &=& (f+g)(h(m)) \\ &=& f(h(m)) + g(h(m)) \\ &=& (f \circ h)(m) + (g \circ h)(m) \\ &=& (f \circ h + g \circ h)(m) \end{array}$$

for all $m \in M$. Since f is a group homomorphism the distributive law $f \circ (g+h) = f \circ g + f \circ h$ holds as

$$(f \circ (g + h))(m) = f((g + h)(m))$$

= $f(g(m) + h(m))$

$$= f(g(m)) + f(h(m))$$

= $(f \circ g)(m) + (f \circ h)(m)$
= $(f \circ g + f \circ h)(m)$

for all $m \in M$. Therefore End (M) is a ring with unity.

Comment: The proof actually establishes more. For non-empty sets X, Y let Fun(X, Y) be the set of all functions $f : X \longrightarrow Y$.

Let M be a non-empty set. Then Fun(M, M) is a monoid under composition with neutral element I_M .

Suppose that X is a non-empty set and M is an additive (not necessarily abelian) group. Then Fun(X, M), in particular Fun(M, M), is a group under function addition with neutral element the zero map $\mathbf{0}: X \longrightarrow M$ defined by $\mathbf{0}(x) = 0$ for all $x \in X$. Furthermore the distributive law

$$(f+g)\circ h = f\circ h + g\circ h$$

holds for all $f, g, h \in Fun(M, M)$.

Let $f \in Fun(M, M)$ be fixed. Then the distributive law $f \circ (g + h) = f \circ g + f \circ h$ holds for all $g, h \in Fun(M, M)$ if and only if $f \in End(M)$. (To see this let $m, n \in M$ and g(x) = m and h(x) = n for all $x \in M$.)

Observe that $\operatorname{End}(M)$ is a submonoid of Fun(M, M) with neutral element I_M . When M is abelian $\operatorname{End}(M)$ is a subgroup of Fun(M, M) under function addition. (In this case $\operatorname{End}(M)$ is a ring with unity under function addition and composition.)

Note that $I_M + I_M \in \text{End}(M)$ if and only if M is abelian. Thus End(M) is closed under function addition if and only if M is abelian.

Now suppose that M is a left R-module.

(b) (8) For $r \in R$ define $\sigma_r : M \longrightarrow M$ by $\sigma_r(m) = r \cdot m$ for all $m \in M$. Show that $\sigma_r \in \text{End}(M)$ for all $r \in R$ and $\pi : R \longrightarrow \text{End}(M)$ defined by $\pi(r) = \sigma_r$ for all $r \in R$ is a homomorphism of rings with unity.

Solution: Let $r \in R$. for $m, n \in M$ the calculation $\sigma_r(m+n) = r \cdot (m+n) = r \cdot m + r \cdot n = \sigma_r(m) + \sigma_r(n)$ shows that $\sigma_r : M \longrightarrow M$ is an endomorphism of (additive) groups.

Let $r, r' \in R$. We have just shown that $\pi(r) = \sigma_r \in \text{End}(M)$. Note that $\pi(r)(m) = \sigma_r(m) = r \cdot m$ for all $m \in M$. Since

$$\pi(r+r')(m) = (r+r') \cdot m$$

= $r \cdot m + r' \cdot m$
= $\pi(r)(m) + \pi(r')(m)$
= $(\pi(r) + \pi(r'))(m)$

for all $m \in M$ it follows that $\pi(r+r') = \pi(r) + \pi(r')$. Likewise

$$\pi(rr')(m) = (rr') \cdot m$$

= $r \cdot (r' \cdot m)$
= $\pi(r)(r' \cdot m)$
= $\pi(r)(\pi(r')(m))$
= $(\pi(r) \circ \pi(r'))(m)$

for all $m \in M$ shows that $\pi(rr') = \pi(r) \circ \pi(r')$. Thus π is a ring homomorphism. Since $\pi(1)(m) = 1 \cdot m = m = I_M(m)$ for all $m \in M$ we have $\pi(1) = I_M$. Therefore π is a homomorphism of rings with unity.

2. (20 total) Let M be a left R-module. For a non-empty subset S of M the subset of R defined by

$$\operatorname{ann}_R(S) = \{ r \in R \mid r \cdot s = 0 \ \forall s \in S \}$$

is called the annihilator of S. If $S = \{s\}$ is a singleton we write $\operatorname{ann}_R(s)$ for $\operatorname{ann}_R(\{s\})$.

(a) (8) Suppose that N is a submodule of M. Show that $\operatorname{ann}_R(N)$ is an ideal of R.

