Linear Functions

Graph of Line

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Linear Functions

 $\boldsymbol{x} \text{ and } \boldsymbol{y} \text{ intercepts}$

definition

Definition

slope =
$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

▲口→ ▲圖→ ▲屋→ ▲屋→

ъ.

definition

Definition

$$slope = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

• slope = $\frac{\Delta y}{\Delta x}$ is also called the **Rate of Change** in y w.r.t x

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへの

definition

Definition

$$slope = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

slope = \$\frac{\Delta y}{\Delta x}\$ is also called the Rate of Change in y w.r.t x
 Lines with large slopes change fast as x changes.

definition

Definition

slope =
$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

- Lines with large slopes change fast as x changes.
- Lines with small slopes change slowly as x changes.

definition

Definition

slope =
$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

- Lines with large slopes change fast as x changes.
- Lines with small slopes change slowly as x changes.
- Lines with **positive slopes increase** as go left to right

definition

Definition

slope =
$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

- Lines with large slopes change fast as x changes.
- Lines with small slopes change slowly as x changes.
- Lines with **positive slopes increase** as go left to right
- Lines with **negative slopes decrease** as go left to right.

definition

Definition

slope =
$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

- Lines with large slopes change fast as x changes.
- Lines with small slopes change slowly as x changes.
- Lines with **positive slopes increase** as go left to right
- Lines with **negative slopes decrease** as go left to right.
- Horizontal lines have slope = 0.

definition

Definition

slope =
$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

- Lines with large slopes change fast as x changes.
- Lines with small slopes change slowly as x changes.
- Lines with **positive slopes increase** as go left to right
- Lines with **negative slopes decrease** as go left to right.
- Horizontal lines have slope = 0.
- Vertical lines have slope undefined.

increase and decrease

- Lines with **positive slopes increase** as go left to right
- Lines with negative slopes decrease as go left to right.

increase and decrease

- Lines with **positive slopes increase** as go left to right
- Lines with **negative slopes decrease** as go left to right.

horozontal lines

Horizontal lines have slope = 0.

horozontal lines

• Horizontal lines have slope = 0. • slope = $\frac{\Delta y}{\Delta x} = \frac{0}{\Delta x \neq 0} = 0.$

・ロト ・日下・ ・日下

Ξ.

horozontal lines

• Horizontal lines have slope = 0.
• slope =
$$\frac{\Delta y}{\Delta x} = \frac{0}{\Delta x \neq 0} = 0.$$

・ロン ・回 と ・ ヨン ・ ヨン …

horozontal lines

vertical lines

• Vertical lines have slope undefined.

vertical lines

• Vertical lines have slope undefined.

vertical lines

Vertical lines have slope undefined.
 slope = \frac{\Delta y}{\Delta x} = \frac{\Delta y \neq 0}{0} is undefined.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

vertical lines

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

vertical lines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tangent Lines

from algebra to calculus

Point-Slope Equation

Point-Slope Equation of Line, $y - y_0 = m(x - x_0)$

・聞き ・ ほき・ ・ ほき

Ξ.

Point-Slope Equation

Point-Slope Equation of Line, $y - y_0 = m(x - x_0)$

▲口 > ▲母 > ▲臣 > ▲臣 > ― 臣 - 少へで

• slope = m = $\frac{y_2 - y_1}{x_2 - x_1}$ \Rightarrow need two points

Point-Slope Equation

Point-Slope Equation of Line, $y - y_0 = m(x - x_0)$

イロン イ団 とくほ とくほとう

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 \Rightarrow need two points
• P₂ = (x₂, y₂) and P₁ = (x₁, y₁)

Point-Slope Equation

Point-Slope Equation of Line, $y - y_0 = m(x - x_0)$

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 \Rightarrow need two points

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

Point-Slope Equation

Point-Slope Equation of Line, $y - y_0 = m(x - x_0)$

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 \Rightarrow need two points

