First Dertivative Test

Math165: Business Calculus

Roy M. Lowman

Spring 2010, Week6 Lec1

first derivative test

 another application of \mathbf{f}^{\prime}- Assume $\mathbf{f}(\mathbf{x})$ is not a straight line and at some $\mathbf{x}, \mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}, \mathbf{x}$ is a critical number.
- What kind of point is the critical point $(x, f(x))$?
- There are four possibilities:

first derivative test

 another application of \mathbf{f}^{\prime}- Assume $\mathbf{f}(\mathbf{x})$ is not a straight line and at some $\mathbf{x}, \mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}, \mathbf{x}$ is a critical number.
- What kind of point is the critical point $(x, f(x))$?
- There are four possibilities:

first derivative test

 another application of \mathbf{f}^{\prime}- Assume $\mathbf{f}(\mathbf{x})$ is not a straight line and at some $\mathbf{x}, \mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}, \mathbf{x}$ is a critical number.
- What kind of point is the critical point $(\mathbf{x}, \mathbf{f}(\mathbf{x}))$?
- There are four possibilities:
- Relative Minimum
- Relative Maximum
- one of two types of inflection points.

first derivative test

 another application of \mathbf{f}^{\prime}- Assume $\mathbf{f}(\mathbf{x})$ is not a straight line and at some $\mathbf{x}, \mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}, \mathbf{x}$ is a critical number.
- What kind of point is the critical point $(\mathbf{x}, \mathbf{f}(\mathbf{x}))$?
- There are four possibilities:
- Relative Minimum
- Relative Maximum
- one of two types of inflection points.

first derivative test

 another application of \mathbf{f}^{\prime}- Assume $\mathbf{f}(\mathbf{x})$ is not a straight line and at some $\mathbf{x}, \mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}, \mathbf{x}$ is a critical number.
- What kind of point is the critical point $(\mathbf{x}, \mathbf{f}(\mathbf{x}))$?
- There are four possibilities:
- Relative Minimum
- Relative Maximum
- one of two types of inflection points.

first derivative test

 another application of \mathbf{f}^{\prime}- Assume $\mathbf{f}(\mathbf{x})$ is not a straight line and at some $\mathbf{x}, \mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}, \mathbf{x}$ is a critical number.
- What kind of point is the critical point $(\mathbf{x}, \mathbf{f}(\mathbf{x}))$?
- There are four possibilities:
- Relative Minimum
- Relative Maximum
- one of two types of inflection points.

first derivative test

$\mathbf{f}^{\prime}=\mathbf{0} \Rightarrow$ four posibilities

first derivative test

 $\mathbf{f}^{\prime}=\mathbf{0} \Rightarrow$ four posibilities- The slope pattern across the critical point can be used to determine what kind of CP: Rel Min, REI Max or IP.
- This process is called The First Derivative Test.
- Slope pattern: $-, \mathbf{0},+\Rightarrow$ Relative Minimum.
- Slope pattern: $+, \mathbf{0}, \rightarrow \Rightarrow$ Relative Maximum.
- Slope pattern: $+, 0,+\Rightarrow$ Inflection Point.
- Slope pattern: $\mathbf{- , 0 ,}-\Rightarrow$ Inflection Point.
- It is better to determine the shape of the graph using the signs of the slopes instead of trying to memorize the sign patterns.

first derivative test

 $\mathbf{f}^{\prime}=\mathbf{0} \Rightarrow$ four posibilities- The slope pattern across the critical point can be used to determine what kind of CP: Rel Min, REI Max or IP.
- This process is called The First Derivative Test.
- Slope pattern: $-, 0,+\Rightarrow$ Relative Minimum
- Slope pattern: $+, 0,-\Rightarrow$ Relative Maximum
- Slope pattern: $+, 0,+\Rightarrow$ Inflection Point.
- Slope pattern: $-, 0,-\Rightarrow$ Inflection Point.
- It is better to determine the shape of the graph using the signs of the slopes instead of trying to memorize the sign patterns.

first derivative test

 $\mathbf{f}^{\prime}=\mathbf{0} \Rightarrow$ four posibilities- The slope pattern across the critical point can be used to determine what kind of CP: Rel Min, REI Max or IP.
- This process is called The First Derivative Test.
- Slope pattern: $-, \mathbf{0},+\Rightarrow$ Relative Minimum.
- Slope pattern: $+, 0,-\Rightarrow$ Relative Maximum
- Slope pattern: $+, \mathbf{0},+\Rightarrow$ Inflection Point.
- Slope pattern: $-, \mathbf{0}, \Rightarrow$ Inflection Point.
- It is better to determine the shape of the graph using the signs of the slopes instead of trying to memorize the sign patterns.