Solution: Let $I = \operatorname{ann}_R(N)$. Then $0 \in I$ since $0 \cdot m = 0$ for all $m \in N$. Thus $I \neq \emptyset$. Suppose $r, r' \in I$ and $n \in N$. Then $(r-r') \cdot n = r \cdot n - r' \cdot n = 0 - 0 = 0$ since $n, -n \in N$. Thus $r - r' \in I$ which establishes that I is an additive subgroup of R. For $r'' \in R$ the calculations

$$(r''r) \cdot n = r'' \cdot (r \cdot n) = r'' \cdot 0 = 0$$

and

$$(rr'') \cdot n = r \cdot (r'' \cdot n) \in r \cdot N = (0)$$

show that $r''r, rr'' \in I$. Therefore I is an ideal of R.

Now suppose $m \in M$ is fixed.

(b) (6) Show that $\operatorname{ann}_R(m)$ is a left ideal of R.

Solution: The calculations of part (a) establish p[art (b).

(c) (6) Let $f : R \longrightarrow R \cdot m$ be defined by $f(r) = r \cdot m$ for all $r \in R$. Show f is a homomorphism of left R-modules and $F : R/\operatorname{ann}_R(m) \longrightarrow R \cdot m$ given by $F(r + \operatorname{ann}_R(m)) = r \cdot m$ for all $r \in R$ is a well-defined isomorphism of left R-modules.

Solution: Let $r, r' \in R$. Then $R \cdot m$ is a submodule of M (a proof really is in order) and the calculations

$$f(r + r') = (r + r') \cdot m = r \cdot m + r' \cdot m = f(r) + f(r')$$

and

$$f(rr') = (rr') \cdot m = r \cdot (r' \cdot m) = r \cdot f(r')$$

show that f is a map of left R-modules. One could appeal to the Isomorphism Theorems for R-modules to complete the problem; we will follow the intent of the instructions.

F is well-defined. Suppose that $r, r' \in R$ and $r + \operatorname{ann}_R(m) = r' + \operatorname{ann}_R(m)$. Then $r - r' \in \operatorname{ann}_R(m)$ which means $(r - r') \cdot m = 0$ or equivalently $r \cdot m = r' \cdot m$. Therefore $F(r + \operatorname{ann}_R(m)) = r \cdot m = r' \cdot m = F(r' + \operatorname{ann}_R(m))$ which means *F* is well-defined. Note that *F* and *f* are related by $F(r + \operatorname{ann}_R(m)) = f(r)$ for all $r \in R$.

F is a module map since

$$F((r + \operatorname{ann}_{R}(m)) + (r' + \operatorname{ann}_{R}(m)))$$

= $F((r + r') + \operatorname{ann}_{R}(m))$
= $f(r + r')$
= $f(r) + f(r')$
= $F(r + \operatorname{ann}_{R}(m)) + F(r' + \operatorname{ann}_{R}(m))$

and

$$F(r \cdot (r' + \operatorname{ann}_R(m)))$$

$$= F(rr' + \operatorname{ann}_{R}(m))$$

$$= f(rr')$$

$$= r \cdot f(r')$$

$$= r \cdot F(r' + \operatorname{ann}_{R}(m))$$

for all $r, r' \in R$. F is surjective since f is. Since

$$\operatorname{Ker} F = \{r + \operatorname{ann}_R(m)) \mid r \in \operatorname{ann}_R(m)\}$$

is the trivial subgroup of $R/\operatorname{ann}_R(m)$, it follows that the (group) homomorphism F is injective.

3. (20 total) Let k be a field, V a vector space over k, and $T \in \operatorname{End}_k(V)$ be a linear endomorphism of V. Then the ring homomorphism $\pi : k[X] \longrightarrow \operatorname{End}_k(V)$ defined by $\pi(f(X)) = f(T)$ for all $f(X) \in k[X]$ determines a left k[X]-module structure on V by $f(X) \cdot v = \pi(f(X))(v) = p(T)(v)$ for all $v \in V$.

(a) (15) Let W be a non-empty subset of V. Show that W is a k[X]-submodule of V if and only if W is a T-invariant subspace of V.

Solution: Suppose that $f(X) = \alpha_0 + \cdots + \alpha_n X^n \in k[X]$. Then $f(X) \cdot v = f(T)(v) = (\alpha_0 I_V + \cdots + \alpha_n T^n)(v) = \alpha_0 v + \cdots + \alpha_n T^n(v)$ for all $v \in V$.

