$f^{\prime}(x) \Rightarrow f(x)$ increasing / decreasing Math165: Business Calculus

Roy M. Lowman

Spring 2010, Week5 Lec1

f^{\prime} : increasing/decreasing

Critical Numbers

- $\mathbf{f}(\mathbf{x})$ is increasing at points where $\mathbf{f}^{\prime}>\mathbf{0}$
- $f(x)$ is decreasing at points where $f^{\prime}<0$
- Critical Numbers (CN, x_{c}) occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- Critical Numbers are values of $x=x_{c}$ where $f(x)$ can change from increasing to decreasing or decreasing to increasing.
- If $\mathbf{f}(\mathbf{x})$ is defined at $\mathbf{x}_{\mathbf{c}}$ then the point on the graph ($\mathbf{x}_{\mathbf{c}}, \mathbf{f}\left(\mathbf{x}_{\mathbf{c}}\right)$) is a Critical Point (CP)
- In some cases, there is no point on the graph at a critical number $\mathbf{x}_{\mathbf{c}}$

f^{\prime} : increasing/decreasing

Critical Numbers

- $\mathbf{f}(\mathbf{x})$ is increasing at points where $\mathbf{f}^{\prime}>\mathbf{0}$
- $\mathbf{f}(\mathbf{x})$ is decreasing at points where $\mathbf{f}^{\prime}<\mathbf{0}$
- Critical Numbers (CN, x_{c}) occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- Critical Numbers are values of $x=x_{c}$ where $f(x)$ can change from increasing to decreasing or decreasing to increasing.
- If $\mathbf{f}(\mathbf{x})$ is defined at \mathbf{x}_{c} then the point on the graph $\left(\mathrm{x}_{\mathrm{c}}, \mathrm{f}\left(\mathrm{x}_{\mathrm{c}}\right)\right)$ is a Critical Point (CP).
- In some cases, there is no point on the graph at a critical number $\mathbf{x}_{\mathbf{c}}$

f^{\prime} : increasing/decreasing

Critical Numbers

- $\mathbf{f}(\mathbf{x})$ is increasing at points where $\mathbf{f}^{\prime}>\mathbf{0}$
- $\mathbf{f}(\mathbf{x})$ is decreasing at points where $\mathbf{f}^{\prime}<\mathbf{0}$
- Critical Numbers (CN, x_{c}) occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- Critical Numbers are values of $x=x_{c}$ where $f(x)$ can change from increasing to decreasing or decreasing to increasing.
- If $\mathbf{f}(\mathbf{x})$ is defined at \mathbf{x}_{c} then the point on the graph $\left(x_{c}, \mathbf{f}\left(\mathbf{x}_{c}\right)\right)$ is a Critical Point (CP)
- In some cases, there is no point on the graph at a critical number $\mathbf{x}_{\mathbf{c}}$

f^{\prime} : increasing/decreasing

Critical Numbers

- $\mathbf{f}(\mathbf{x})$ is increasing at points where $\mathbf{f}^{\prime}>\mathbf{0}$
- $\mathbf{f}(\mathbf{x})$ is decreasing at points where $\mathbf{f}^{\prime}<\mathbf{0}$
- Critical Numbers (CN, x_{c}) occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- Critical Numbers are values of $\mathbf{x}=\mathrm{x}_{\mathrm{c}}$ where $\mathbf{f}(\mathbf{x})$ can change from increasing to decreasing or decreasing to increasing.
- If $f(x)$ is defined at x_{c} then the point on the graph ($x_{c}, f\left(x_{c}\right)$) is a Critical Point (CP)
- In some cases, there is no point on the graph at a critical number X_{c}

f^{\prime} : increasing/decreasing

Critical Numbers

- $\mathbf{f}(\mathbf{x})$ is increasing at points where $\mathbf{f}^{\prime}>\mathbf{0}$
- $\mathbf{f}(\mathbf{x})$ is decreasing at points where $\mathbf{f}^{\prime}<\mathbf{0}$
- Critical Numbers (CN, x_{c}) occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- Critical Numbers are values of $\mathbf{x}=\mathbf{x}_{\mathbf{c}}$ where $\mathbf{f}(\mathbf{x})$ can change from increasing to decreasing or decreasing to increasing.
- If $f(x)$ is defined at $\mathbf{x}_{\mathbf{c}}$ then the point on the graph $\left(\mathbf{x}_{\mathrm{c}}, \mathbf{f}\left(\mathrm{x}_{\mathrm{c}}\right)\right)$ is a Critical Point (CP).
- In some cases, there is no point on the graph at a critical number x_{c}

