Written Homework \# 5 Solution

12/12/06

Throughout R is a ring with unity.
Comment: It will become apparent that the module properties $0 \cdot m=0$, $-(r \cdot m)=(-r) \cdot m$, and $\left(r-r^{\prime}\right) \cdot m=r \cdot m-r^{\prime} \cdot m$ are vital details in some problems.

1. (20 total) Let M be an (additive) abelian group and $\operatorname{End}(M)$ be the set of group homomorphisms $f: M \longrightarrow M$.
(a) (12) Show $\operatorname{End}(M)$ is a ring with unity, where $(f+g)(m)=f(m)+g(m)$ and $(f g)(m)=f(g(m))$ for all $f, g \in \operatorname{End}(M)$ and $m \in M$.

Solution: This is rather tedious, but not so unusual as a basic algebra exercise. The trick is to identify all of the things, large and small, which need to be verified.
We know that the composition of group homomorphisms is a group homomorphism. Thus $\operatorname{End}(M)$ is closed under function composition. Moreover End (M) is a monoid since composition is an associative operation and the identity map I_{M} of M is a group homomorphism.

Let $f, g, h \in \operatorname{End}(M)$. The sum $f+g \in \operatorname{End}(M)$ since M is abelian as

$$
\begin{aligned}
(f+g)(m+n) & =f(m+n)+g(m+n) \\
& =f(m)+f(n)+g(m)+g(n) \\
& =f(m)+g(m)+f(n)+g(n) \\
& =(f+g)(m)+(f+g)(n)
\end{aligned}
$$

for all $m, n \in M$. Thus $\operatorname{End}(M)$ is closed under function addition.

Addition is commutative since $f+g=g+f$ as $(f+g)(m)=f(m)+$ $g(m)=g(m)+f(m)=(g+f)(m)$ for all $m \in M$. In a similar manner one shows that addition is associative which boils down to $((f+g)+h)(m)=(f+(g+h))(m)$ for all $m \in M$.
We have seen from group theory that the zero function 0: $M \longrightarrow$ M, defined by $\mathbf{0}(m)=0$ for all $m \in M$, is a group homomorphism. Thus $\mathbf{0} \in \operatorname{End}(M)$. The zero function serves as a neutral element for addition since function addition is commutative and $f+\mathbf{0}=f$ as $(f+\mathbf{0})(m)=f(m)+\mathbf{0}(m)=f(m)+0=f(m)$ for all $m \in M$.
Note that $-f: M \longrightarrow M$ defined by $(-f)(m)=-f(m)$ for all $m \in M$ is a group homomorphism since

$$
\begin{aligned}
(-f)(m+n) & =-(f(m+n)) \\
& =-(f(m)+f(n)) \\
& =(-f(n))+(-f(m)) \\
& =(-f(m))+(-f(n)) \\
& =(-f)(m)+(-f)(n)
\end{aligned}
$$

for all $m, n \in M$. The reader is left to show that $-f$ is an additive inverse for f. We have finally shown that $\operatorname{End}(M)$ is a group under addition.

To complete the proof that End (M) is a ring with unity we need to establish the distributive laws. First of all $(f+g) \circ h=f \circ h+g \circ h$ follows by definition of function composition and function addition since

$$
\begin{aligned}
((f+g) \circ h)(m) & =(f+g)(h(m)) \\
& =f(h(m))+g(h(m)) \\
& =(f \circ h)(m)+(g \circ h)(m) \\
& =(f \circ h+g \circ h)(m)
\end{aligned}
$$

for all $m \in M$. Since f is a group homomorphism the distributive law $f \circ(g+h)=f \circ g+f \circ h$ holds as

$$
\begin{aligned}
(f \circ(g+h))(m) & =f((g+h)(m)) \\
& =f(g(m)+h(m))
\end{aligned}
$$

$$
\begin{aligned}
& =f(g(m))+f(h(m)) \\
& =(f \circ g)(m)+(f \circ h)(m) \\
& =(f \circ g+f \circ h)(m)
\end{aligned}
$$

for all $m \in M$. Therefore $\operatorname{End}(M)$ is a ring with unity.
Comment: The proof actually establishes more. For non-empty sets X, Y let $\operatorname{Fun}(X, Y)$ be the set of all functions $f: X \longrightarrow Y$.

