
Math 516 Fall 2006 Radford

Written Homework # 5 Solution
12/12/06

Throughout R is a ring with unity.

Comment: It will become apparent that the module properties 0·m = 0,
−(r·m) = (−r)·m, and (r − r′)·m = r·m − r′·m are vital details in some
problems.

1. (20 total) Let M be an (additive) abelian group and End(M) be the set
of group homomorphisms f : M −→ M .

(a) (12) Show End(M) is a ring with unity, where (f+g)(m) = f(m)+g(m)
and (fg)(m) = f(g(m)) for all f, g ∈ End(M) and m ∈ M .

Solution: This is rather tedious, but not so unusual as a basic algebra
exercise. The trick is to identify all of the things, large and small, which
need to be verified.

We know that the composition of group homomorphisms is a group
homomorphism. Thus End (M) is closed under function composition.
Moreover End (M) is a monoid since composition is an associative op-
eration and the identity map IM of M is a group homomorphism.

Let f, g, h ∈ End (M). The sum f + g ∈ End (M) since M is abelian as

(f + g)(m + n) = f(m + n) + g(m + n)

= f(m) + f(n) + g(m) + g(n)

= f(m) + g(m) + f(n) + g(n)

= (f + g)(m) + (f + g)(n)

for all m,n ∈ M . Thus End (M) is closed under function addition.
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Addition is commutative since f + g = g + f as (f + g)(m) = f(m) +
g(m) = g(m) + f(m) = (g + f)(m) for all m ∈ M . In a similar
manner one shows that addition is associative which boils down to
((f + g) + h)(m) = (f + (g + h))(m) for all m ∈ M .

We have seen from group theory that the zero function 0 : M −→
M , defined by 0(m) = 0 for all m ∈ M , is a group homomorphism.
Thus 0 ∈ End (M). The zero function serves as a neutral element
for addition since function addition is commutative and f + 0 = f as
(f + 0)(m) = f(m) + 0(m) = f(m) + 0 = f(m) for all m ∈ M .

Note that −f : M −→ M defined by (−f)(m) = −f(m) for all m ∈ M
is a group homomorphism since

(−f)(m + n) = −(f(m + n))

= −(f(m) + f(n))

= (−f(n)) + (−f(m))

= (−f(m)) + (−f(n))

= (−f)(m) + (−f)(n)

for all m,n ∈ M . The reader is left to show that −f is an additive
inverse for f . We have finally shown that End (M) is a group under
addition.

To complete the proof that End (M) is a ring with unity we need to
establish the distributive laws. First of all (f+g)◦h = f◦h+g◦h follows
by definition of function composition and function addition since

((f + g)◦h)(m) = (f + g)(h(m))

= f(h(m)) + g(h(m))

= (f◦h)(m) + (g◦h)(m)

= (f◦h + g◦h)(m)

for all m ∈ M . Since f is a group homomorphism the distributive law
f◦(g + h) = f◦g + f◦h holds as

(f◦(g + h))(m) = f((g + h)(m))

= f(g(m) + h(m))
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= f(g(m)) + f(h(m))

= (f◦g)(m) + (f◦h)(m)

= (f◦g + f◦h)(m)

for all m ∈ M . Therefore End (M) is a ring with unity.

Comment: The proof actually establishes more. For non-empty sets
X,Y let Fun(X, Y ) be the set of all functions f : X −→ Y .

Let M be a non-empty set. Then Fun(M,M) is a monoid under com-
position with neutral element IM .

Suppose that X is a non-empty set and M is an additive (not necessarily
abelian) group. Then Fun(X, M), in particular Fun(M, M), is a group
under function addition with neutral element the zero map 0 : X −→
M defined by 0(x) = 0 for all x ∈ X. Furthermore the distributive law

(f + g)◦h = f◦h + g◦h
holds for all f, g, h,∈ Fun(M,M).

Let f ∈ Fun(M, M) be fixed. Then the distributive law f◦(g + h) =
f◦g + f◦h holds for all g, h ∈ Fun(M, M) if and only if f ∈ End (M).
(To see this let m,n ∈ M and g(x) = m and h(x) = n for all x ∈ M .)

Observe that End (M) is a submonoid of Fun(M, M) with neutral el-
ement IM . When M is abelian End (M) is a subgroup of Fun(M,M)
under function addition. (In this case End (M) is a ring with unity
under function addition and composition.)

