Second Derivative
 Math165: Business Calculus

Roy M. Lowman

Spring 2010, Week6 Lec2

second derivative

 definition of \mathbf{f}^{\prime}
Definition (first derivative)

$$
\begin{align*}
\frac{\mathbf{d f}}{\mathbf{d x}}=f^{\prime} & =\lim _{\Delta x->0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \tag{1}\\
& =\lim _{\Delta x \rightarrow>0} \frac{\Delta f}{\Delta x} \tag{2}\\
& \approx \frac{\Delta f}{\Delta x} \text { average slope of } f(x) \text { over delta } x, f_{\text {avg }}^{\prime} \tag{3}
\end{align*}
$$

second derivative

definition of \mathbf{f}^{\prime}

- $f^{\prime}(x)$ is the slope of the function $f(x)$
- $f^{\prime}(x)$ is the rate of change of the function $f(x)$ w.r.t x
- $f^{\prime}(x)$ is $(+)$ where $f(x)$ is increasing.
- $f^{\prime}(x)$ is $(-)$ where $f(x)$ is decreasing.
- $f^{\prime}(x)$ can be used to find intervals where $f(x)$ is
increasing/decreasing
- $\mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}$ or undefined where the sign of the slope can change, i.e. at CNs
- $f^{\prime}(x)=0$ at critical points
- The First Derivative Test can be used to determine what kind of critical points.
- $f^{\prime}(x)$ can tell you a lot about a function $f(x)$
- $f_{\text {avg }}^{\prime}=\frac{\Delta f}{\Delta x}$ can be used to extimate $f^{\prime}(x)$

second derivative

 definition of \mathbf{f}^{\prime}- $\mathbf{f}^{\prime}(\mathbf{x})$ is the slope of the function $\mathbf{f}(\mathbf{x})$
- $f^{\prime}(x)$ is the rate of change of the function $f(x)$ w.r.t x
- $f^{\prime}(x)$ is $(+)$ where $f(x)$ is increasing.
- $f^{\prime}(x)$ is $(-)$ where $f(x)$ is decreasing.
- $f^{\prime}(x)$ can be used to find intervals where $f(x)$ is
increasing/decreasing
- $f^{\prime}(x)=0$ or undefined where the sign of the slope can change, i.e. at CNs
- $f^{\prime}(x)=0$ at critical points
- The First Derivative Test can be used to determine what kind of critical points.
- $f^{\prime}(x)$ can tell you a lot about a function $f(x)$
- $f_{\text {avg }}^{\prime}=\frac{\Delta f}{\Delta x}$ can be used to extimate $f^{\prime}(x)$

second derivative

 definition of \mathbf{f}^{\prime}- $f^{\prime}(x)$ is the slope of the function $f(x)$
- $f^{\prime}(\mathbf{x})$ is the rate of change of the function $\mathbf{f}(\mathbf{x})$ w.r.t \mathbf{x}
- $f^{\prime}(x)$ is $(+)$ where $f(x)$ is increasing.
- $f^{\prime}(x)$ is $(-)$ where $f(x)$ is decreasing.
- $f^{\prime}(x)$ can be used to find intervals where $f(x)$ is
increasing/decreasing
- $f^{\prime}(x)=0$ or undefined where the sign of the slope can change, i.e. at CNs
- $f^{\prime}(x)=0$ at critical points
- The First Derivative Test can be used to determine what
kind of critical points.
- $f^{\prime}(x)$ can tell you a lot about a function $f(x)$
- $f_{\text {avg }}^{\prime}=\frac{\Delta f}{\Delta x}$ can be used to extimate $f^{\prime}(x)$