first derivative test

 $\mathbf{f}^{\prime}=\mathbf{0} \Rightarrow$ four posibilities- The slope pattern across the critical point can be used to determine what kind of CP: Rel Min, REI Max or IP.
- This process is called The First Derivative Test.
- Slope pattern:,$- \mathbf{0}+\Rightarrow$ Relative Minimum.
- Slope pattern: $+, \mathbf{0}, \Rightarrow$ Relative Maximum.
- Slope pattern: $+, 0,+\Rightarrow$ Inflection Point.
- Slope pattern: $-, \mathbf{0}, \Rightarrow$ Inflection Point.
- It is better to determine the shape of the graph using the signs of the slopes instead of trying to memorize the sign patterns.

first derivative test

$\mathbf{f}^{\prime}=\mathbf{0} \Rightarrow$ four posibilities

- The slope pattern across the critical point can be used to determine what kind of CP: Rel Min, REI Max or IP.
- This process is called The First Derivative Test.
- Slope pattern:,$- \mathbf{0}+\Rightarrow$ Relative Minimum.
- Slope pattern: $+, \mathbf{0}, \Rightarrow$ Relative Maximum.
- Slope pattern: $+, \mathbf{0},+\Rightarrow$ Inflection Point.
- Slope pattern: $-, 0,-\Rightarrow$ Inflection Point.
- It is better to determine the shape of the graph using the signs of the slopes instead of trying to memorize the sign patterns.

first derivative test

$\mathbf{f}^{\prime}=\mathbf{0} \Rightarrow$ four posibilities

- The slope pattern across the critical point can be used to determine what kind of CP: Rel Min, REI Max or IP.
- This process is called The First Derivative Test.
- Slope pattern: $-, \mathbf{0},+\Rightarrow$ Relative Minimum.
- Slope pattern: $+, \mathbf{0}, \Rightarrow$ Relative Maximum.
- Slope pattern: $+, \mathbf{0},+\Rightarrow$ Inflection Point.
- Slope pattern: $-, \mathbf{0}, \Rightarrow$ Inflection Point.
- It is better to determine the shape of the graph using the signs of the slopes instead of trying to memorize the sign patterns.

first derivative test

$\mathbf{f}^{\prime}=\mathbf{0} \Rightarrow$ four posibilities

- The slope pattern across the critical point can be used to determine what kind of CP: Rel Min, REI Max or IP.
- This process is called The First Derivative Test.
- Slope pattern:,$- \mathbf{0}+\Rightarrow$ Relative Minimum.
- Slope pattern: $+, \mathbf{0}, \Rightarrow$ Relative Maximum.
- Slope pattern: $+, \mathbf{0},+\Rightarrow$ Inflection Point.
- Slope pattern: $-, \mathbf{0}, \Rightarrow$ Inflection Point.
- It is better to determine the shape of the graph using the signs of the slopes instead of trying to memorize the sign patterns.

first derivative test

Typical exam problem:
$f(x)=(x-1)^{3}+1$ Find the location of any critical points and use the first derivative test to determine what kind critial points.

first derivative test

Typical exam problem:

$f(x)=(x-1)^{3}+1$ Find the location of any critical points and use the first derivative test to determine what kind critial points.

- Find all critical points: set $\mathbf{f}^{\prime}=0$ and solve for all $\mathbf{x}=\mathrm{x}_{\mathrm{c}}$
- $f^{\prime}(x)=\frac{d}{d x}\left[(x-1)^{3}+1\right]=\frac{d}{d x}(x-1)^{3}+\frac{d}{d x} 1=$ $3(x-1)^{3-1} \frac{d}{d x}(x-1)+0=3(x-1)^{2}$
- $f^{\prime}(x)=3(x-1)^{2}=0$ Gives $x_{c}=1$ as the only critical number.
- Now use the first derivative test to determine what kind of CP at CN: $x_{c}=1$

first derivative test

Typical exam problem:

$f(x)=(x-1)^{3}+1$ Find the location of any critical points and use the first derivative test to determine what kind critial points.

- Find all critical points: set $\mathbf{f}^{\prime}=\mathbf{0}$ and solve for all $\mathbf{x}=\mathbf{x}_{\mathbf{c}}$
- $f^{\prime}(x)=\frac{d}{d x}\left[(x-1)^{3}+1\right]=\frac{d}{d x}(x-1)^{3}+\frac{d}{d x} 1=$ $3(x-1)^{3-1} \frac{d}{d x}(x-1)+0=3(x-1)^{2}$
- $f^{\prime}(x)=3(x-1)^{2}=0$ Gives $x_{c}=1$ as the only critical number.
- Now use the first derivative test to determine what kind of CP at CN: $\mathrm{x}_{\mathrm{c}}=1$

first derivative test

Typical exam problem:

$f(x)=(x-1)^{3}+1$ Find the location of any critical points and use the first derivative test to determine what kind critial points.