Note that IM + IM ∈ End (M) if and only if M is abelian. Thus
End (M) is closed under function addition if and only if M is abelian.

Now suppose that M is a left R-module.

(b) (8) For r ∈ R define σr : M −→ M by σr(m) = r·m for all m ∈ M .
Show that σr ∈ End(M) for all r ∈ R and π : R −→ End(M) defined
by π(r) = σr for all r ∈ R is a homomorphism of rings with unity.

Solution: Let r ∈ R. for m,n ∈ M the calculation σr(m + n) =
r·(m + n) = r·m + r·n = σr(m) + σr(n) shows that σr : M −→ M is
an endomorphism of (additive) groups.
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Let r, r′ ∈ R. We have just shown that π(r) = σr ∈ End (M). Note
that π(r)(m) = σr(m) = r·m for all m ∈ M . Since

π(r + r′)(m) = (r + r′)·m
= r·m + r′·m
= π(r)(m) + π(r′)(m)

= (π(r) + π(r′))(m)

for all m ∈ M it follows that π(r + r′) = π(r) + π(r′). Likewise

π(rr′)(m) = (rr′)·m
= r·(r′·m)

= π(r)(r′·m)

= π(r)(π(r′)(m))

= (π(r)◦π(r′))(m)

for all m ∈ M shows that π(rr′) = π(r)◦π(r′). Thus π is a ring
homomorphism. Since π(1)(m) = 1·m = m = IM(m) for all m ∈ M we
have π(1) = IM . Therefore π is a homomorphism of rings with unity.

2. (20 total) Let M be a left R-module. For a non-empty subset S of M
the subset of R defined by

annR(S) = {r ∈ R | r·s = 0 ∀s ∈ S}
is called the annihilator of S. If S = {s} is a singleton we write annR(s) for
annR({s}).

(a) (8) Suppose that N is a submodule of M . Show that annR(N) is an
ideal of R.

Solution: Let I = annR(N). Then 0 ∈ I since 0·m = 0 for all m ∈ N .
Thus I 6= ∅. Suppose r, r′ ∈ I and n ∈ N . Then (r−r′)·n = r·n−r′·n =
0− 0 = 0 since n,−n ∈ N . Thus r − r′ ∈ I which establishes that I is
an additive subgroup of R. For r′′ ∈ R the calculations

(r′′r)·n = r′′·(r·n) = r′′·0 = 0

and
(rr′′)·n = r·(r′′·n) ∈ r·N = (0)

show that r′′r, rr′′ ∈ I. Therefore I is an ideal of R.
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Now suppose m ∈ M is fixed.

(b) (6) Show that annR(m) is a left ideal of R.

Solution: The calculations of part (a) establish p[art (b).

(c) (6) Let f : R −→ R·m be defined by f(r) = r·m for all r ∈ R. Show f is
a homomorphism of left R-modules and F : R/annR(m) −→ R·m given
by F (r + annR(m)) = r·m for all r ∈ R is a well-defined isomorphism
of left R-modules.

Solution: Let r, r′ ∈ R. Then R·m is a submodule of M (a proof
really is in order) and the calculations

f(r + r′) = (r + r′)·m = r·m + r′·m = f(r) + f(r′)

and
f(rr′) = (rr′)·m = r·(r′·m) = r·f(r′)

show that f is a map of left R-modules. One could appeal to the
Isomorphism Theorems for R-modules to complete the problem; we
will follow the intent of the instructions.

F is well-defined. Suppose that r, r′ ∈ R and r + annR(m) = r′ +
annR(m). Then r − r′ ∈ annR(m) which means (r − r′)·m = 0 or
equivalently r·m = r′·m. Therefore F (r + annR(m)) = r·m = r′·m =
F (r′ + annR(m)) which means F is well-defined. Note that F and f
are related by F (r + annR(m)) = f(r) for all r ∈ R.

F is a module map since

F ((r + annR(m)) + (r′ + annR(m)))

= F ((r + r′) + annR(m))

= f(r + r′)

= f(r) + f(r′)

= F (r + annR(m)) + F (r′ + annR(m))

and

F (r·(r′ + annR(m)))
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= F (rr′ + annR(m))

= f(rr′)

= r·f(r′)

= r·F (r′ + annR(m))

for all r, r′ ∈ R. F is surjective since f is. Since

Ker F = {r + annR(m)) | r ∈ annR(m))}
is the trivial subgroup of R/annR(m), it follows that the (group) ho-
momorphism F is injective.

