## TA Ali Mohajer

## SOLUTIONS by Ali Mohajer

1. Write the general power, exponential and $\log$ rules for both differentiation and integration.

## SOLUTION:

$$
\begin{aligned}
& \frac{d}{d x}(f(x))^{n}=n f^{\prime}(x)(f(x))^{n-1} \\
& \int f^{\prime}(x)(f(x))^{n} d x=\frac{(f(x))^{n+1}}{n+1}+C
\end{aligned}
$$

general power rule for differentiation general power rule for integration
$\frac{d}{d x} e^{f(x)}=f^{\prime}(x) e^{f(x)}$
$\int f^{\prime}(x) e^{f(x)} d x=e^{f(x)}+C$
$\frac{d}{d x} \ln (f(x))=\frac{f^{\prime}(x)}{f(x)}$
$\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C$
general exponential rule for differentiation general exponential rule for integration
general $\log$ rule for differentiation general log rule for integration
2. Use logarithmic differentiation to find $\frac{d f}{d x}$ where $f(x)=(9 x+1)^{x}$.

## SOLUTION:

Taking the natural logarithm of both sides of the equation

$$
f(x)=(9 x+1)^{x}
$$

yields:

$$
\ln (f(x))=\ln \left((9 x+1)^{x}\right)
$$

now recall that $\ln \left(a^{b}\right)=b \ln (a)$, so we can re-write the right-hand side as shown below:

$$
\ln (f(x))=x \ln (9 x+1)
$$

now we differentiate both sides of the above to get:

$$
\frac{d}{d x} \ln (f(x))=\frac{d}{d x}(x \ln (9 x+1))
$$

now on the left-hand side we apply the general log rule for differentiation, and on the right hand side we apply the product rule for differentiation to get:

$$
\frac{f^{\prime}(x)}{f(x)}=\left(\frac{d}{d x} x\right) \ln (9 x+1)+x\left(\frac{d}{d x} \ln (9 x+1)\right)
$$

now on the right hand side we evaluate the derivatives to get:

$$
\frac{f^{\prime}(x)}{f(x)}=\ln (9 x+1)+x \frac{9}{9 x+1}
$$

and finally we multiply both sides by $f(x)$ (which is $(9 x+1)^{x}$ ) to get our final result:

$$
f^{\prime}(x)=\left(\ln (9 x+1)+\frac{9 x}{9 x+1}\right)(9 x+1)^{x} .
$$

3. Evaluate the three definite integrals below.
(Use the general power rule, exponential rule or log rule. Do not use the substitution method.)
(a) $\int_{3}^{5} 2 x\left(x^{2}+1\right)^{6} d x$

## SOLUTION:

We apply the general power rule for integration from question (1), noting that we are choosing $f(x)=x^{2}+1$, and that $f^{\prime}(x)=2 x$ is already present in the integrand, so there is no need to apply a "multiply by one trick" to obtain the differential. With this in mind, it is clear that:

$$
\int_{3}^{5} 2 x\left(x^{2}+1\right)^{6} d x=\left[\frac{\left(x^{2}+1\right)^{7}}{7}\right]_{3}^{5}=\frac{\left((5)^{2}+1\right)^{7}}{7}-\frac{\left((3)^{2}+1\right)^{7}}{7}=\frac{26^{7}-10^{7}}{7}
$$

(b) $\int_{3}^{5} 3 e^{3 x+1} d x$

## SOLUTION:

We apply the general exponential rule for integration from question (1), noting that we are choosing $f(x)=3 x+1$, and that $f^{\prime}(x)=3$ is already present in the integrand, so once agian there is no need to apply a "multiply by one trick" to obtain the differential. With this in mind, it is clear that:
$\int_{3}^{5} 3 e^{3 x+1} d x=\left[e^{3 x+1}\right]_{3}^{5}=e^{3(5)+1}-e^{3(3)+1}=e^{16}-e^{10}$
(c) $\int_{3}^{5} \frac{1}{6 x+1} d x$

## SOLUTION:

We apply the general log rule for integration from question (1), noting that we are choosing $f(x)=6 x+1$. In this case however, we note that $f^{\prime}(x)=6$ is not present in the integrand, so we do need to apply a "multiply by one trick" to obtain the differential form $6 d x$ :

$$
\int_{3}^{5} \frac{1}{6 x+1} d x=\int_{3}^{5} \frac{\frac{1}{6} 6}{6 x+1} d x=\frac{1}{6} \int_{3}^{5} \frac{6}{6 x+1} d x
$$

Now it is clear that the right-most integral in the line above is:

$$
=\frac{1}{6}[\ln |6 x+1|]_{3}^{5}=\frac{1}{6}(\ln |6(5)+1|-\ln |6(3)+1|)=\frac{1}{6}(\ln (31)-\ln (19))=\frac{1}{6}\left(\ln \left(\frac{31}{19}\right)\right)
$$

