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first derivative test
another application of f′

Assume f(x) is not a straight line and at some x, f′(x) = 0, x
is a critical number.

What kind of point is the critical point (x, f(x))?

There are four possibilities:

Relative Minimum
Relative Maximum
one of two types of inflection points.

Roy M. Lowman First Dertivative Test



first derivative test
another application of f′

Assume f(x) is not a straight line and at some x, f′(x) = 0, x
is a critical number.

What kind of point is the critical point (x, f(x))?

There are four possibilities:

Relative Minimum
Relative Maximum
one of two types of inflection points.

Roy M. Lowman First Dertivative Test



first derivative test
another application of f′

Assume f(x) is not a straight line and at some x, f′(x) = 0, x
is a critical number.

What kind of point is the critical point (x, f(x))?

There are four possibilities:

Relative Minimum
Relative Maximum
one of two types of inflection points.

Roy M. Lowman First Dertivative Test



first derivative test
another application of f′

Assume f(x) is not a straight line and at some x, f′(x) = 0, x
is a critical number.

What kind of point is the critical point (x, f(x))?

There are four possibilities:

Relative Minimum
Relative Maximum
one of two types of inflection points.

Roy M. Lowman First Dertivative Test



first derivative test
another application of f′

Assume f(x) is not a straight line and at some x, f′(x) = 0, x
is a critical number.

What kind of point is the critical point (x, f(x))?

There are four possibilities:

Relative Minimum
Relative Maximum
one of two types of inflection points.

Roy M. Lowman First Dertivative Test



first derivative test
another application of f′

Assume f(x) is not a straight line and at some x, f′(x) = 0, x
is a critical number.

What kind of point is the critical point (x, f(x))?

There are four possibilities:

Relative Minimum
Relative Maximum
one of two types of inflection points.

Roy M. Lowman First Dertivative Test



first derivative test
f′ = 0 ⇒ four posibilities
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first derivative test
f′ = 0 ⇒ four posibilities

The slope pattern across the critical point can be used to
determine what kind of CP: Rel Min, REl Max or IP.

This process is called The First Derivative Test.

Slope pattern: −, 0, +⇒ Relative Minimum.

Slope pattern: +, 0,− ⇒ Relative Maximum.

Slope pattern: +, 0, +⇒ Inflection Point.

Slope pattern: −, 0,− ⇒ Inflection Point.

It is better to determine the shape of the graph using the signs
of the slopes instead of trying to memorize the sign patterns.
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first derivative test
example

Typical exam problem:
f(x) = (x− 1)3 + 1 Find the location of any critical points and
use the first derivative test to determine what kind critial points.

Find all critical points: set f′ = 0 and solve for all x = xc

f′(x) = d
dx [(x− 1)3 + 1] = d

dx(x− 1)3 + d
dx1 =

3(x− 1)3−1 d
dx(x− 1) + 0 = 3(x− 1)2

f′(x) = 3(x− 1)2 = 0 Gives xc = 1 as the only critical
number.

Now use the first derivative test to determine what kind of CP
at CN: xc = 1

f′(.9) = 3(.9− 1)2 = +
f′(1) = 0
f′(1.1) = 3(1.1− 1)2 = +
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first derivative test
f(x)

Here is the graph of f(x)

f(x) = (x-1)^3 + 1
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