\mathbf{f}^{\prime} : increasing/decreasing

Critical Numbers

- $\mathbf{f}(\mathbf{x})$ is increasing at points where $\mathbf{f}^{\prime}>\mathbf{0}$
- $\mathbf{f}(\mathbf{x})$ is decreasing at points where $\mathbf{f}^{\prime}<\mathbf{0}$
- Critical Numbers (CN, x_{c}) occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- Critical Numbers are values of $\mathbf{x}=\mathbf{x}_{\mathbf{c}}$ where $\mathbf{f}(\mathbf{x})$ can change from increasing to decreasing or decreasing to increasing.
- If $\mathbf{f}(\mathbf{x})$ is defined at $\mathbf{x}_{\mathbf{c}}$ then the point on the graph $\left(\mathbf{x}_{\mathbf{c}}, \mathbf{f}\left(\mathbf{x}_{\mathbf{c}}\right)\right)$ is a Critical Point (CP).
- In some cases, there is no point on the graph at a critical number $\mathbf{x}_{\mathbf{c}}$

One typical use for \mathbf{f}^{\prime}

Where is $f(x)$ inc/dec?
Use $\mathbf{f}^{\prime}(\mathbf{x})$ to determine intervals where $\mathbf{f}(\mathbf{x})$ is increasing and where $\mathbf{f}(\mathbf{x})$ is decreasing.

One typical use for \mathbf{f}^{\prime}
 Where is $f(x)$ inc/dec?

Use $\mathbf{f}^{\prime}(\mathbf{x})$ to determine intervals where $\mathbf{f}(\mathbf{x})$ is increasing and where $f(x)$ is decreasing.
1st find all critical numbers to determine boundaries on the graph where $\mathbf{f}(\mathbf{x})$ can change from increasing to decreasing etc.
undefined.

- these boundaries are the only places where $f(x)$ can change
from inc to dec or dec to inc.
determine the sign of $f^{\prime}(x)$ at one test value of x between each boundary

One typical use for f^{\prime}
 Where is $f(x)$ inc/dec?

Use $\mathbf{f}^{\prime}(\mathbf{x})$ to determine intervals where $\mathbf{f}(\mathbf{x})$ is increasing and where $\mathbf{f}(\mathbf{x})$ is decreasing.
1st find all critical numbers to determine boundaries on the graph where $\mathbf{f}(\mathbf{x})$ can change from increasing to decreasing etc.

- These boundaries, x_{c}, occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- these boundaries are the only places where $f(x)$ can change from inc to dec or dec to inc.
determine the sign of $f^{\prime}(x)$ at one test value of x between each boundary

One typical use for \mathbf{f}^{\prime}
 Where is $f(x)$ inc/dec?

Use $\mathbf{f}^{\prime}(\mathbf{x})$ to determine intervals where $\mathbf{f}(\mathbf{x})$ is increasing and where $f(x)$ is decreasing.
1st find all critical numbers to determine boundaries on the graph where $\mathbf{f}(\mathbf{x})$ can change from increasing to decreasing etc.

- These boundaries, x_{c}, occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- these boundaries are the only places where $\mathbf{f}(\mathbf{x})$ can change from inc to dec or dec to inc.
determine the sign of $f^{\prime}(x)$ at one test value of x between each boundary

One typical use for \mathbf{f}^{\prime}
 Where is $f(x)$ inc/dec?

Use $\mathbf{f}^{\prime}(\mathbf{x})$ to determine intervals where $\mathbf{f}(\mathbf{x})$ is increasing and where $\mathbf{f}(\mathbf{x})$ is decreasing.
1st find all critical numbers to determine boundaries on the graph where $\mathbf{f}(\mathbf{x})$ can change from increasing to decreasing etc.

- These boundaries, x_{c}, occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- these boundaries are the only places where $\mathbf{f}(\mathbf{x})$ can change from inc to dec or dec to inc.
2nd determine the sign of $\mathbf{f}^{\prime}(\mathbf{x})$ at one test value of \mathbf{x} between each boundary

One typical use for \mathbf{f}^{\prime}
 Where is $f(x)$ inc/dec?

Use $\mathbf{f}^{\prime}(\mathbf{x})$ to determine intervals where $\mathbf{f}(\mathbf{x})$ is increasing and where $f(x)$ is decreasing.
1st find all critical numbers to determine boundaries on the graph where $\mathbf{f}(\mathbf{x})$ can change from increasing to decreasing etc.