second derivative

 definition of \mathbf{f}^{\prime}- $f^{\prime}(x)$ is the slope of the function $f(x)$
- $f^{\prime}(\mathbf{x})$ is the rate of change of the function $\mathbf{f}(\mathbf{x})$ w.r.t \mathbf{x}
- $f^{\prime}(x)$ is $(+)$ where $f(x)$ is increasing.
- $f^{\prime}(x)$ is $(-)$ where $f(x)$ is decreasing.
- $f^{\prime}(x)$ can be used to find intervals where $f(x)$ is
increasing/decreasing
- $\mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}$ or undefined where the sign of the slope can change, i.e. at CNs
- $f^{\prime}(x)=0$ at critical points
- The First Derivative Test can be used to determine what kind of critical points.
- $f^{\prime}(x)$ can tell you a lot about a function $f(x)$
- $f_{\text {avg }}^{\prime}=\frac{\Delta f}{\Delta x}$ can be used to extimate $f^{\prime}(x)$

second derivative

 definition of \mathbf{f}^{\prime}- $f^{\prime}(x)$ is the slope of the function $f(x)$
- $f^{\prime}(x)$ is the rate of change of the function $f(x)$ w.r.t x
- $f^{\prime}(x)$ is $(+)$ where $f(x)$ is increasing.
- $f^{\prime}(x)$ is $(-)$ where $f(x)$ is decreasing.
- $f^{\prime}(x)$ can be used to find intervals where $f(x)$ is increasing/decreasing
- $f^{\prime}(x)=0$ or undefined where the sign of the slope can change, i.e. at CNs
- $f^{\prime}(x)=0$ at critical points
- The First Derivative Test can be used to determine what kind of critical points.
- $f^{\prime}(x)$ can tell you a lot about a function $f(x)$
- $f_{\text {avg }}^{\prime}=\frac{\Delta f}{\Delta x}$ can be used to extimate $f^{\prime}(x)$

second derivative

 definition of \mathbf{f}^{\prime}- $f^{\prime}(x)$ is the slope of the function $f(x)$
- $\mathbf{f}^{\prime}(\mathbf{x})$ is the rate of change of the function $\mathbf{f}(\mathbf{x})$ w.r.t \mathbf{x}
- $f^{\prime}(x)$ is $(+)$ where $f(x)$ is increasing.
- $f^{\prime}(x)$ is $(-)$ where $f(x)$ is decreasing.
- $\mathbf{f}^{\prime}(\mathbf{x})$ can be used to find intervals where $\mathbf{f}(\mathbf{x})$ is increasing/decreasing
- $f^{\prime}(x)=0$ or undefined where the sign of the slope can change, i.e. at CNs
- $f^{\prime}(x)=0$ at critical points
- The First Derivative Test can be used to determine what kind of critical points.
- $f^{\prime}(x)$ can tell you a lot about a function $f(x)$
- $f_{\text {avg }}^{\prime}=\frac{\Delta f}{\Delta x}$ can be used to extimate $f^{\prime}(x)$

second derivative

 definition of \mathbf{f}^{\prime}- $f^{\prime}(x)$ is the slope of the function $f(x)$
- $\mathbf{f}^{\prime}(\mathbf{x})$ is the rate of change of the function $\mathbf{f}(\mathbf{x})$ w.r.t \mathbf{x}
- $f^{\prime}(x)$ is $(+)$ where $f(x)$ is increasing.
- $f^{\prime}(x)$ is $(-)$ where $f(x)$ is decreasing.
- $\mathbf{f}^{\prime}(\mathbf{x})$ can be used to find intervals where $\mathbf{f}(\mathbf{x})$ is increasing/decreasing
- $\mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}$ or undefined where the sign of the slope can change, i.e. at CNs
- $f^{\prime}(x)=0$ at critical points
- The First Derivative Test can be used to determine what
kind of critical points.
- $f^{\prime}(x)$ can tell you a lot about a function $f(x)$
- $f_{\text {avg }}^{\prime}=\frac{\Delta f}{\Delta x}$ can be used to extimate $f^{\prime}(x)$