Let M be a non-empty set. Then $\operatorname{Fun}(M, M)$ is a monoid under composition with neutral element I_{M}.
Suppose that X is a non-empty set and M is an additive (not necessarily abelian) group. Then $\operatorname{Fun}(X, M)$, in particular $F u n(M, M)$, is a group under function addition with neutral element the zero map 0:X\longrightarrow M defined by $\mathbf{0}(x)=0$ for all $x \in X$. Furthermore the distributive law

$$
(f+g) \circ h=f \circ h+g \circ h
$$

holds for all $f, g, h, \in \operatorname{Fun}(M, M)$.
Let $f \in \operatorname{Fun}(M, M)$ be fixed. Then the distributive law $f \circ(g+h)=$ $f \circ g+f \circ h$ holds for all $g, h \in \operatorname{Fun}(M, M)$ if and only if $f \in \operatorname{End}(M)$. (To see this let $m, n \in M$ and $g(x)=m$ and $h(x)=n$ for all $x \in M$.)
Observe that $\operatorname{End}(M)$ is a submonoid of $\operatorname{Fun}(M, M)$ with neutral element I_{M}. When M is abelian End (M) is a subgroup of $\operatorname{Fun}(M, M)$ under function addition. (In this case End (M) is a ring with unity under function addition and composition.)
Note that $I_{M}+I_{M} \in \operatorname{End}(M)$ if and only if M is abelian. Thus End (M) is closed under function addition if and only if M is abelian.

Now suppose that M is a left R-module.
(b) (8) For $r \in R$ define $\sigma_{r}: M \longrightarrow M$ by $\sigma_{r}(m)=r \cdot m$ for all $m \in M$. Show that $\sigma_{r} \in \operatorname{End}(M)$ for all $r \in R$ and $\pi: R \longrightarrow \operatorname{End}(M)$ defined by $\pi(r)=\sigma_{r}$ for all $r \in R$ is a homomorphism of rings with unity.

Solution: Let $r \in R$. for $m, n \in M$ the calculation $\sigma_{r}(m+n)=$ $r \cdot(m+n)=r \cdot m+r \cdot n=\sigma_{r}(m)+\sigma_{r}(n)$ shows that $\sigma_{r}: M \longrightarrow M$ is an endomorphism of (additive) groups.

Let $r, r^{\prime} \in R$. We have just shown that $\pi(r)=\sigma_{r} \in \operatorname{End}(M)$. Note that $\pi(r)(m)=\sigma_{r}(m)=r \cdot m$ for all $m \in M$. Since

$$
\begin{aligned}
\pi\left(r+r^{\prime}\right)(m) & =\left(r+r^{\prime}\right) \cdot m \\
& =r \cdot m+r^{\prime} \cdot m \\
& =\pi(r)(m)+\pi\left(r^{\prime}\right)(m) \\
& =\left(\pi(r)+\pi\left(r^{\prime}\right)\right)(m)
\end{aligned}
$$

for all $m \in M$ it follows that $\pi\left(r+r^{\prime}\right)=\pi(r)+\pi\left(r^{\prime}\right)$. Likewise

$$
\begin{aligned}
\pi\left(r r^{\prime}\right)(m) & =\left(r r^{\prime}\right) \cdot m \\
& =r \cdot\left(r^{\prime} \cdot m\right) \\
& =\pi(r)\left(r^{\prime} \cdot m\right) \\
& =\pi(r)\left(\pi\left(r^{\prime}\right)(m)\right) \\
& =\left(\pi(r) \circ \pi\left(r^{\prime}\right)\right)(m)
\end{aligned}
$$

for all $m \in M$ shows that $\pi\left(r r^{\prime}\right)=\pi(r) \circ \pi\left(r^{\prime}\right)$. Thus π is a ring homomorphism. Since $\pi(1)(m)=1 \cdot m=m=I_{M}(m)$ for all $m \in M$ we have $\pi(1)=I_{M}$. Therefore π is a homomorphism of rings with unity.
2. (20 total) Let M be a left R-module. For a non-empty subset S of M the subset of R defined by

$$
\operatorname{ann}_{R}(S)=\{r \in R \mid r \cdot s=0 \quad \forall s \in S\}
$$

is called the annihilator of S. If $S=\{s\}$ is a singleton we write $\operatorname{ann}_{R}(s)$ for $\operatorname{ann}_{R}(\{s\})$.
(a) (8) Suppose that N is a submodule of M. Show that $\operatorname{ann}_{R}(N)$ is an ideal of R.