- These boundaries, x_{c}, occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- these boundaries are the only places where $\mathbf{f}(\mathbf{x})$ can change from inc to dec or dec to inc.
2nd determine the sign of $\mathbf{f}^{\prime}(\mathbf{x})$ at one test value of \mathbf{x} between each boundary
- if $f^{\prime}(x)=(+)$ at this test value then it is increasing here and at all \mathbf{x} in the same interval. It can only change at the boundaries given by the critical numbers.
- if $f^{\prime}(x)=(-)$ at this test value then it is decreasing here and at all x in the same interval. It can only change at the boundaries given by the critical numbers.
- the function does not always change what it is doing across a

One typical use for \mathbf{f}^{\prime}
 Where is $f(x)$ inc/dec?

Use $\mathbf{f}^{\prime}(\mathbf{x})$ to determine intervals where $\mathbf{f}(\mathbf{x})$ is increasing and where $f(x)$ is decreasing.
1st find all critical numbers to determine boundaries on the graph where $\mathbf{f}(\mathbf{x})$ can change from increasing to decreasing etc.

- These boundaries, x_{c}, occur where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.
- these boundaries are the only places where $\mathbf{f}(\mathbf{x})$ can change from inc to dec or dec to inc.
2nd determine the sign of $\mathbf{f}^{\prime}(\mathbf{x})$ at one test value of \mathbf{x} between each boundary
- if $\mathbf{f}^{\prime}(\mathbf{x})=(+)$ at this test value then it is increasing here and at all \mathbf{x} in the same interval. It can only change at the boundaries given by the critical numbers.
- if $f^{\prime}(x)=(-)$ at this test value then it is decreasing here and at all \mathbf{x} in the same interval. It can only change at the boundaries given by the critical numbers.
- the function does not always change what it is doing across a

One typical use for f^{\prime}
 Where is $f(x)$ inc/dec?

Use $\mathbf{f}^{\prime}(\mathbf{x})$ to determine intervals where $\mathbf{f}(\mathbf{x})$ is increasing and where $f(x)$ is decreasing.
1st find all critical numbers to determine boundaries on the graph where $\mathbf{f}(\mathbf{x})$ can change from increasing to decreasing etc.

- These boundaries, x_{c}, occur where $f^{\prime}(x)=\mathbf{0}$ or $f^{\prime}(x)$ is undefined.
- these boundaries are the only places where $\mathbf{f}(\mathbf{x})$ can change from inc to dec or dec to inc.
2nd determine the sign of $\mathbf{f}^{\prime}(\mathbf{x})$ at one test value of \mathbf{x} between each boundary
- if $\mathbf{f}^{\prime}(\mathbf{x})=(+)$ at this test value then it is increasing here and at all \mathbf{x} in the same interval. It can only change at the boundaries given by the critical numbers.
- if $\mathbf{f}^{\prime}(\mathbf{x})=(-)$ at this test value then it is decreasing here and at all \mathbf{x} in the same interval. It can only change at the boundaries given by the critical numbers.
- the function does not always change what it is doing across a critical number.

One typical use for f^{\prime}

example: Where is $f(x)$ inc/dec?

Typical Exam problem:

For some $f(x), f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ use f^{\prime} to determine where the graph of $\mathbf{f}(\mathbf{x})$ is increasing and where it is decreasing.

One typical use for \mathbf{f}^{\prime}

example: Where is $f(x)$ inc/dec?

Typical Exam problem:

For some $f(x), f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ use f^{\prime} to determine where the graph of $\mathbf{f}(\mathbf{x})$ is increasing and where it is decreasing.

- Find all critical numbers where $\mathbf{f}^{\prime}=\mathbf{0}$
- Solve $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=0$.
- $\mathbf{f}^{\prime}(\mathbf{x})$ is a rational function. It can be zero only for values of \mathbf{x} where the numerator is zero and the denominator is NOT zero
- \Rightarrow solve:
$2 x-x^{2}=0$
$x(2-x)=0$
$x_{c}=0,2$ from setting the slope $=$ zero.

One typical use for \mathbf{f}^{\prime}

example: Where is $f(x)$ inc/dec?

Typical Exam problem:

For some $f(x), f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ use f^{\prime} to determine where the graph of $\mathbf{f}(\mathbf{x})$ is increasing and where it is decreasing.