- Find all critical points: set $\mathbf{f}^{\prime}=0$ and solve for all $\mathbf{x}=\mathbf{x}_{\mathbf{c}}$
- $f^{\prime}(x)=\frac{d}{d x}\left[(x-1)^{3}+1\right]=\frac{d}{d x}(x-1)^{3}+\frac{d}{d x} 1=$ $3(x-1)^{3-1} \frac{d}{d x}(x-1)+0=3(x-1)^{2}$
- $f^{\prime}(x)=3(x-1)^{2}=0$ Gives $x_{c}=1$ as the only critical number.
- Now use the first derivative test to determine what kind of CP at CN: $x_{c}=1$

first derivative test

Typical exam problem:

$f(x)=(x-1)^{3}+1$ Find the location of any critical points and use the first derivative test to determine what kind critial points.

- Find all critical points: set $\mathbf{f}^{\prime}=0$ and solve for all $\mathbf{x}=\mathbf{x}_{\mathbf{c}}$
- $f^{\prime}(x)=\frac{d}{d x}\left[(x-1)^{3}+1\right]=\frac{d}{d x}(x-1)^{3}+\frac{d}{d x} 1=$ $3(x-1)^{3-1} \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x}-1)+0=3(\mathrm{x}-1)^{2}$
- $f^{\prime}(x)=3(x-1)^{2}=0$ Gives $x_{c}=1$ as the only critical number.
- Now use the first derivative test to determine what kind of CP at CN: $\mathbf{x}_{\mathrm{c}}=\mathbf{1}$

first derivative test

example

Typical exam problem:

$f(x)=(x-1)^{3}+1$ Find the location of any critical points and use the first derivative test to determine what kind critial points.

- Find all critical points: set $\mathbf{f}^{\prime}=0$ and solve for all $\mathbf{x}=\mathbf{x}_{\mathbf{c}}$
- $f^{\prime}(x)=\frac{d}{d x}\left[(x-1)^{3}+1\right]=\frac{d}{d x}(x-1)^{3}+\frac{d}{d x} 1=$ $3(x-1)^{3-1} \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x}-1)+0=3(\mathrm{x}-1)^{2}$
- $f^{\prime}(x)=3(x-1)^{2}=0$ Gives $x_{c}=1$ as the only critical number.
- Now use the first derivative test to determine what kind of CP at CN: $\mathbf{x}_{\mathrm{c}}=\mathbf{1}$

$$
\text { - } f^{\prime}(.9)=3(.9-1)^{2}=+
$$

$$
f^{\prime}(1.1)=3(1.1-1)^{2}=+
$$

first derivative test

example

Typical exam problem:

$f(x)=(x-1)^{3}+1$ Find the location of any critical points and use the first derivative test to determine what kind critial points.

- Find all critical points: set $\mathbf{f}^{\prime}=0$ and solve for all $\mathbf{x}=\mathbf{x}_{\mathbf{c}}$
- $f^{\prime}(x)=\frac{d}{d x}\left[(x-1)^{3}+1\right]=\frac{d}{d x}(x-1)^{3}+\frac{d}{d x} 1=$ $3(x-1)^{3-1} \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x}-1)+0=3(\mathrm{x}-1)^{2}$
- $f^{\prime}(x)=3(x-1)^{2}=0$ Gives $x_{c}=1$ as the only critical number.
- Now use the first derivative test to determine what kind of CP at CN: $\mathbf{x}_{\mathrm{c}}=1$
- $f^{\prime}(.9)=3(.9-1)^{2}=+$
- $f^{\prime}(1)=0$
- $\mathrm{f}^{\prime}(1.1)=3(1.1-1)^{2}=+$

first derivative test

example

Typical exam problem:

$f(x)=(x-1)^{3}+1$ Find the location of any critical points and use the first derivative test to determine what kind critial points.

- Find all critical points: set $\mathbf{f}^{\prime}=0$ and solve for all $\mathbf{x}=\mathbf{x}_{\mathbf{c}}$
- $f^{\prime}(x)=\frac{d}{d x}\left[(x-1)^{3}+1\right]=\frac{d}{d x}(x-1)^{3}+\frac{d}{d x} 1=$ $3(x-1)^{3-1} \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x}-1)+0=3(\mathrm{x}-1)^{2}$
- $f^{\prime}(x)=3(x-1)^{2}=0$ Gives $x_{c}=1$ as the only critical number.
- Now use the first derivative test to determine what kind of CP at CN: $\mathbf{x}_{\mathrm{c}}=1$
- $f^{\prime}(.9)=3(.9-1)^{2}=+$
- $f^{\prime}(1)=0$
- $f^{\prime}(1.1)=3(1.1-1)^{2}=+$

first derivative test

example

$f(x)=(x-1)^{3}+1$
Use the first derivative test to determine what kind of CP at
CN: $x_{c}=\mathbf{1}$
$f^{\prime}(.9)=3(.9-1)^{2}=+$
$f^{\prime}(1)=0$
$f^{\prime}(1.1)=3(1.1-1)^{2}=+$
draw these lines based on the slope signs

This slope pattern can only match an infleciton point.

first derivative test

 f(x)Here is the graph of $\mathbf{f}(\mathbf{x})$

