Linear Programming

example: problem setup

- A truck traveling from New York to Baltimore is to be loaded with two types of cargo. Each crate of cargo A is 5 cubic feet in volume, weighs 100 pounds, and earns $\$ 12$ for the driver. Each crate of cargo B is 3 cubic feet in volume, weighs 25 pounds, and earns $\$ 7$ for the driver. The truck can carry no more than 300 cubic feet of crates and no more than 1,000 pounds (half-ton pickup truck). Also, the number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.

Linear Programming

example: problem setup

- A truck traveling from New York to Baltimore is to be loaded with two types of cargo. Each crate of cargo A is 5 cubic feet in volume, weighs 100 pounds, and earns $\$ 12$ for the driver. Each crate of cargo B is 3 cubic feet in volume, weighs 25 pounds, and earns $\$ 7$ for the driver. The truck can carry no more than 300 cubic feet of crates and no more than 1,000 pounds (half-ton pickup truck). Also, the number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.
- Setup the linear programming problem to maximize the drivers earnings.

Linear Programming

example: problem setup

- A truck traveling from New York to Baltimore is to be loaded with two types of cargo. Each crate of cargo A is 5 cubic feet in volume, weighs 100 pounds, and earns $\$ 12$ for the driver. Each crate of cargo B is 3 cubic feet in volume, weighs 25 pounds, and earns $\$ 7$ for the driver. The truck can carry no more than 300 cubic feet of crates and no more than 1,000 pounds (half-ton pickup truck). Also, the number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.
- Setup the linear programming problem to maximize the drivers earnings.
- Find all linear constraints and the objective function.

Linear Programming

example: problem setup

- A truck traveling from New York to Baltimore is to be loaded with two types of cargo. Each crate of cargo A is 5 cubic feet in volume, weighs 100 pounds, and earns $\$ 12$ for the driver. Each crate of cargo B is 3 cubic feet in volume, weighs 25 pounds, and earns $\$ 7$ for the driver. The truck can carry no more than 300 cubic feet of crates and no more than 1,000 pounds (half-ton pickup truck). Also, the number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.
- Setup the linear programming problem to maximize the drivers earnings.
- Find all linear constraints and the objective function.
- Use the corner-point method to solve.

Linear Programming

organize given information
A truck traveling from New York to Baltimore is to be loaded with two types of cargo.

- crate A
- each crate of cargo A is 5 cubic feet in volume
- weighs 100 pounds
- earns $\$ 12$ for the driver

Linear Programming

organize given information
A truck traveling from New York to Baltimore is to be loaded with two types of cargo.

- crate A
- each crate of cargo A is 5 cubic feet in volume
- weighs 100 pounds
- earns $\$ 12$ for the driver
- crate B
- each crate of cargo B is 3 cubic feet in volume
- weighs 25 pounds
- earns $\$ 7$ for the driver

Linear Programming

organize given information
A truck traveling from New York to Baltimore is to be loaded with two types of cargo.

- crate A
- each crate of cargo A is 5 cubic feet in volume
- weighs 100 pounds
- earns $\$ 12$ for the driver
- crate B
- each crate of cargo B is 3 cubic feet in volume
- weighs 25 pounds
- earns $\$ 7$ for the driver
- truck restrictions
- the truck can carry no more than 300 cubic feet of crates
- no more than 1,000 pounds

Linear Programming

organize given information
A truck traveling from New York to Baltimore is to be loaded with two types of cargo.

- crate A
- each crate of cargo A is 5 cubic feet in volume
- weighs 100 pounds
- earns $\$ 12$ for the driver
- crate B
- each crate of cargo B is 3 cubic feet in volume
- weighs 25 pounds
- earns $\$ 7$ for the driver
- truck restrictions
- the truck can carry no more than 300 cubic feet of crates
- no more than 1,000 pounds
- another restriction
- number of creates of cargo B must be less than or equal to twice the number of crates of cargo A

Linear Programming

- let \times be number of crates of A

Linear Programming setup problem

- let x be number of crates of A
- let y be the number of crates of B

Linear Programming setup problem

- let x be number of crates of A
- let y be the number of crates of B
- Problem: maximize drivers earnings subject to constraints

Linear Programming setup problem

- let x be number of crates of A
- let y be the number of crates of B
- Problem: maximize drivers earnings subject to constraints

Linear Programming setup problem

- let x be number of crates of A
- let y be the number of crates of B
- Problem: maximize drivers earnings subject to constraints
- maximize $\mathbf{z}=\$ 12 \mathrm{x}+\mathbf{\$ 7} \mathrm{y}$
- subject to constraints.