- Find all critical numbers where $\mathbf{f}^{\prime}=\mathbf{0}$
- Solve $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=0$.
- $f^{\prime}(x)$ is a rational function. It can be zero only for values of x where the numerator is zero and the denominator is NOT zero
- \Rightarrow solve:
$2 x-x^{2}=0$
$x(2-x)=0$
$x_{c}=0,2$ from setting the slope $=$ zero.

One typical use for \mathbf{f}^{\prime}

example: Where is $f(x)$ inc/dec?

Typical Exam problem:

For some $f(x), f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ use f^{\prime} to determine where the graph of $\mathbf{f}(\mathbf{x})$ is increasing and where it is decreasing.

- Find all critical numbers where $\mathbf{f}^{\prime}=\mathbf{0}$
- Solve $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=0$.
- $f^{\prime}(x)$ is a rational function. It can be zero only for values of x where the numerator is zero and the denominator is NOT zero.

One typical use for \mathbf{f}^{\prime}
 example: Where is $f(x)$ inc/dec?

Typical Exam problem:

For some $f(x), f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ use f^{\prime} to determine where the graph of $\mathbf{f}(\mathbf{x})$ is increasing and where it is decreasing.

- Find all critical numbers where $\mathbf{f}^{\prime}=\mathbf{0}$
- Solve $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=0$.
- $\mathbf{f}^{\prime}(\mathbf{x})$ is a rational function. It can be zero only for values of \mathbf{x} where the numerator is zero and the denominator is NOT zero.
- \Rightarrow solve:
$2 x-x^{2}=0$
$x(2-x)=0$
$x_{c}=0,2$ from setting the slope $=$ zero.

One typical use for f^{\prime}

example contunued

- Find all critical numbers where \mathbf{f}^{\prime} is undefined.
- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$
- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ is a rational function. It is undefined only for values of \mathbf{x} where the denominator is zero.
- \Rightarrow solve:
$(x-3)=0$ giving $x_{c}=3$
- Summary: there are three $\mathbf{C N s}, x_{C}=0,2,3$

One typical use for \mathbf{f}^{\prime}

example contunued

- Find all critical numbers where \mathbf{f}^{\prime} is undefined.
- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ is a rational function. It is undefined only for values of \mathbf{x} where the denominator is zero.
- \Rightarrow solve:
$(x-3)=0$ giving $x_{c}=3$
- Summary: there are three CNs, $x_{c}=0,2,3$

One typical use for f^{\prime}

example contunued

- Find all critical numbers where \mathbf{f}^{\prime} is undefined.
- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ is a rational function. It is undefined only for values of \mathbf{x} where the denominator is zero.
- \Rightarrow solve:
$(x-3)=0$ giving $x_{c}=3$
- Summary: there are three $\mathbf{C N s}, x_{C}=0,2,3$

One typical use for f^{\prime}

example contunued

- Find all critical numbers where \mathbf{f}^{\prime} is undefined.
- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ is a rational function. It is undefined only for values of \mathbf{x} where the denominator is zero.
- \Rightarrow solve:
$(x-3)=0$ giving $x_{c}=3$
- Summary: there are three CNs, $x_{c}=0,2,3$

One typical use for f^{\prime}

example contunued

- Find all critical numbers where \mathbf{f}^{\prime} is undefined.
- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}$ is a rational function. It is undefined only for values of \mathbf{x} where the denominator is zero.
- \Rightarrow solve:
$(x-3)=0$ giving $x_{c}=3$
- Summary: there are three CNs, $x_{c}=0,2,3$

One typical use for \mathbf{f}^{\prime}

example continued
$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. There are three CNs $x_{c}=0,2,3$

One typical use for f^{\prime}

example continued
$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. There are three CNs $x_{c}=0,2,3$

- Now test the sign of \mathbf{f}^{\prime} at one value in each interval.
- $f^{\prime}(-1)=\frac{(-1)(2-(-1))}{((-1)-3)}=\frac{(-)(+)}{(-)}=(+) \Rightarrow f(x)$ is
increasing at $x=-1$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all x in the interval $(-\infty, 0)$
- $f^{\prime}(1)=\frac{(1)(2-(1))}{((1)-3)}=\frac{(+)(+)}{(-)}=(-) \Rightarrow f(x)$ is decreasing at $x=1$
- so $\mathbf{f}(\mathbf{x})$ is decreasing for all x in the interval $(0,2)$
- $f^{\prime}(2.5)=\frac{(2.5)(2-(2.5))}{((2.5)-3)}=\frac{(+)(-)}{(-)}=(+) \Rightarrow f(x)$ is
increasing at $x=2.5$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all x in the interval $(2,3)$
- $f^{\prime}(4)=\frac{(4)(2-(4))}{((4)-3)}=\frac{(+)(-)}{(+)}=(-) \Rightarrow f(x)$ is decreasing at
$x=4$
- so $\mathbf{f}(\mathbf{x})$ is decreasing for all \mathbf{x} in the interval $(3,+\infty)$

