secant line

secant line

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

secant line

secant line

◆□> ◆□> ◆目> ◆目> ・目 ・ のへぐ

secant line

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

secant line

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

secant line

◆□ → ◆□ → ◆三 → ◆三 → ● ● のへの

Right Hand Limit

x	2	1.5	1.1	1.01	1.001	1.0001	$ ightarrow 1^+ ightarrow 1$
$m = \frac{x^2 - 1}{x - 1}$	3	2.5	2.2	2.01	2.001	2.0001	$\rightarrow 2^+ \rightarrow 2$

The right hand limit (RHL) of m(x) = x²-1/x-1 as x approaches 1 from the right is 2.

Right Hand Limit

x	2	1.5	1.1	1.01	1.001	1.0001	$ ightarrow 1^+ ightarrow 1$
$m = \frac{x^2 - 1}{x - 1}$	3	2.5	2.2	2.01	2.001	2.0001	$\rightarrow 2^+ \rightarrow 2$

• The right hand limit (RHL) of $m(x) = \frac{x^2-1}{x-1}$ as x approaches 1 from the right is 2.

written

$$\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = 2$$

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● 回 ● ● ●

Right Hand Limit

x	2	1.5	1.1	1.01	1.001	1.0001	$ ightarrow 1^+ ightarrow 1$
$m = \frac{x^2 - 1}{x - 1}$	3	2.5	2.2	2.01	2.001	2.0001	$ ightarrow 2^+ ightarrow 2$

• The right hand limit (RHL) of $m(x) = \frac{x^2-1}{x-1}$ as x approaches 1 from the right is 2.

written

$$\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = 2$$

It seems that the slope of the line tangent to f(x) = x² at x = 1 is 2

Right Hand Limit

x	2	1.5	1.1	1.01	1.001	1.0001	$ ightarrow 1^+ ightarrow 1$
$m = \frac{x^2 - 1}{x - 1}$	3	2.5	2.2	2.01	2.001	2.0001	$\rightarrow 2^+ \rightarrow 2$

- The right hand limit (RHL) of $m(x) = \frac{x^2-1}{x-1}$ as x approaches 1 from the right is 2.
- written

$$\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = 2$$

- It seems that the slope of the line tangent to f(x) = x² at x = 1 is 2
- It is often necessary to check if get the same result when x approaches 1 from the left.

secant line

◆□> ◆□> ◆臣> ◆臣> 善臣 のへで

Left Hand Limit

x	.9	.99	.999	.9999	$ ightarrow 1^- ightarrow 1$
$m = \frac{x^2 - 1}{x - 1}$	1.9	1.99	1.999	1.9999	$ ightarrow 2^- ightarrow 2$

The left hand limit (LHL) of m(x) = x²-1/x-1 as x approaches 1 from the left is 2.

Ξ.

Left Hand Limit

x.9.99.999
$$\rightarrow 1^- \rightarrow 1$$
m = $\frac{x^2-1}{x-1}$ 1.91.991.999 $\rightarrow 2^- \rightarrow 2$

• The left hand limit (LHL) of $m(x) = \frac{x^2-1}{x-1}$ as x approaches 1 from the left is 2.

Written

$$\lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = 2$$

E 990

Left Hand Limit

- The left hand limit (LHL) of m(x) = x²-1/x-1 as x approaches 1 from the left is 2.
- Written

$$\lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = 2$$

Again it seems that the slope of the line tangent to f(x) = x² at x = 1 is 2

Existance of Limits

The right hand limit exists and is 2

$$\lim_{x\rightarrow 1^+}\frac{x^2-1}{x-1}=2$$

Ξ.

Existance of Limits

The right hand limit exists and is 2

$$\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = 2$$

▶ The left hand limit exists and is 2

$$\lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = 2$$

Existance of Limits

The right hand limit exists and is 2

$$\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = 2$$

▶ The left hand limit exists and is 2

$$\lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = 2$$

▶ The LHL and RHL exist and are both equal to 2.

Existance of Limits

The right hand limit exists and is 2

$$\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = 2$$

The left hand limit exists and is 2

$$\lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = 2$$

- ▶ The LHL and RHL exist and are both equal to 2.
- Therefore the two sided limit exists and is 2

Existance of Limits

The right hand limit exists and is 2

$$\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = 2$$

The left hand limit exists and is 2

$$\lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = 2$$

- ▶ The LHL and RHL exist and are both equal to 2.
- Therefore the two sided limit exists and is 2

Written

$$\lim_{x\to 1}\frac{x^2-1}{x-1}=2$$