Linear Programming
 setup constraints-1

Constraint: The truck can carry no more than 300 cubic feet of crates.

- $($ cubic feet of $A)+($ cubic feet of $B) \leq 300 f t^{3}$

Linear Programming

setup constraints-1

Constraint: The truck can carry no more than 300 cubic feet of crates.

- $($ cubic feet of $A)+($ cubic feet of $B) \leq 300 \mathrm{ft}^{3}$
- $\left(\frac{5 \mathrm{ft}^{3}}{1 \text { crate }} \cdot\right.$ num crates $\left.A\right)+\left(\frac{3 \mathrm{ft}^{3}}{1 \text { crate }} \cdot\right.$ num crates $\left.B\right) \leq 300 \mathrm{ft}^{3}$

Linear Programming

setup constraints-1

Constraint: The truck can carry no more than 300 cubic feet of crates.

- $($ cubic feet of $A)+($ cubic feet of $B) \leq 300 f t^{3}$
- $\left(\frac{5 \mathrm{ft}^{3}}{1 \text { crate }} \cdot\right.$ num crates $\left.A\right)+\left(\frac{3 \mathrm{ft}^{3}}{1 \text { crate }} \cdot\right.$ num crates $\left.B\right) \leq 300 \mathrm{ft}^{3}$
- $5 \cdot x+3 \cdot y \leq 300$

Linear Programming

setup constraints-2

Constraint: The truck can carry no more than 1,000 pounds. - $($ weight of $A)+($ weight of $B) \leq 1,000 \mathrm{lbs}$

Linear Programming

setup constraints-2

Constraint: The truck can carry no more than 1,000 pounds.

- (weight of $A)+($ weight of $B) \leq 1,000 \mathrm{lbs}$
- $\left(\frac{100 \mathrm{lbs}}{1 \text { crate }} \cdot\right.$ num crates $\left.A\right)+\left(\frac{25 \mathrm{lbs}}{1 \text { crate }} \cdot\right.$ num crates $\left.B\right) \leq \mathbf{1 , 0 0 0 l b s}$

Linear Programming

setup constraints-2

Constraint: The truck can carry no more than 1,000 pounds.

- $($ weight of $A)+($ weight of $B) \leq 1,000 \mathrm{lbs}$
- $\left(\frac{100 \mathrm{lbs}}{1 \text { crate }} \cdot\right.$ num crates $\left.A\right)+\left(\frac{25 \mathrm{lbs}}{1 \text { crate }} \cdot\right.$ num crates $\left.B\right) \leq \mathbf{1 , 0 0 0 l b s}$
- $100 \cdot x+25 \cdot y \leq 1,000$

Linear Programming

setup constraints-3

Constraint: number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.

- $\mathrm{y} \leq 2 \cdot \mathrm{x}$

Linear Programming

setup constraints-3

Constraint: number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.

- $\mathrm{y} \leq 2 \cdot \mathrm{x}$
- $-2 x+y \leq 0$

Linear Programming

problem summary

Solve the following linear programming problem by the corner-point method.

$$
\begin{array}{r}
\text { Maximize: } z=\$ 12 x+\$ 7 y \\
\text { subject to: } 5 \cdot x+3 \cdot y \leq 300 \\
100 \cdot x+25 \cdot y \leq 1,000 \\
-2 x+y \leq 0 \\
x \geq 0 \\
y \geq 0 \tag{6}
\end{array}
$$

Linear Programming

graph of constraints

Linear Programming

example 2

Solve the following linear programming problem by the corner-point method.

$$
\begin{array}{r}
\text { Maximize: } z=20 x+15 y \\
\text { subject to: } 3 x+4 y \leq 60 \tag{8}\\
4 x+3 y \leq 60 \\
x \leq 10 \\
y \leq 12 \\
x \geq 0 \\
y \geq 0
\end{array}
$$

Linear Programming

graph of constraints

Linear Programming

Corner Point	(x, y)	$z=20 x+15 y$
A	$(0,0)$	$20(0)+15(0)=0$
B	$(0,12)$	$20(0)+15(12)=180$
C	$(4,12)$	$20(4)+15(12)=260$
D	$\left(\frac{60}{7}, \frac{60}{7}\right)$	$20\left(\frac{60}{7}\right)+15\left(\frac{60}{7}\right)=300 *$
E	$\left(10, \frac{20}{3}\right)$	$20(10)+15\left(\frac{20}{3}\right)=300 *$
F	$(10,0)$	$20(10)+15(0)=200$

Note the tie for the highest value of z between points D and E. All points on the line segment between D and E will give the same value for for z as at D and E. There are an infinite number of optimal solutions on $\overline{\mathbf{A D}}$

