Linear Functions

Graph of Line

Linear Functions

x and y intercepts

Slope

$\mathrm{m}=\frac{\text { rise }}{\text { run }}$

What is a slope?

definition

Definition
 slope $=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

What is a slope?

definition

> Definition
> slope $=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- slope $=\frac{\Delta y}{\Delta x}$ is also called the Rate of Change in y w.r.t x

What is a slope?
definition

> Definition
> slope $=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- slope $=\frac{\Delta y}{\Delta x}$ is also called the Rate of Change in y w.r.t x
- Lines with large slopes change fast as x changes.

What is a slope?
definition

> Definition
> slope $=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- slope $=\frac{\Delta y}{\Delta x}$ is also called the Rate of Change in y w.r.t x
- Lines with large slopes change fast as x changes.

■ Lines with small slopes change slowly as \mathbf{x} changes.

What is a slope?
definition

Definition

slope $=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- slope $=\frac{\Delta y}{\Delta x}$ is also called the Rate of Change in y w.r.t x
- Lines with large slopes change fast as x changes.

■ Lines with small slopes change slowly as \mathbf{x} changes.

- Lines with positive slopes increase as go left to right

What is a slope?
definition

Definition

slope $=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- slope $=\frac{\Delta y}{\Delta x}$ is also called the Rate of Change in y w.r.t x
- Lines with large slopes change fast as x changes.

■ Lines with small slopes change slowly as \mathbf{x} changes.
■ Lines with positive slopes increase as go left to right

- Lines with negative slopes decrease as go left to right.

What is a slope?
definition

Definition

slope $=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- slope $=\frac{\Delta y}{\Delta x}$ is also called the Rate of Change in y w.r.t x
- Lines with large slopes change fast as x changes.

■ Lines with small slopes change slowly as \mathbf{x} changes.

- Lines with positive slopes increase as go left to right
- Lines with negative slopes decrease as go left to right.
- Horizontal lines have slope $=0$.

What is a slope?

definition

Definition

slope $=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- slope $=\frac{\Delta y}{\Delta x}$ is also called the Rate of Change in \mathbf{y} w.r.t x
- Lines with large slopes change fast as x changes.

■ Lines with small slopes change slowly as \mathbf{x} changes.

- Lines with positive slopes increase as go left to right
- Lines with negative slopes decrease as go left to right.
- Horizontal lines have slope $=\mathbf{0}$.
- Vertical lines have slope undefined.

Slopes of Lines

increase and decrease
■ Lines with positive slopes increase as go left to right

- Lines with negative slopes decrease as go left to right.

Slopes of Lines

increase and decrease

- Lines with positive slopes increase as go left to right
- Lines with negative slopes decrease as go left to right.

Slopes of Lines

horozontal lines

■ Horizontal lines have slope $=\mathbf{0}$.

Slopes of Lines

horozontal lines
■ Horizontal lines have slope $=\mathbf{0}$.

- slope $=\frac{\Delta y}{\Delta x}=\frac{0}{\Delta x \neq 0}=0$.

Slopes of Lines

horozontal lines
■ Horizontal lines have slope $=\mathbf{0}$.

- slope $=\frac{\Delta y}{\Delta x}=\frac{0}{\Delta x \neq 0}=0$.

Slopes of Lines

horozontal lines
■ Horizontal lines have slope $=\mathbf{0}$.

- slope $=\frac{\Delta y}{\Delta x}=\frac{0}{\Delta x \neq 0}=0$.

Slopes of Lines

vertical lines

－Vertical lines have slope undefined．

Slopes of Lines
 vertical lines

- Vertical lines have slope undefined.

Slopes of Lines

- Vertical lines have slope undefined.
- slope $=\frac{\Delta y}{\Delta x}=\frac{\Delta y \neq 0}{0}$ is undefined.

Slopes of Lines

－Vertical lines have slope undefined．
－slope $=\frac{\Delta y}{\Delta x}=\frac{\Delta y \neq 0}{0}$ is undefined．

Slopes of Lines

vertical lines

- Vertical lines have slope undefined.
- slope $=\frac{\Delta y}{\Delta x}=\frac{\Delta y \neq 0}{0}$ is undefined.

Tangent Lines

from algebra to calculus

Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, $y-y_{0}=m\left(x-x_{0}\right)$

Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, $y-y_{0}=m\left(x-x_{0}\right)$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \Rightarrow$ need two points

Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, $\quad y-y_{0}=m\left(x-x_{0}\right)$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \Rightarrow$ need two points
- $\mathbf{P}_{2}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathbf{P}_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$

Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, $y-y_{0}=m\left(x-x_{0}\right)$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \Rightarrow$ need two points
- $P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}=\left(x_{1}, y_{1}\right)$

■ if $\mathbf{P}_{\mathbf{2}}=(\mathbf{x}, \mathbf{y})$ an arbitrary point

Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, $y-y_{0}=m\left(x-x_{0}\right)$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \Rightarrow$ need two points
- $P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}=\left(x_{1}, y_{1}\right)$
- if $\mathbf{P}_{2}=(\mathbf{x}, \mathbf{y})$ an arbitrary point

■ use $\mathbf{P}_{\mathbf{1}}=\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}\right)$ one point on line

Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, $y-y_{0}=m\left(x-x_{0}\right)$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \Rightarrow$ need two points
- $P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}=\left(x_{1}, y_{1}\right)$

■ if $\mathbf{P}_{\mathbf{2}}=(\mathbf{x}, \mathbf{y})$ an arbitrary point

- use $\mathbf{P}_{\mathbf{1}}=\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}\right)$ one point on line
- find \mathbf{m} the slope of line

Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, $y-y_{0}=m\left(x-x_{0}\right)$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \Rightarrow$ need two points
- $P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}=\left(x_{1}, y_{1}\right)$

■ if $\mathbf{P}_{\mathbf{2}}=(\mathbf{x}, \mathbf{y})$ an arbitrary point

- use $\mathbf{P}_{\mathbf{1}}=\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}\right)$ one point on line
- find \mathbf{m} the slope of line
- $\mathbf{m}=\frac{\mathrm{y}-\mathrm{y}_{0}}{\mathrm{x}-\mathrm{x}_{0}}$ giving

Equations of lines

Point-Slope Equation of Line, $y-y_{0}=m\left(x-x_{0}\right)$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \Rightarrow$ need two points
- $P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}=\left(x_{1}, y_{1}\right)$
- if $\mathbf{P}_{2}=(\mathbf{x}, \mathbf{y})$ an arbitrary point
- use $\mathbf{P}_{\mathbf{1}}=\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}\right)$ one point on line
- find \mathbf{m} the slope of line
- $\mathbf{m}=\frac{\mathrm{y}-\mathrm{y}_{0}}{\mathrm{x}-\mathrm{x}_{0}}$ giving
- $y-y_{0}=m\left(x-x_{0}\right)$

Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, $\mathbf{y}=\mathbf{m x}+\mathbf{b}$

Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, $\mathbf{y}=\mathbf{m x}+\mathbf{b}$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$

Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, $\mathbf{y}=\mathbf{m x}+\mathbf{b}$
■ slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$

- $\mathbf{P}_{2}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathbf{P}_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$

Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, $\mathbf{y}=\mathbf{m x}+\mathbf{b}$
■ slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$

- $P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}=\left(x_{1}, y_{1}\right)$
- if $\mathbf{P}_{2}=(\mathbf{x}, \mathbf{y})$ an arbitrary point

Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, $\mathbf{y}=\mathbf{m x}+\mathbf{b}$
■ slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$

- $P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}=\left(x_{1}, y_{1}\right)$

■ if $\mathbf{P}_{\mathbf{2}}=(\mathbf{x}, \mathbf{y})$ an arbitrary point
■ use $\left.\mathbf{P}_{\mathbf{1}}=\mathbf{(0 , b}\right) \mathrm{y}$-intercept

Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, $\mathbf{y}=\mathbf{m x}+\mathbf{b}$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$
- $P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}=\left(x_{1}, y_{1}\right)$

■ if $\mathbf{P}_{\mathbf{2}}=(\mathbf{x}, \mathbf{y})$ an arbitrary point
■ use $\left.\mathbf{P}_{\mathbf{1}}=\mathbf{(0 , b}\right)$ y-intercept

- m is the slope

Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, $\mathbf{y}=\mathbf{m x}+\mathbf{b}$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$
- $P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}=\left(x_{1}, y_{1}\right)$

■ if $\mathbf{P}_{\mathbf{2}}=(\mathbf{x}, \mathbf{y})$ an arbitrary point
■ use $\left.\mathbf{P}_{\mathbf{1}}=\mathbf{(0 , b}\right)$ y-intercept

- m is the slope
- m $=\frac{\mathrm{y}-\mathrm{b}}{\mathrm{x}-0}$ giving

Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}$

- slope $=\mathbf{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$
- $P_{2}=\left(x_{2}, y_{2}\right)$ and $P_{1}=\left(x_{1}, y_{1}\right)$

■ if $\mathbf{P}_{\mathbf{2}}=(\mathbf{x}, \mathbf{y})$ an arbitrary point
■ use $\left.\mathbf{P}_{\mathbf{1}}=\mathbf{(0 , b}\right)$ y-intercept

- \mathbf{m} is the slope
- m $=\frac{\mathrm{y}-\mathrm{b}}{\mathrm{x}-\mathbf{0}}$ giving

■ $y=m x+b$

Equations of lines

example

1 Find equation of line with points $\mathbf{P 1}=(\mathbf{1}, \mathbf{1})$ and $P 2=(3,5)$
$\square m=\frac{5-1}{3-1}=\frac{4}{2}=2$

Equations of lines

example

1 Find equation of line with points $\mathbf{P 1}=(\mathbf{1}, \mathbf{1})$ and $P 2=(3,5)$

- $m=\frac{5-1}{3-1}=\frac{4}{2}=2$
- use \mathbf{m} and $\mathbf{P 1}$ with point-slope equation

Equations of lines

example

1 Find equation of line with points $\mathbf{P 1}=(\mathbf{1}, \mathbf{1})$ and $P 2=(3,5)$

- $m=\frac{5-1}{3-1}=\frac{4}{2}=2$
- use \mathbf{m} and $\mathbf{P 1}$ with point-slope equation
- $y-1=2(x-1)=2 x-2$

Equations of lines

example

1 Find equation of line with points $\mathbf{P 1}=(\mathbf{1}, \mathbf{1})$ and $P 2=(3,5)$

- $m=\frac{5-1}{3-1}=\frac{4}{2}=2$
- use \mathbf{m} and $\mathbf{P 1}$ with point-slope equation
- $y-1=2(x-1)=2 x-2$
- $y=2 x-1$

Equations of lines

example

1 Find equation of line with points $\mathbf{P 1}=(\mathbf{1}, \mathbf{1})$ and $\mathrm{P} 2=(3,5)$

■ $\mathrm{m}=\frac{5-1}{3-1}=\frac{4}{2}=2$

- use \mathbf{m} and $\mathbf{P 1}$ with point-slope equation
- $y-1=2(x-1)=2 x-2$
- $y=2 x-1$
- final expression in slope-intercept form