Let W be a k[X]-submodule. Then W is an additive subgroup of V by definition. Let $w \in W$. Since $f(X) \cdot w = \alpha_0 w$ when $f(X) = \alpha_0$ and $f(X) \cdot w = T(w)$ when f(X) = X, $\alpha_0 w \in W$ for all $\alpha_0 \in k$, which means that W is a subspace of V, and $T(w) \in W$, which means that W is T-invariant (or T-stable).

Conversely, let W be a T-invariant subspace of V. Then $T^m(W) \subseteq W$ for all $m \ge 0$ by induction on m. Therefore $f(X) \cdot w \in W$ for all $w \in W$ which means that W is a k[X]-submodule of V.

(b) (5) Suppose that $V = k[X] \cdot v$ is a cyclic k[X]-module. Show that $\operatorname{ann}_{k[X]}(V) = (f(X))$, where f(X) is the minimal polynomial of T.

Solution: There are various ways of defining the minimal polynomial of T. One is the unique monic generator of the ideal I of all

 $f(X) \in k[X]$ such that f(T) = 0 when $I \neq (0)$. Otherwise the minimal polynomial is set to 0 when I = (0). Note that $I = \operatorname{ann}_{k[X]}(V)$.

Comment: The condition V is cyclic is not necessary; it was there anticipating a certain application.

- 4. (20 total) Let M be a left R-module.
 - (a) (5) Suppose that \mathcal{N} is a non-empty family of submodules of M. Show that $L = \bigcap_{N \in \mathcal{N}} N$ is a submodule of M.

Solution: Since submodules are (additive) subgroups, we know from group theory that $L = \bigcap_{N \in \mathcal{N}} N$ is a subgroup of M. Let $r \in R$ and $n \in L$. To complete the proof that L is a submodule of M we need only show that $r \cdot n \in L$. Since $n \in L$, $n \in N$ for all $N \in \mathcal{N}$. Hence $r \cdot n \in N$ for all $N \in \mathcal{N}$, since each N is a submodule of M, and therefore $r \cdot n \in L$.

Since M is submodule of M, it follows that any S subset of M is contained in a smallest submodule of M, namely the intersection of all submodule containing S. This submodule is denoted by (S) and is called the *submodule* of M generated by S.

(b) (5) Let $\emptyset \neq S \subseteq M$. Show that

$$(S) = \{ r_1 \cdot s_1 + \dots + r_{\ell} \cdot s_{\ell} \mid \ell \ge 1, r_1, \dots, r_{\ell} \in R, s_1, \dots, s_{\ell} \in S \}.$$

solution: Let

$$L' = \{ r_1 \cdot s_1 + \dots + r_{\ell} s_{\ell} \mid \ell \ge 1, \ r_1, \dots, r_{\ell} \in R, \ s_1, \dots, s_{\ell} \in S \}.$$

Informally we may describe L' as the set of all finite sums of products $r \cdot s$, where $r \in R$ and $s \in S$. Now $L' \subseteq (S)$. For since $S \subseteq (S)$ and (S) is a submodule of M, products $r \cdot s \in (S)$ since (S) is closed under module multiplication, and thus $r_1 \cdot s_1 + \cdots + r_{\ell} s_{\ell} \in (S)$, by induction on ℓ , for all $r_1, \ldots, r_{\ell} \in R$ and $s_1, \ldots, s_{\ell} \in S$ since (S) is closed under addition.

To complete the proof we need only show $(S) \subseteq L'$. Since $s = 1 \cdot s$ for all $s \in M$ it follows that $S \subseteq L'$. Thus to show $(S) \subseteq L'$ we need only show that L' is a submodule of M. Since $S \neq \emptyset$ and $S \subseteq L'$ it follows that $L' \neq \emptyset$.

Suppose that $x, y \in L'$. Then x, y are finite sums of products $r \cdot s$, where $r \in R$ and $s \in S$; therefore x + y is as well. We have shown $x + y \in L'$. Since $-(r \cdot s) = (-r) \cdot s$ and $r' \cdot (r \cdot s) = (r'r) \cdot s$ for $r, r' \in R$ and $s \in S$, it follows that -x and $r' \cdot x$ are finite sums of products $r'' \cdot s''$, where $r'' \in R$ and $s'' \in S$. Therefore $-x, r \cdot x \in L'$ which completes our proof that L' is a submodule of M.

Comment: Here are the highlights of a proof of the fact the L' is a submodule of M which follows the literal description of L'.