Solution: Let $I=\operatorname{ann}_{R}(N)$. Then $0 \in I$ since $0 \cdot m=0$ for all $m \in N$. Thus $I \neq \emptyset$. Suppose $r, r^{\prime} \in I$ and $n \in N$. Then $\left(r-r^{\prime}\right) \cdot n=r \cdot n-r^{\prime} \cdot n=$ $0-0=0$ since $n,-n \in N$. Thus $r-r^{\prime} \in I$ which establishes that I is an additive subgroup of R. For $r^{\prime \prime} \in R$ the calculations

$$
\left(r^{\prime \prime} r\right) \cdot n=r^{\prime \prime} \cdot(r \cdot n)=r^{\prime \prime} \cdot 0=0
$$

and

$$
\left(r r^{\prime \prime}\right) \cdot n=r \cdot\left(r^{\prime \prime} \cdot n\right) \in r \cdot N=(0)
$$

show that $r^{\prime \prime} r, r r^{\prime \prime} \in I$. Therefore I is an ideal of R.

Now suppose $m \in M$ is fixed.
(b) (6) Show that $\operatorname{ann}_{R}(m)$ is a left ideal of R.

Solution: The calculations of part (a) establish p[art (b).
(c) (6) Let $f: R \longrightarrow R \cdot m$ be defined by $f(r)=r \cdot m$ for all $r \in R$. Show f is a homomorphism of left R-modules and $F: R / \operatorname{ann}_{R}(m) \longrightarrow R \cdot m$ given by $F\left(r+\operatorname{ann}_{R}(m)\right)=r \cdot m$ for all $r \in R$ is a well-defined isomorphism of left R-modules.

Solution: Let $r, r^{\prime} \in R$. Then $R \cdot m$ is a submodule of M (a proof really is in order) and the calculations

$$
f\left(r+r^{\prime}\right)=\left(r+r^{\prime}\right) \cdot m=r \cdot m+r^{\prime} \cdot m=f(r)+f\left(r^{\prime}\right)
$$

and

$$
f\left(r r^{\prime}\right)=\left(r r^{\prime}\right) \cdot m=r \cdot\left(r^{\prime} \cdot m\right)=r \cdot f\left(r^{\prime}\right)
$$

show that f is a map of left R-modules. One could appeal to the Isomorphism Theorems for R-modules to complete the problem; we will follow the intent of the instructions.
F is well-defined. Suppose that $r, r^{\prime} \in R$ and $r+\operatorname{ann}_{R}(m)=r^{\prime}+$ $\operatorname{ann}_{R}(m)$. Then $r-r^{\prime} \in \operatorname{ann}_{R}(m)$ which means $\left(r-r^{\prime}\right) \cdot m=0$ or equivalently $r \cdot m=r^{\prime} \cdot m$. Therefore $F\left(r+\operatorname{ann}_{R}(m)\right)=r \cdot m=r^{\prime} \cdot m=$ $F\left(r^{\prime}+\operatorname{ann}_{R}(m)\right)$ which means F is well-defined. Note that F and f are related by $F\left(r+\operatorname{ann}_{R}(m)\right)=f(r)$ for all $r \in R$.
F is a module map since

$$
\begin{aligned}
& F\left(\left(r+\operatorname{ann}_{R}(m)\right)+\left(r^{\prime}+\operatorname{ann}_{R}(m)\right)\right) \\
& \quad=F\left(\left(r+r^{\prime}\right)+\operatorname{ann}_{R}(m)\right) \\
& \quad=f\left(r+r^{\prime}\right) \\
& \quad=f(r)+f\left(r^{\prime}\right) \\
& \quad=F\left(r+\operatorname{ann}_{R}(m)\right)+F\left(r^{\prime}+\operatorname{ann}_{R}(m)\right)
\end{aligned}
$$

