A truck traveling from New York to Baltimore is to be loaded with two types of cargo. Each crate of cargo A is 5 cubic feet in volume, weighs 100 pounds, and earns \$12 for the driver. Each crate of cargo B is 3 cubic feet in volume, weighs 25 pounds, and earns \$7 for the driver. The truck can carry no more than 300 cubic feet of crates and no more than 1,000 pounds (half-ton pickup truck). Also, the number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 A truck traveling from New York to Baltimore is to be loaded with two types of cargo. Each crate of cargo A is 5 cubic feet in volume, weighs 100 pounds, and earns \$12 for the driver. Each crate of cargo B is 3 cubic feet in volume, weighs 25 pounds, and earns \$7 for the driver. The truck can carry no more than 300 cubic feet of crates and no more than 1,000 pounds (half-ton pickup truck). Also, the number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Setup the linear programming problem to maximize the drivers earnings.

- A truck traveling from New York to Baltimore is to be loaded with two types of cargo. Each crate of cargo A is 5 cubic feet in volume, weighs 100 pounds, and earns \$12 for the driver. Each crate of cargo B is 3 cubic feet in volume, weighs 25 pounds, and earns \$7 for the driver. The truck can carry no more than 300 cubic feet of crates and no more than 1,000 pounds (half-ton pickup truck). Also, the number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.
- Setup the linear programming problem to maximize the drivers earnings.
 - Find all linear constraints and the objective function.

- A truck traveling from New York to Baltimore is to be loaded with two types of cargo. Each crate of cargo A is 5 cubic feet in volume, weighs 100 pounds, and earns \$12 for the driver. Each crate of cargo B is 3 cubic feet in volume, weighs 25 pounds, and earns \$7 for the driver. The truck can carry no more than 300 cubic feet of crates and no more than 1,000 pounds (half-ton pickup truck). Also, the number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.
- Setup the linear programming problem to maximize the drivers earnings.
 - Find all linear constraints and the objective function.
 - Use the corner-point method to solve.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- crate A
 - each crate of cargo A is 5 cubic feet in volume
 - weighs 100 pounds
 - earns \$12 for the driver

- crate A
 - each crate of cargo A is 5 cubic feet in volume
 - weighs 100 pounds
 - earns \$12 for the driver
- crate B
 - each crate of cargo B is 3 cubic feet in volume

- weighs 25 pounds
- earns \$7 for the driver

- crate A
 - each crate of cargo A is 5 cubic feet in volume
 - weighs 100 pounds
 - earns \$12 for the driver
- crate B
 - each crate of cargo B is 3 cubic feet in volume
 - weighs 25 pounds
 - earns \$7 for the driver
- truck restrictions
 - the truck can carry no more than 300 cubic feet of crates

• no more than 1,000 pounds

- crate A
 - each crate of cargo A is 5 cubic feet in volume
 - weighs 100 pounds
 - earns \$12 for the driver
- crate B
 - each crate of cargo B is 3 cubic feet in volume
 - weighs 25 pounds
 - earns \$7 for the driver
- truck restrictions
 - the truck can carry no more than 300 cubic feet of crates
 - no more than 1,000 pounds
- another restriction
 - number of creates of cargo B must be less than or equal to twice the number of crates of cargo A

• let x be number of crates of A

- let x be number of crates of A
- $\bullet\,$ let y be the number of crates of B

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- let x be number of crates of A
- let y be the number of crates of B
- Problem: maximize drivers earnings subject to constraints

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- let x be number of crates of A
- let y be the number of crates of B
- Problem: maximize drivers earnings subject to constraints

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- let x be number of crates of A
- let y be the number of crates of B
- Problem: maximize drivers earnings subject to constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- maximize **z** = **\$12x** + **\$7y**
- subject to constraints.

Constraint: The truck can carry no more than 300 cubic feet of crates.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• (cubic feet of A) + (cubic feet of B) \leq 300ft³

Constraint: The truck can carry no more than 300 cubic feet of crates.

- (cubic feet of A) + (cubic feet of B) \leq 300ft³
- $(\frac{5ft^3}{1crate} \cdot \text{num crates A}) + (\frac{3ft^3}{1crate} \cdot \text{num crates B}) \le 300ft^3$

Constraint: The truck can carry no more than 300 cubic feet of crates.

- (cubic feet of A) + (cubic feet of B) \leq 300ft³
- $(\frac{5ft^3}{1crate} \cdot \text{num crates A}) + (\frac{3ft^3}{1crate} \cdot \text{num crates B}) \le 300ft^3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $5 \cdot x + 3 \cdot y \leq 300$

Constraint: The truck can carry no more than 1,000 pounds.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• (weight of A) + (weight of B) $\leq 1,000 lbs$

Constraint: The truck can carry no more than 1,000 pounds.

- (weight of A) + (weight of B) $\leq 1,000 lbs$
- ($\frac{100 \text{lbs}}{1 \text{crate}} \cdot$ num crates A) + ($\frac{25 \text{lbs}}{1 \text{crate}} \cdot$ num crates B) \leq 1,000 lbs

Constraint: The truck can carry no more than 1,000 pounds.

- (weight of A) + (weight of B) $\leq 1,000 lbs$
- $(\frac{100 \text{lbs}}{1 \text{crate}} \cdot \text{num crates A}) + (\frac{25 \text{lbs}}{1 \text{crate}} \cdot \text{num crates B}) \leq 1,000 \text{lbs}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $100 \cdot x + 25 \cdot y \leq 1,000$

Constraint: number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$y \leq 2 \cdot x$$

Constraint: number of crates of cargo B must be less than or equal to twice the number of crates of cargo A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$y \le 2 \cdot x$$

• $-2x + y \le 0$

Solve the following linear programming problem by the corner-point method.

Maximize: z = \$12x + \$7y	(1)
subject to: $5 \cdot x + 3 \cdot y \leq 300$	(2)
$100 \cdot x + 25 \cdot y \leq 1,000$	(3)
$-2x+y\leq 0$	(4)
$x \geq 0$	(5)
$y \geq 0$	(6)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Linear Programming graph of constraints

Solve the following linear programming problem by the corner-point method.

Maximize: $z = 20x + 15y$	(7)
subject to: $3x + 4y \le 60$	(8)
$4x + 3y \le 60$	(9)
$x \leq 10$	(10)
y \leq 12	(11)
$x \geq 0$	(12)
$y \geq 0$	(13)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Linear Programming graph of constraints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Corner Point	(x, y)	z = 20x + 15y
Α	(0,0)	20(0) + 15(0) = 0
В	(0, 12)	20(0) + 15(12) = 180
С	(4, 12)	20(4) + 15(12) = 260
D	$(\frac{60}{7},\frac{60}{7})$	$20(\frac{60}{7}) + 15(\frac{60}{7}) = 300*$
E	$(10, \frac{20}{3})$	$20(10) + 15(\frac{20}{3}) = 300*$
F	$(10, \vec{0})$	20(10) + 15(0) = 200

Note the tie for the highest value of z between points D and E. All points on the line segment between D and E will give the same value for for z as at D and E. There are an infinite number of optimal solutions on \overline{AD}