One typical use for f^{\prime}

example continued
$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. There are three CNs $x_{c}=0,2,3$

- Now test the sign of \mathbf{f}^{\prime} at one value in each interval.
- $f^{\prime}(-1)=\frac{(-1)(2-(-1))}{((-1)-3)}=\frac{(-)(+)}{(-)}=(+) \Rightarrow f(x)$ is
increasing at $\mathbf{x}=\mathbf{- 1}$
- so $f(x)$ is increasing for all x in the interval $(-\infty, 0)$
- $f^{\prime}(1)=\frac{(1)(2-(1))}{((1)-3)}=\frac{(+)(+)}{(-)}=(-) \Rightarrow f(x)$ is decreasing at $x=1$
- so $f(x)$ is decreasing for all x in the interval $(0,2)$
- $f^{\prime}(2.5)=\frac{(2.5)(2-(2.5))}{((2.5)-3)}=\frac{(+)(-)}{(-)}=(+) \Rightarrow f(x)$ is
increasing at $x=2.5$
- so $f(x)$ is increasing for all x in the interval $(2,3)$
- $f^{\prime}(4)=\frac{(4)(2-(4))}{((4)-3)}=\frac{(+)(-)}{(+)}=(-) \Rightarrow f(x)$ is decreasing at
$x=4$
- so $f(x)$ is decreasing for all x in the interval $(3,+\infty)$

One typical use for f^{\prime}

example continued
$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. There are three CNs $x_{c}=0,2,3$

- Now test the sign of \mathbf{f}^{\prime} at one value in each interval.
- $f^{\prime}(-1)=\frac{(-1)(2-(-1))}{((-1)-3)}=\frac{(-)(+)}{(-)}=(+) \Rightarrow f(x)$ is increasing at $\mathbf{x}=\mathbf{- 1}$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all x in the interval $(-\infty, 0)$
- $f^{\prime}(1)=\frac{(1)(2-(1))}{((1)-3)}=\frac{(+)(+)}{(-)}=(-) \Rightarrow f(x)$ is decreasing at $x=1$
- so $\mathbf{f}(\mathbf{x})$ is decreasing for all x in the interval $(0,2)$
- $f^{\prime}(2.5)=\frac{(2.5)(2-(2.5))}{((2.5)-3)}=\frac{(+)(-)}{(-)}=(+) \Rightarrow f(x)$ is
increasing at $x=2.5$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all \mathbf{x} in the interval $(2,3)$
- $f^{\prime}(4)=\frac{(4)(2-(4))}{((4)-3)}=\frac{(+)(-)}{(+)}=(-) \Rightarrow f(x)$ is decreasing at
$x=4$
- so $\mathbf{f}(\mathbf{x})$ is decreasing for all \mathbf{x} in the interval $(3,+\infty)$

One typical use for f^{\prime}

example continued

$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. There are three CNs $x_{c}=0,2,3$

- Now test the sign of \mathbf{f}^{\prime} at one value in each interval.
- $f^{\prime}(-1)=\frac{(-1)(2-(-1))}{((-1)-3)}=\frac{(-)(+)}{(-)}=(+) \Rightarrow f(x)$ is increasing at $\mathbf{x}=\mathbf{- 1}$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all \mathbf{x} in the interval $(-\infty, 0)$
- $f^{\prime}(1)=\frac{(1)(2-(1))}{((1)-3)}=\frac{(+)(+)}{(-)}=(-) \Rightarrow f(x)$ is decreasing at $x=1$
- so $f(x)$ is decreasing for all x in the interval $(0,2)$

increasing at $x=2.5$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all x in the interval $(2,3)$
- $f^{\prime}(4)=\frac{(4)(2-(4))}{((4)-3)}=\frac{(+)(-)}{(+)}=(-) \Rightarrow f(x)$ is decreasing at
$x=4$
- so $\mathbf{f}(\mathbf{x})$ is decreasing for all \mathbf{x} in the interval $(3,+\infty)$

One typical use for f^{\prime}

example continued

$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. There are three CNs $x_{c}=0,2,3$