and

$$
F\left(r \cdot\left(r^{\prime}+\operatorname{ann}_{R}(m)\right)\right)
$$

$$
\begin{aligned}
& =F\left(r r^{\prime}+\operatorname{ann}_{R}(m)\right) \\
& =f\left(r r^{\prime}\right) \\
& =r \cdot f\left(r^{\prime}\right) \\
& =r \cdot F\left(r^{\prime}+\operatorname{ann}_{R}(m)\right)
\end{aligned}
$$

for all $r, r^{\prime} \in R$. F is surjective since f is. Since

$$
\text { Ker } \left.\left.F=\left\{r+\operatorname{ann}_{R}(m)\right) \mid r \in \operatorname{ann}_{R}(m)\right)\right\}
$$

is the trivial subgroup of $R / \operatorname{ann}_{R}(m)$, it follows that the (group) homomorphism F is injective.
3. (20 total) Let k be a field, V a vector space over k, and $T \in \operatorname{End}_{k}(V)$ be a linear endomorphism of V. Then the ring homomorphism $\pi: k[X] \longrightarrow$ $\operatorname{End}_{k}(V)$ defined by $\pi(f(X))=f(T)$ for all $f(X) \in k[X]$ determines a left $k[X]$-module structure on V by $f(X) \cdot v=\pi(f(X))(v)=p(T)(v)$ for all $v \in V$.
(a) (15) Let W be a non-empty subset of V. Show that W is a $k[X]-$ submodule of V if and only if W is a T-invariant subspace of V.

Solution: Suppose that $f(X)=\alpha_{0}+\cdots+\alpha_{n} X^{n} \in k[X]$. Then $f(X) \cdot v=f(T)(v)=\left(\alpha_{0} I_{V}+\cdots+\alpha_{n} T^{n}\right)(v)=\alpha_{0} v+\cdots+\alpha_{n} T^{n}(v)$ for all $v \in V$.
Let W be a $k[X]$-submodule. Then W is an additive subgroup of V by definition. Let $w \in W$. Since $f(X) \cdot w=\alpha_{0} w$ when $f(X)=\alpha_{0}$ and $f(X) \cdot w=T(w)$ when $f(X)=X, \alpha_{0} w \in W$ for all $\alpha_{0} \in k$, which means that W is a subspace of V, and $T(w) \in W$, which means that W is T-invariant (or T-stable).
Conversely, let W be a T-invariant subspace of V. Then $T^{m}(W) \subseteq W$ for all $m \geq 0$ by induction on m. Therefore $f(X) \cdot w \in W$ for all $w \in W$ which means that W is a $k[X]$-submodule of V.
(b) (5) Suppose that $V=k[X] \cdot v$ is a cyclic $k[X]$-module. Show that $\operatorname{ann}_{k[X]}(V)=(f(X))$, where $f(X)$ is the minimal polynomial of T.

Solution: There are various ways of defining the minimal polynomial of T. One is the unique monic generator of the ideal I of all
$f(X) \in k[X]$ such that $f(T)=0$ when $I \neq(0)$. Otherwise the minimal polynomial is set to 0 when $I=(0)$. Note that $I=\operatorname{ann}_{k[X]}(V)$.

Comment: The condition V is cyclic is not necessary; it was there anticipating a certain application.
4. ($\mathbf{2 0}$ total) Let M be a left R-module.
(a) (5) Suppose that \mathcal{N} is a non-empty family of submodules of M. Show that $L=\bigcap_{N \in \mathcal{N}} N$ is a submodule of M.

Solution: Since submodules are (additive) subgroups, we know from group theory that $L=\bigcap_{N \in \mathcal{N}} N$ is a subgroup of M. Let $r \in R$ and $n \in L$. To complete the proof that L is a submodule of M we need only show that $r \cdot n \in L$. Since $n \in L, n \in N$ for all $N \in \mathcal{N}$. Hence $r \cdot n \in N$ for all $N \in \mathcal{N}$, since each N is a submodule of M, and therefore $r \cdot n \in L$.

