1. For some $f(x), f^{\prime}(x)=x^{2}+2 x-8$. Find where $f(x)$ is increasing and where it is decreasing.
2. For some $f(x), f^{\prime}(x)=x^{2}+2 x-8$. Find where $f(x)$ is concave up and and where it is concave down.
3. For some $f(x), f^{\prime}(x)=-\mathbf{1 0} \boldsymbol{x}^{\mathbf{2}}+\mathbf{6 0 x}-\mathbf{5 0}$. Find the \boldsymbol{x} coordinates of all first order critical points and use the first derivative test to determine what kind of critical point at each x .
4. For some $\boldsymbol{f}(\boldsymbol{x}), f^{\prime}(\boldsymbol{x})=-\mathbf{1 0} \boldsymbol{x}^{\mathbf{2}}+\mathbf{6 0 x}-\mathbf{5 0}$. Find the \boldsymbol{x} coordinates of all first order critical points and use the second derivative test to determine what kind of critical point at each x .
5. Given $f(x)=\left(x^{2}+7 x+1\right) \cdot \sqrt{\left.5 x^{2}+x\right)}$ find $\frac{d f}{d x}$ at $x=1$.
6. Find the slope of the tangent line to the graph of $\mathbf{3 x} \boldsymbol{y}^{2}+\mathbf{4 y}=\mathbf{1 0}$ at the point $(2,1)$.
7. Find $\frac{d f}{d x}$ by using the limit definition of the derivative. $f(x)=x^{2}$
8. Find the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{x-3}{2 x^{2}+2 x+3}$
(b) $\lim _{x \rightarrow 3} \frac{9-x^{2}}{3-x}$

Find $\frac{d f}{d x}$ for the following functions, Please Do Not Simplify answers:
9. $f(x)=\left(x^{3}+x+1\right) /\left(x^{3}+1\right)$
10. $f(x)=\left(x^{3}+x+1\right) \cdot\left(x^{3}+1\right)$
11. $f(x)=\left(x^{2}+x\right)^{1 / 3}$
12. $f(x)=\ln \left(x^{2}+x\right)$
13. $f(x)=e^{x^{2}+x}$
14. Use implicit differentiation to find $\frac{d y}{d x}$ when $\boldsymbol{y}^{2}+\boldsymbol{x}=\boldsymbol{x}^{2}+\boldsymbol{x}^{3} \boldsymbol{y}^{4}$
15. Use the chain rule to find $\frac{d y}{d x}$ if $y=u^{3}-3 u^{2}+1$ and $u=x^{2}+2$
16. Given $f(x)=e^{2 x}+\ln (3 x)+\sqrt{(4 x+1)}$ find the differential of $f(x)$.
17. For $f(x)=x^{\mathbf{3}}-\mathbf{9} \boldsymbol{x}^{\mathbf{2}}$ find the locations of any inflection points. Use $f^{\prime \prime}(\boldsymbol{x})$ to show that the points you found actually are inflection points.
18. $f(x)=(x-1)^{3}+1$ Find the location of any critical points and use the first derivative test to determine what kind of critical point.
19. $\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{x}}{(\boldsymbol{x}+\mathbf{1})^{2}}$ Use the second derivative test to determine what kind of critical point it has.
20. For $f(x)=\boldsymbol{x}^{4}-\mathbf{6} \boldsymbol{x}^{\mathbf{2}}+\mathbf{1 0}$, use $\boldsymbol{f}^{\prime \prime}$ determine where the graph of $\boldsymbol{f}(\boldsymbol{x})$ is concave up and where it is concave down.
21. For some $f(x), f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ use f^{\prime} determine where the graph of $f(x)$ is increasing, and where it is decreasing.
22. Write the geneneral form of the Power Rule, Exponential Rule and Log Rule for differentiation.
23. $f(x)$ is a function with first derivative $f^{\prime}(x)=(x-1)(x-2)(x-3)(x-4) / x . f(x)$ obviously has a critical number at $\boldsymbol{x}=\mathbf{2}$. Use the first derivative test to determine what kind of critical point is at $\boldsymbol{x}=\mathbf{2}$.
24. The function in the previous problem has a critical number $\boldsymbol{x}_{\boldsymbol{c}}=\mathbf{2}$ and a second derivative $f^{\prime \prime}(x)=\frac{3 x^{4}-20 x^{3}+35 x^{2}-24}{x^{2}}$. Use the second derivative test to determine what kind of critical point is at $\boldsymbol{x}_{\boldsymbol{c}}=\mathbf{2}$.
25. Given the cost to produce one unit is $\$ \mathbf{1 . 0 0}$ and the demand relation is given by $\boldsymbol{p}=\mathbf{1 0}-\mathbf{. 1 q}$. Find the following and Box Your Answers:

- profit function $\boldsymbol{P}(\boldsymbol{q})$
- marginal profit $M P=\frac{d P}{d q}$
- find the production level that maximizes the profit by setting the slope of the profit function to zero and solving for $\boldsymbol{q}_{\boldsymbol{m a x}}$.
- find the price that should charged to maximize the profit $\boldsymbol{p}_{\max }$.
- find the maximum profit $\boldsymbol{P}_{\boldsymbol{m a x}}$

26. A store has been selling skateboards at the price of $\$ 46$ per board, and at this price, skaters have been buying 66 boards a month. The owner of the store wants to raise the price and estimates that for each $\$ 2$ increase in price, $\mathbf{4}$ fewer boards will be sold each month. Each board costs the store $\mathbf{\$ 2 4}$.
(a) Find the linear demand function that gives \boldsymbol{p} as a function of \boldsymbol{q}, the quantity sold.
(b) Find the profit function as a function of \boldsymbol{q}.
(c) At what price \boldsymbol{p} should the store sell the boards in order to maximize profit?
27. A company estimates that the cost in dollars of producing \boldsymbol{x} units of a certain product is $\boldsymbol{C}(\boldsymbol{x})=\frac{\boldsymbol{x}^{2}}{\mathbf{5}}+\mathbf{6 x}+\mathbf{1 0 0 0}$. Find the production level that minimizes average cost. Hint: find average cost, find all critical numbers for average cost, use the first or 2nd derivative test to determine that the CNs correspond to a minimum. Average cost is defined as $\boldsymbol{C}_{\boldsymbol{a v g} \boldsymbol{g}}=\frac{\boldsymbol{C (x)}}{\boldsymbol{x}}$