- Now test the sign of \mathbf{f}^{\prime} at one value in each interval.
- $f^{\prime}(-1)=\frac{(-1)(2-(-1))}{((-1)-3)}=\frac{(-)(+)}{(-)}=(+) \Rightarrow f(x)$ is increasing at $\mathbf{x}=\mathbf{- 1}$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all \mathbf{x} in the interval $(-\infty, 0)$
- $\mathbf{f}^{\prime}(\mathbf{1})=\frac{(\mathbf{1})(\mathbf{2}-(\mathbf{1}))}{((\mathbf{1})-3)}=\frac{(+)(+)}{(-)}=(-) \Rightarrow \mathbf{f}(x)$ is decreasing at $x=1$
- so $f(x)$ is decreasing for all x in the interval $(0,2)$
increasing at $x=2.5$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all x in the interval $(2,3)$
- $f^{\prime}(4)=\frac{(4)(2-(4))}{((4)-3)}=\frac{(+)(-)}{(+)}=(-) \Rightarrow f(x)$ is decreasing at
$x=4$
- so $\mathbf{f}(\mathbf{x})$ is decreasing for all \mathbf{x} in the interval $(3,+\infty)$

One typical use for \mathbf{f}^{\prime}

example continued

$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. There are three CNs $x_{c}=0,2,3$

- Now test the sign of \mathbf{f}^{\prime} at one value in each interval.
- $f^{\prime}(-1)=\frac{(-1)(2-(-1))}{((-1)-3)}=\frac{(-)(+)}{(-)}=(+) \Rightarrow f(x)$ is increasing at $\mathbf{x}=\mathbf{- 1}$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all \mathbf{x} in the interval $(-\infty, 0)$
- $f^{\prime}(\mathbf{1})=\frac{(1)(2-(\mathbf{1}))}{((1)-3)}=\frac{(+)(+)}{(-)}=(-) \Rightarrow f(x)$ is decreasing at $x=1$
- so $\mathbf{f}(\mathbf{x})$ is decreasing for all \mathbf{x} in the interval $(\mathbf{0}, \mathbf{2})$
- $f^{\prime}(2.5)=\frac{(2.5)(2-(2.5))}{((2.5)-3)}=\frac{(+)(-)}{(-)}=(+) \Rightarrow f(x)$ is
increasing at $\mathrm{x}=2.5$
- so $f(x)$ is increasing for all x in the interval $(2,3)$
- $f^{\prime}(4)=\frac{(4)(2-(4))}{((4)-3)}=\frac{(+)(-)}{(+)}=(-) \Rightarrow f(x)$ is decreasing at
$x=4$
- so $f(x)$ is decreasing for all x in the interval $(3,+\infty)$

One typical use for \mathbf{f}^{\prime}

example continued

$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. There are three CNs $x_{c}=0,2,3$

- Now test the sign of \mathbf{f}^{\prime} at one value in each interval.
- $f^{\prime}(-1)=\frac{(-1)(2-(-1))}{((-1)-3)}=\frac{(-)(+)}{(-)}=(+) \Rightarrow f(x)$ is increasing at $\mathbf{x}=\mathbf{- 1}$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all \mathbf{x} in the interval $(-\infty, 0)$
- $f^{\prime}(\mathbf{1})=\frac{(1)(2-(\mathbf{1}))}{((1)-3)}=\frac{(+)(+)}{(-)}=(-) \Rightarrow f(x)$ is decreasing at $x=1$
- so $\mathbf{f}(\mathbf{x})$ is decreasing for all \mathbf{x} in the interval $(\mathbf{0}, \mathbf{2})$
- $f^{\prime}(2.5)=\frac{(2.5)(2-(2.5))}{((2.5)-3)}=\frac{(+)(-)}{(-)}=(+) \Rightarrow f(x)$ is increasing at $x=2.5$
- so $f(x)$ is increasing for all x in the interval $(2,3)$

One typical use for \mathbf{f}^{\prime}

example continued

$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. There are three CNs $x_{c}=0,2,3$