Since M is submodule of M, it follows that any S subset of M is contained in a smallest submodule of M, namely the intersection of all submodule containing S. This submodule is denoted by (S) and is called the submodule of M generated by S.
(b) (5) Let $\emptyset \neq S \subseteq M$. Show that

$$
(S)=\left\{r_{1} \cdot s_{1}+\cdots+r_{\ell} \cdot s_{\ell} \mid \ell \geq 1, r_{1}, \ldots, r_{\ell} \in R, s_{1}, \ldots, s_{\ell} \in S\right\}
$$

solution: Let

$$
L^{\prime}=\left\{r_{1} \cdot s_{1}+\cdots+r_{\ell} s_{\ell} \mid \ell \geq 1, r_{1}, \ldots, r_{\ell} \in R, s_{1}, \ldots, s_{\ell} \in S\right\}
$$

Informally we may describe L^{\prime} as the set of all finite sums of products $r \cdot s$, where $r \in R$ and $s \in S$. Now $L^{\prime} \subseteq(S)$. For since $S \subseteq(S)$ and (S) is a submodule of M, products $r \cdot s \in(S)$ since (S) is closed under module multiplication, and thus $r_{1} \cdot s_{1}+\cdots+r_{\ell} s_{\ell} \in(S)$, by induction on ℓ, for all $r_{1}, \ldots, r_{\ell} \in R$ and $s_{1}, \ldots, s_{\ell} \in S$ since (S) is closed under addition.

To complete the proof we need only show $(S) \subseteq L^{\prime}$. Since $s=1 \cdot s$ for all $s \in M$ it follows that $S \subseteq L^{\prime}$. Thus to show $(S) \subseteq L^{\prime}$ we need only show that L^{\prime} is a submodule of M. Since $S \neq \emptyset$ and $S \subseteq L^{\prime}$ it follows that $L^{\prime} \neq \emptyset$.
Suppose that $x, y \in L^{\prime}$. Then x, y are finite sums of products $r \cdot s$, where $r \in R$ and $s \in S$; therefore $x+y$ is as well. We have shown $x+y \in L^{\prime}$. Since $-(r \cdot s)=(-r) \cdot s$ and $r^{\prime} \cdot(r \cdot s)=\left(r^{\prime} r\right) \cdot s$ for $r, r^{\prime} \in R$ and $s \in S$, it follows that $-x$ and $r^{\prime} \cdot x$ are finite sums of products $r^{\prime \prime} \cdot s^{\prime \prime}$, where $r^{\prime \prime} \in R$ and $s^{\prime \prime} \in S$. Therefore $-x, r \cdot x \in L^{\prime}$ which completes our proof that L^{\prime} is a submodule of M.

Comment: Here are the highlights of a proof of the fact the L^{\prime} is a submodule of M which follows the literal description of L^{\prime}.
Let $x, y \in L^{\prime}$. Write $x=r_{1} \cdot s_{1}+\cdots+r_{\ell} \cdot s_{\ell}$ and $y=r_{1}^{\prime} \cdot s_{1}^{\prime}+\cdots+r_{\ell^{\prime}}^{\prime} \cdot s_{\ell^{\prime}}^{\prime}$, where $\ell, \ell^{\prime} \geq 1, r_{1}, \ldots, r_{\ell}, r_{1}^{\prime}, \ldots, r_{\ell^{\prime}}^{\prime} \in R$, and $s_{1}, \ldots, s_{\ell}, s_{1}^{\prime}, \ldots, s_{\ell^{\prime}}^{\prime} \in S$.
Thus

$$
x+y=r_{1} \cdot s_{1}+\cdots+r_{\ell} \cdot s_{\ell}+r_{1}^{\prime} \cdot s_{1}^{\prime}+\cdots+r_{\ell^{\prime}}^{\prime} \cdot s_{\ell^{\prime}}^{\prime}
$$

which means

$$
x+y=r_{1}^{\prime \prime} \cdot s_{1}^{\prime \prime}+\cdots+r_{\ell^{\prime}}^{\prime \prime} \cdot s_{\ell^{\prime \prime}}^{\prime \prime},
$$

where $\ell^{\prime \prime}=\ell+\ell^{\prime \prime}$,

$$
r_{i}^{\prime \prime}= \begin{cases}r_{i} & : 1 \leq i \leq \ell \\ r_{i-\ell}^{\prime} & : \quad \ell<i \leq \ell+\ell^{\prime}\end{cases}
$$

and

$$
s_{i}^{\prime \prime}= \begin{cases}s_{i} & : \quad 1 \leq i \leq \ell \\ s_{i-\ell}^{\prime} & : \quad \ell<i \leq \ell+\ell^{\prime} .\end{cases}
$$