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

• if
$$P_2 = (x, y)$$
 an arbitrary point

• use
$$P_1 = (x_0, y_0)$$
 one point on line

Point-Slope Equation

Point-Slope Equation of Line, $y - y_0 = m(x - x_0)$

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 \Rightarrow need two points

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

• use
$$P_1 = (x_0, y_0)$$
 one point on line

find m the slope of line

Point-Slope Equation

Point-Slope Equation of Line, $y - y_0 = m(x - x_0)$

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 \Rightarrow need two points

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

• use
$$P_1 = (x_0, y_0)$$
 one point on line

find m the slope of line

•
$$\mathbf{m} = \frac{\mathbf{y} - \mathbf{y}_0}{\mathbf{x} - \mathbf{x}_0}$$
 giving

Point-Slope Equation

Point-Slope Equation of Line, $y - y_0 = m(x - x_0)$

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 \Rightarrow need two points

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

• use
$$P_1 = (x_0, y_0)$$
 one point on line

find m the slope of line

•
$$\mathbf{m} = \frac{\mathbf{y} - \mathbf{y}_0}{\mathbf{x} - \mathbf{x}_0}$$
 giving

$$\mathbf{y} - \mathbf{y}_0 = \mathbf{m}(\mathbf{x} - \mathbf{x}_0)$$

Point-Slope Equation

Slope-Intercept Equation for Line, y = mx + b

Point-Slope Equation

Slope-Intercept Equation for Line, y = mx + b

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

Point-Slope Equation

Slope-Intercept Equation for Line, y = mx + b

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

Point-Slope Equation

Slope-Intercept Equation for Line, y = mx + b

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

Point-Slope Equation

Slope-Intercept Equation for Line, y = mx + b

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

• use
$$P_1 = (0, b)$$
 y-intercept

Point-Slope Equation

Slope-Intercept Equation for Line, y = mx + b

2

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

• use
$$P_1 = (0, b)$$
 y-intercept

m is the slope

Point-Slope Equation

Slope-Intercept Equation for Line, y = mx + b

2

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

m is the slope

•
$$m = \frac{y-b}{x-0}$$
 giving

Point-Slope Equation

Slope-Intercept Equation for Line, y = mx + b

• slope = m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

•
$$P_2 = (x_2, y_2)$$
 and $P_1 = (x_1, y_1)$

• use
$$P_1 = (0, b)$$
 y-intercept

m is the slope

•
$$m = \frac{y-b}{x-0}$$
 giving

Equations of lines example

Find equation of line with points P1 = (1, 1) and
P2 = (3, 5)
$$m = \frac{5-1}{3-1} = \frac{4}{2} = 2$$

Find equation of line with points
$$P1 = (1, 1)$$
 and
 $P2 = (3, 5)$
 $m = \frac{5-1}{3-1} = \frac{4}{2} = 2$
 $m = m \text{ and } P1$ with point-slope equation

Find equation of line with points
$$P1 = (1, 1)$$
 and
 $P2 = (3, 5)$
 $m = \frac{5-1}{3-1} = \frac{4}{2} = 2$
 $m = m$ and $P1$ with point-slope equation
 $y - 1 = 2(x - 1) = 2x - 2$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Find equation of line with points
$$P1 = (1, 1)$$
 and
 $P2 = (3, 5)$
 $m = \frac{5-1}{3-1} = \frac{4}{2} = 2$
 $use m and P1$ with point-slope equation
 $y - 1 = 2(x - 1) = 2x - 2$
 $y = 2x - 1$

Find equation of line with points
$$P1 = (1, 1)$$
 and
 $P2 = (3, 5)$
 $m = \frac{5-1}{3-1} = \frac{4}{2} = 2$
 $use m and P1$ with point-slope equation
 $y - 1 = 2(x - 1) = 2x - 2$
 $y = 2x - 1$
final expression in slope-intercept form