- Now test the sign of \mathbf{f}^{\prime} at one value in each interval.
- $f^{\prime}(-1)=\frac{(-1)(2-(-1))}{((-1)-3)}=\frac{(-)(+)}{(-)}=(+) \Rightarrow f(x)$ is increasing at $\mathbf{x}=\mathbf{- 1}$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all \mathbf{x} in the interval $(-\infty, 0)$
- $f^{\prime}(\mathbf{1})=\frac{(1)(2-(\mathbf{1}))}{((1)-3)}=\frac{(+)(+)}{(-)}=(-) \Rightarrow f(x)$ is decreasing at $x=1$
- so $\mathbf{f}(\mathbf{x})$ is decreasing for all \mathbf{x} in the interval $(\mathbf{0}, \mathbf{2})$
- $f^{\prime}(2.5)=\frac{(2.5)(2-(2.5))}{((2.5)-3)}=\frac{(+)(-)}{(-)}=(+) \Rightarrow f(x)$ is increasing at $x=2.5$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all \mathbf{x} in the interval $(2,3)$
- $f^{\prime}(4)=\frac{(4)(2-(4))}{((4)-3)}=\frac{(+)(-)}{(+)}=(-) \Rightarrow f(x)$ is decreasing at $x=4$

One typical use for \mathbf{f}^{\prime}

example continued

$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. There are three CNs $x_{c}=0,2,3$

- Now test the sign of \mathbf{f}^{\prime} at one value in each interval.
- $f^{\prime}(-1)=\frac{(-1)(2-(-1))}{((-1)-3)}=\frac{(-)(+)}{(-)}=(+) \Rightarrow f(x)$ is increasing at $\mathbf{x}=\mathbf{- 1}$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all \mathbf{x} in the interval $(-\infty, 0)$
- $f^{\prime}(\mathbf{1})=\frac{(1)(2-(\mathbf{1}))}{((1)-3)}=\frac{(+)(+)}{(-)}=(-) \Rightarrow f(x)$ is decreasing at $x=1$
- so $\mathbf{f}(\mathbf{x})$ is decreasing for all \mathbf{x} in the interval $(\mathbf{0}, \mathbf{2})$
- $f^{\prime}(2.5)=\frac{(2.5)(2-(2.5))}{((2.5)-3)}=\frac{(+)(-)}{(-)}=(+) \Rightarrow f(x)$ is increasing at $x=2.5$
- so $\mathbf{f}(\mathbf{x})$ is increasing for all \mathbf{x} in the interval $(2,3)$
- $f^{\prime}(4)=\frac{(4)(2-(4))}{((4)-3)}=\frac{(+)(-)}{(+)}=(-) \Rightarrow f(x)$ is decreasing at $x=4$
- so $f(x)$ is decreasing for all x in the interval $(3,+\infty)$

One typical use for \mathbf{f}^{\prime}

example continued

- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- There are three CNs $x_{c}=0,2,3$
- $\mathbf{f}(\mathbf{x})$ is increasing for \mathbf{x} in $-\infty<\mathbf{x}<\mathbf{0}$ and for \mathbf{x} in $2<x<3$
- $f(x)$ is decreasing for x in $0<x<2$ and for x in $3<x<+\infty$
- It is possible to find the function $f(x)$ that has derivative $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)} .($ chapter 5$)$
- In this case $f(x)=-x-2 \ln (\operatorname{abs}(3-x))-\frac{x^{2}}{2}$
- Look at the graph of $\mathbf{f}(\mathbf{x})$ and check to see if all of the above is consistent with the graph.

One typical use for \mathbf{f}^{\prime}

example continued

- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- There are three CNs $x_{c}=0,2,3$
- $\mathrm{f}(\mathrm{x})$ is increasing for x in $-\infty<\mathrm{x}<0$ and for x in $2<x<3$
- $\mathbf{f}(\mathbf{x})$ is decreasing for x in $0<x<2$ and for x in $3<x<+\infty$
- It is possible to find the function $\mathbf{f}(\mathbf{x})$ that has derivative $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. (chapter 5$)$
- In this case $f(x)=-x-2 \ln (\operatorname{abs}(3-x))-\frac{x^{2}}{2}$
- Look at the graph of $\mathbf{f}(\mathbf{x})$ and check to see if all of the above is consistent with the graph.

One typical use for \mathbf{f}^{\prime}

example continued

- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- There are three CNs $\mathbf{x}_{\mathbf{c}}=\mathbf{0 , 2 , 3}$
- $\mathbf{f}(\mathbf{x})$ is increasing for \mathbf{x} in $-\infty<\mathbf{x}<\mathbf{0}$ and for \mathbf{x} in $2<x<3$
- $\mathrm{f}(\mathrm{x})$ is decreasing for x in $0<\mathrm{x}<2$ and for x in $3<x<+\infty$
- It is possible to find the function $f(x)$ that has derivative $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)} .($ chapter 5$)$
- In this case $f(x)=-x-2 \ln (\operatorname{abs}(3-x))-\frac{x^{2}}{2}$
- Look at the graph of $\mathbf{f}(\mathbf{x})$ and check to see if all of the above is consistent with the graph.