Thus $x+y \in L^{\prime}$. Note that

$$
-x=-\left(r_{1} \cdot s_{1}\right)-\cdots-\left(r_{\ell} \cdot s_{\ell}\right)=\left(-r_{1}\right) \cdot s_{1}+\cdots+\left(-r_{\ell}\right) \cdot s_{\ell} \in L^{\prime}
$$

and

$$
r \cdot x=r \cdot\left(r_{1} \cdot s_{1}\right)+\cdots+r \cdot\left(r_{\ell} \cdot s_{\ell}\right)=\left(r r_{1}\right) \cdot s_{1}+\cdots+\left(r r_{\ell}\right) \cdot s_{\ell} \in L^{\prime} .
$$

Suppose $f, f^{\prime}: M \longrightarrow M^{\prime}$ are R-module homomorphisms.
(c) (5) Show that $N=\left\{m \in M \mid f(m)=f^{\prime}(m)\right\}$ is a submodule of M.

Solution: First of all $0 \in N$ since $f(0)=0=f^{\prime}(0)$ as f, f^{\prime} are group homomorphisms. Suppose that $m, n \in M$. Then $f(m-n)=$ $f(m+(-n))=f(m)+f(-n)=f(m)-f(n)$. Thus for $m, n \in N$ we have

$$
f(m-n)=f(m)-f(n)=f^{\prime}(m)-f^{\prime}(n)=f^{\prime}(m-n)
$$

which means $m-n \in N$. Therefore $N \leq M$. For $r \in R$ the calculation

$$
f(r \cdot m)=r \cdot f(m)=r \cdot f^{\prime}(m)=f^{\prime}(r \cdot m)
$$

shows that $r \cdot m \in N$. Therefore N is a submodule of M.
(d) (5) Suppose that S generates M. Show that $f=f^{\prime}$ if and only if $f(s)=f^{\prime}(s)$ for all $s \in S$.

Solution: If $f=f^{\prime}$ then $f(s)=f^{\prime}(s)$ for all $s \in M$, hence for all $s \in S$. Conversely, suppose that $f(s)=f^{\prime}(s)$ for all $s \in S$ and let N be as in part (a). Then $S \subseteq N$ which means $M=(S) \subseteq N$ since S generates M and N is a submodule of M. Therefore $M=N$ which means $f(m)=f^{\prime}(m)$ for all $m \in M$, or equivalently $f=f^{\prime}$.

Comment: There is no need to invoke part (b) for part (d).
5. ($\mathbf{2 0}$ total) Use Corollary 2 of "Section 2.3 Supplement" and the equation of Problem 3 of Written Homework 3 to prove the following:

Theorem 1 Let k be a field and suppose that G is a finite subgroup of k^{\times}. Then G is cyclic.

Solution: A proof is to be based on the equations

$$
\sum_{d \mid n} \varphi(d)=n
$$

for all positive integers n and

$$
\sum_{d| | G \mid} n_{d} \varphi(d)=|G|
$$

for all finite groups G. Suppose that $H \leq k^{\times}$is cyclic of order d. Then $a^{d}=1$, or equivalently a is a root of $X^{d}-1 \in k[X]$, for all $a \in H$. This polynomial has at most d roots in k since k is a field. Therefore H is the set of the roots of $X^{d}-1$ in k. We have shown that there is at most one cyclic subgroup of order d in k^{\times}.

Now let $G \leq k^{\times}$be finite. We have shown $n_{d}=0$ or $n_{d}=1$ for each positive divisor of $|G|$. Since $\varphi(d)>0$ for all positive integers d, from the equations

$$
\sum_{d| | G \mid} n_{d} \varphi(d)=|G|=\sum_{d| | G \mid} \varphi(d)=\sum_{d| | G \mid} 1 \varphi(d)
$$

we deduce that $n_{d}=1$ for all positive divisors d of $|G|$. In particular $n_{|G|}=1$ which means that G has a cyclic subgroup of order $|G|$; thus G is cyclic.