Let $x, y \in L'$. Write $x = r_1 \cdot s_1 + \dots + r_{\ell} \cdot s_{\ell}$ and $y = r'_1 \cdot s'_1 + \dots + r'_{\ell'} \cdot s'_{\ell'}$, where $\ell, \ell' \ge 1, r_1, \dots, r_{\ell}, r'_1, \dots, r'_{\ell'} \in R$, and $s_1, \dots, s_{\ell}, s'_1, \dots, s'_{\ell'} \in S$. Thus

$$x + y = r_1 \cdot s_1 + \dots + r_{\ell} \cdot s_{\ell} + r'_1 \cdot s'_1 + \dots + r'_{\ell'} \cdot s'_{\ell'}$$

which means

$$x + y = r''_1 \cdot s''_1 + \dots + r''_{\ell''} \cdot s''_{\ell''},$$

where $\ell'' = \ell + \ell''$,

$$r_i'' = \begin{cases} r_i & : \ 1 \le i \le \ell \\ r_{i-\ell}' & : \ \ell < i \le \ell + \ell' \end{cases}$$

and

$$s_i'' = \begin{cases} s_i & : \ 1 \le i \le \ell \\ s_{i-\ell}' & : \ \ell < i \le \ell + \ell' \end{cases}$$

Thus $x + y \in L'$. Note that

$$-x = -(r_1 \cdot s_1) - \dots - (r_{\ell} \cdot s_{\ell}) = (-r_1) \cdot s_1 + \dots + (-r_{\ell}) \cdot s_{\ell} \in L'$$

and

$$r \cdot x = r \cdot (r_1 \cdot s_1) + \dots + r \cdot (r_\ell \cdot s_\ell) = (rr_1) \cdot s_1 + \dots + (rr_\ell) \cdot s_\ell \in L'.$$

Suppose $f, f': M \longrightarrow M'$ are *R*-module homomorphisms.

(c) (5) Show that $N = \{m \in M \mid f(m) = f'(m)\}$ is a submodule of M.

Solution: First of all $0 \in N$ since f(0) = 0 = f'(0) as f, f' are group homomorphisms. Suppose that $m, n \in M$. Then f(m - n) = f(m + (-n)) = f(m) + f(-n) = f(m) - f(n). Thus for $m, n \in N$ we have

$$f(m-n) = f(m) - f(n) = f'(m) - f'(n) = f'(m-n)$$

which means $m - n \in N$. Therefore $N \leq M$. For $r \in R$ the calculation

$$f(r \cdot m) = r \cdot f(m) = r \cdot f'(m) = f'(r \cdot m)$$

shows that $r \cdot m \in N$. Therefore N is a submodule of M.

(d) (5) Suppose that S generates M. Show that f = f' if and only if f(s) = f'(s) for all $s \in S$.

Solution: If f = f' then f(s) = f'(s) for all $s \in M$, hence for all $s \in S$. Conversely, suppose that f(s) = f'(s) for all $s \in S$ and let N be as in part (a). Then $S \subseteq N$ which means $M = (S) \subseteq N$ since S generates M and N is a submodule of M. Therefore M = N which means f(m) = f'(m) for all $m \in M$, or equivalently f = f'.

Comment: There is no need to invoke part (b) for part (d).

5. (20 total) Use Corollary 2 of "Section 2.3 Supplement" and the equation of Problem 3 of Written Homework 3 to prove the following:

Theorem 1 Let k be a field and suppose that G is a finite subgroup of k^{\times} . Then G is cyclic.

Solution: A proof is to be based on the equations

$$\sum_{d|n} \varphi(d) = n$$

for all positive integers n and

$$\sum_{d \mid |G|} n_d \varphi(d) = |G|$$

for all finite groups G. Suppose that $H \leq k^{\times}$ is cyclic of order d. Then $a^d = 1$, or equivalently a is a root of $X^d - 1 \in k[X]$, for all $a \in H$. This polynomial has at most d roots in k since k is a field. Therefore H is the set of the roots of $X^d - 1$ in k. We have shown that there is at most one cyclic subgroup of order d in k^{\times} .

Now let $G \leq k^{\times}$ be finite. We have shown $n_d = 0$ or $n_d = 1$ for each positive divisor of |G|. Since $\varphi(d) > 0$ for all positive integers d, from the equations

$$\sum_{d \mid |G|} n_d \varphi(d) = |G| = \sum_{d \mid |G|} \varphi(d) = \sum_{d \mid |G|} 1\varphi(d)$$

we deduce that $n_d = 1$ for all positive divisors d of |G|. In particular $n_{|G|} = 1$ which means that G has a cyclic subgroup of order |G|; thus G is cyclic.