One typical use for f^{\prime}

example continued

- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- There are three CNs $\mathbf{x}_{\mathbf{c}}=\mathbf{0 , 2 , 3}$
- $\mathbf{f}(\mathbf{x})$ is increasing for \mathbf{x} in $-\infty<\mathbf{x}<\mathbf{0}$ and for \mathbf{x} in $2<x<3$
- $\mathrm{f}(\mathrm{x})$ is decreasing for x in $\mathbf{0}<\mathrm{x}<2$ and for x in $3<x<+\infty$
- It is possible to find the function $f(x)$ that has derivative $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. (chapter 5$)$
- In this case $f(x)=-x-2 \ln (\boldsymbol{a b s}(3-x))-\frac{x^{2}}{2}$
- Look at the graph of $f(x)$ and check to see if all of the above is consistent with the graph

One typical use for f^{\prime}

example continued

- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- There are three CNs $\mathbf{x}_{\mathbf{c}}=\mathbf{0 , 2 , 3}$
- $\mathbf{f}(\mathbf{x})$ is increasing for \mathbf{x} in $-\infty<\mathbf{x}<\mathbf{0}$ and for \mathbf{x} in $2<x<3$
- $\mathbf{f}(\mathbf{x})$ is decreasing for \mathbf{x} in $\mathbf{0}<\mathbf{x}<\mathbf{2}$ and for \mathbf{x} in $3<x<+\infty$
- It is possible to find the function $\mathbf{f}(\mathbf{x})$ that has derivative $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. (chapter 5$)$
- In this case $f(x)=-x-2 \ln (\operatorname{abs}(3-x))-\frac{x^{2}}{2}$
- Look at the graph of $\mathbf{f}(\mathbf{x})$ and check to see if all of the above is consistent with the graph

One typical use for f^{\prime}

- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- There are three CNs $\mathbf{x}_{\mathbf{c}}=\mathbf{0 , 2 , 3}$
- $\mathbf{f}(\mathbf{x})$ is increasing for \mathbf{x} in $-\infty<\mathbf{x}<\mathbf{0}$ and for \mathbf{x} in $2<x<3$
- $\mathbf{f}(\mathbf{x})$ is decreasing for \mathbf{x} in $\mathbf{0}<\mathbf{x}<\mathbf{2}$ and for \mathbf{x} in $3<x<+\infty$
- It is possible to find the function $\mathbf{f}(\mathbf{x})$ that has derivative $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. (chapter 5$)$
- In this case $f(x)=-x-2 \ln (\operatorname{abs}(3-x))-\frac{x^{2}}{2}$
- Look at the graph of $f(x)$ and check to see if all of the above is consistent with the graph

One typical use for f^{\prime}

example continued

- $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$.
- There are three CNs $x_{c}=\mathbf{0 , 2 , 3}$
- $\mathbf{f}(\mathbf{x})$ is increasing for \mathbf{x} in $-\infty<\mathbf{x}<\mathbf{0}$ and for \mathbf{x} in $2<x<3$
- $\mathbf{f}(\mathbf{x})$ is decreasing for \mathbf{x} in $\mathbf{0}<\mathbf{x}<\mathbf{2}$ and for \mathbf{x} in $3<x<+\infty$
- It is possible to find the function $\mathbf{f}(\mathbf{x})$ that has derivative $f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$. (chapter 5$)$
- In this case $f(x)=-x-2 \boldsymbol{\operatorname { l n } (\operatorname { a b s } (3 - x)) - \frac { x ^ { 2 } } { 2 }}$
- Look at the graph of $\mathbf{f}(\mathbf{x})$ and check to see if all of the above is consistent with the graph.

One typical use for \boldsymbol{f}^{\prime}

example continued
$f(x)=-x-2 \ln (\operatorname{abs}(3-x))-\frac{x^{2}}{2}$
$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$
There are three CNs, $\mathbf{x}_{\mathbf{c}}=\mathbf{0 , 2 , 3}$

One typical use for \boldsymbol{f}^{\prime}

example continued
$f(x)=-x-2 \ln (\operatorname{abs}(3-x))-\frac{x^{2}}{2}$
$f^{\prime}(x)=\frac{\left(2 x-x^{2}\right)}{(x-3)}=\frac{x(2-x)}{(x-3)}$
There are three CNs, $\mathbf{x}_{\mathbf{c}}=\mathbf{0 , 2 , 3}$