3. (20 total) Let k be a field, V a vector space over k, and T ∈ Endk(V )
be a linear endomorphism of V . Then the ring homomorphism π : k[X] −→
Endk(V ) defined by π(f(X)) = f(T ) for all f(X) ∈ k[X] determines a left
k[X]-module structure on V by f(X)·v = π(f(X))(v) = p(T )(v) for all
v ∈ V .

(a) (15) Let W be a non-empty subset of V . Show that W is a k[X]-
submodule of V if and only if W is a T -invariant subspace of V .

Solution: Suppose that f(X) = α0 + · · · + αnXn ∈ k[X]. Then
f(X)·v = f(T )(v) = (α0IV + · · ·+ αnT n)(v) = α0v + · · ·+ αnT n(v) for
all v ∈ V .

Let W be a k[X]-submodule. Then W is an additive subgroup of V
by definition. Let w ∈ W . Since f(X)·w = α0w when f(X) = α0

and f(X)·w = T (w) when f(X) = X, α0w ∈ W for all α0 ∈ k, which
means that W is a subspace of V , and T (w) ∈ W , which means that
W is T -invariant (or T -stable).

Conversely, let W be a T -invariant subspace of V . Then Tm(W ) ⊆ W
for all m ≥ 0 by induction on m. Therefore f(X)·w ∈ W for all w ∈ W
which means that W is a k[X]-submodule of V .

(b) (5) Suppose that V = k[X]·v is a cyclic k[X]-module. Show that
annk[X](V ) = (f(X)), where f(X) is the minimal polynomial of T .

Solution: There are various ways of defining the minimal polyno-
mial of T . One is the unique monic generator of the ideal I of all
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f(X) ∈ k[X] such that f(T ) = 0 when I 6= (0). Otherwise the minimal
polynomial is set to 0 when I = (0). Note that I = annk[X](V ).

Comment: The condition V is cyclic is not necessary; it was there
anticipating a certain application.

4. (20 total) Let M be a left R-module.

(a) (5) Suppose that N is a non-empty family of submodules of M . Show
that L =

⋂
N∈N N is a submodule of M .

Solution: Since submodules are (additive) subgroups, we know from
group theory that L =

⋂
N∈N N is a subgroup of M . Let r ∈ R and

n ∈ L. To complete the proof that L is a submodule of M we need
only show that r·n ∈ L. Since n ∈ L, n ∈ N for all N ∈ N . Hence
r·n ∈ N for all N ∈ N , since each N is a submodule of M , and therefore
r·n ∈ L.

Since M is submodule of M , it follows that any S subset of M is contained
in a smallest submodule of M , namely the intersection of all submodule
containing S. This submodule is denoted by (S) and is called the submodule
of M generated by S.

(b) (5) Let ∅ 6= S ⊆ M . Show that

(S) = {r1·s1 + · · ·+ r`·s` | ` ≥ 1, r1, . . . , r` ∈ R, s1, . . . , s` ∈ S}.

solution: Let

L′ = {r1·s1 + · · ·+ r`s` | ` ≥ 1, r1, . . . , r` ∈ R, s1, . . . , s` ∈ S}.

Informally we may describe L′ as the set of all finite sums of products
r·s, where r ∈ R and s ∈ S. Now L′ ⊆ (S). For since S ⊆ (S) and
(S) is a submodule of M , products r·s ∈ (S) since (S) is closed under
module multiplication, and thus r1·s1 + · · · + r`s` ∈ (S), by induction
on `, for all r1, . . . , r` ∈ R and s1, . . . , s` ∈ S since (S) is closed under
addition.

7



To complete the proof we need only show (S) ⊆ L′. Since s = 1·s for
all s ∈ M it follows that S ⊆ L′. Thus to show (S) ⊆ L′ we need only
show that L′ is a submodule of M . Since S 6= ∅ and S ⊆ L′ it follows
that L′ 6= ∅.
Suppose that x, y ∈ L′. Then x, y are finite sums of products r·s, where
r ∈ R and s ∈ S; therefore x + y is as well. We have shown x + y ∈ L′.
Since −(r·s) = (−r)·s and r′·(r·s) = (r′r)·s for r, r′ ∈ R and s ∈ S, it
follows that −x and r′·x are finite sums of products r′′·s′′, where r′′ ∈ R
and s′′ ∈ S. Therefore −x, r·x ∈ L′ which completes our proof that L′

is a submodule of M .

Comment: Here are the highlights of a proof of the fact the L′ is a
submodule of M which follows the literal description of L′.

Let x, y ∈ L′. Write x = r1·s1 + · · ·+ r`·s` and y = r′1·s′1 + · · ·+ r′`′·s′`′ ,
where `, `′ ≥ 1, r1, . . . , r`, r

′
1, . . . , r

′
`′ ∈ R, and s1, . . . , s`, s

′
1, . . . , s

′
`′ ∈ S.

Thus
x + y = r1·s1 + · · ·+ r`·s` + r′1·s′1 + · · ·+ r′`′ ·s′`′

which means
x + y = r′′1 ·s′′1 + · · ·+ r′′`′′ ·s′′`′′ ,

where `′′ = ` + `”,

r′′i =

{
ri : 1 ≤ i ≤ `
r′i−` : ` < i ≤ ` + `′

,

and

s′′i =

{
si : 1 ≤ i ≤ `
s′i−` : ` < i ≤ ` + `′

.

Thus x + y ∈ L′. Note that

−x = −(r1·s1)− · · · − (r`·s`) = (−r1)·s1 + · · ·+ (−r`)·s` ∈ L′

and

r·x = r·(r1·s1) + · · ·+ r·(r`·s`) = (rr1)·s1 + · · ·+ (rr`)·s` ∈ L′.

Suppose f, f ′ : M −→ M ′ are R-module homomorphisms.
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(c) (5) Show that N = {m ∈ M | f(m) = f ′(m)} is a submodule of M .

Solution: First of all 0 ∈ N since f(0) = 0 = f ′(0) as f, f ′ are
group homomorphisms. Suppose that m,n ∈ M . Then f(m − n) =
f(m + (−n)) = f(m) + f(−n) = f(m)− f(n). Thus for m,n ∈ N we
have

f(m− n) = f(m)− f(n) = f ′(m)− f ′(n) = f ′(m− n)

which means m−n ∈ N . Therefore N ≤ M . For r ∈ R the calculation

f(r·m) = r·f(m) = r·f ′(m) = f ′(r·m)

shows that r·m ∈ N . Therefore N is a submodule of M .

(d) (5) Suppose that S generates M . Show that f = f ′ if and only if
f(s) = f ′(s) for all s ∈ S.

Solution: If f = f ′ then f(s) = f ′(s) for all s ∈ M , hence for all
s ∈ S. Conversely, suppose that f(s) = f ′(s) for all s ∈ S and let N
be as in part (a). Then S ⊆ N which means M = (S) ⊆ N since S
generates M and N is a submodule of M . Therefore M = N which
means f(m) = f ′(m) for all m ∈ M , or equivalently f = f ′.

Comment: There is no need to invoke part (b) for part (d).

5. (20 total) Use Corollary 2 of “Section 2.3 Supplement” and the equation
of Problem 3 of Written Homework 3 to prove the following:

Theorem 1 Let k be a field and suppose that G is a finite subgroup of k×.
Then G is cyclic.

Solution: A proof is to be based on the equations

∑

d|n
ϕ(d) = n

for all positive integers n and

∑

d | |G|
ndϕ(d) = |G|
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for all finite groups G. Suppose that H ≤ k× is cyclic of order d. Then
ad = 1, or equivalently a is a root of Xd − 1 ∈ k[X], for all a ∈ H. This
polynomial has at most d roots in k since k is a field. Therefore H is the set
of the roots of Xd − 1 in k. We have shown that there is at most one cyclic
subgroup of order d in k×.

Now let G ≤ k× be finite. We have shown nd = 0 or nd = 1 for each
positive divisor of |G|. Since ϕ(d) > 0 for all positive integers d, from the
equations ∑

d | |G|
ndϕ(d) = |G| = ∑

d | |G|
ϕ(d) =

∑

d | |G|
1ϕ(d)

we deduce that nd = 1 for all positive divisors d of |G|. In particular n|G| = 1
which means that G has a cyclic subgroup of order |G|; thus G is cyclic.
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