second derivative

 definition of \mathbf{f}^{\prime}- $f^{\prime}(x)$ is the slope of the function $f(x)$
- $f^{\prime}(\mathbf{x})$ is the rate of change of the function $\mathbf{f}(\mathbf{x})$ w.r.t \mathbf{x}
- $f^{\prime}(x)$ is $(+)$ where $f(x)$ is increasing.
- $f^{\prime}(x)$ is $(-)$ where $f(x)$ is decreasing.
- $\mathbf{f}^{\prime}(\mathbf{x})$ can be used to find intervals where $\mathbf{f}(\mathbf{x})$ is increasing/decreasing
- $f^{\prime}(\mathbf{x})=\mathbf{0}$ or undefined where the sign of the slope can change, i.e. at CNs
- $f^{\prime}(x)=0$ at critical points
- The First Derivative Test can be used to determine what kind of critical points.
- $f^{\prime}(x)$ can tell you a lot about a function $f(x)$
- $f_{\text {avg }}^{\prime}=\frac{\Delta f}{\Delta x}$ can be used to extimate $f^{\prime}(x)$

second derivative

 definition of \mathbf{f}^{\prime}- $f^{\prime}(x)$ is the slope of the function $f(x)$
- $f^{\prime}(x)$ is the rate of change of the function $f(x)$ w.r.t x
- $f^{\prime}(x)$ is $(+)$ where $f(x)$ is increasing.
- $f^{\prime}(x)$ is $(-)$ where $f(x)$ is decreasing.
- $\mathbf{f}^{\prime}(\mathbf{x})$ can be used to find intervals where $\mathbf{f}(\mathbf{x})$ is increasing/decreasing
- $\mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}$ or undefined where the sign of the slope can change, i.e. at CNs
- $f^{\prime}(x)=0$ at critical points
- The First Derivative Test can be used to determine what kind of critical points.
- $f^{\prime}(x)$ can tell you a lot about a function $f(x)$
- $\mathrm{f}_{\text {avg }}^{\prime}=\frac{\Delta \mathrm{f}}{\Delta \mathrm{x}}$ can be used to extimate $\mathrm{f}^{\prime}(\mathrm{x})$

second derivative

 definition of \mathbf{f}^{\prime}- $f^{\prime}(x)$ is the slope of the function $f(x)$
- $f^{\prime}(x)$ is the rate of change of the function $f(x)$ w.r.t x
- $f^{\prime}(x)$ is $(+)$ where $f(x)$ is increasing.
- $f^{\prime}(x)$ is $(-)$ where $f(x)$ is decreasing.
- $\mathbf{f}^{\prime}(\mathbf{x})$ can be used to find intervals where $\mathbf{f}(\mathbf{x})$ is increasing/decreasing
- $f^{\prime}(\mathbf{x})=\mathbf{0}$ or undefined where the sign of the slope can change, i.e. at CNs
- $f^{\prime}(x)=0$ at critical points
- The First Derivative Test can be used to determine what kind of critical points.
- $\mathbf{f}^{\prime}(\mathbf{x})$ can tell you a lot about a function $\mathbf{f}(\mathbf{x})$
- $f_{\text {avg }}^{\prime}=\frac{\Delta f}{\Delta x}$ can be used to extimate $f^{\prime}(\mathbf{x})$

second derivative

 definition of $\mathbf{f}^{\prime \prime}$Definition (second derivative)

$$
\begin{align*}
\frac{d^{2} f}{d x^{2}}=\frac{d}{d x} f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f^{\prime}(x+\Delta x)-f(x)^{\prime}}{\Delta x} \tag{5}\\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta f^{\prime}}{\Delta x} \tag{6}\\
& \approx \frac{\Delta f^{\prime}}{\Delta x} \text { average slope of } f^{\prime} \text { over } \Delta x, f_{\text {avg }}^{\prime \prime} \tag{7}
\end{align*}
$$

second derivative

definition of $\mathbf{f}^{\prime \prime}$

- $f^{\prime \prime}(x)$ gives the concavity of function $f(x)$
- $f^{\prime \prime}(x)$ is the rate of change of slope w.r.t x
- $f^{\prime \prime}(x)$ is $(+)$ where $f(x)$ is concave up. (holds $H_{2} O$)
- $f^{\prime \prime}(x)$ is $(-)$ where $f(x)$ is concave down. (makes letter A)
- $f^{\prime \prime}(x)$ can be used to find intervals where $f(x)$ is concave up or concave down
- $\mathbf{f}^{\prime \prime}(\mathbf{x})=0$ or undefined where the concavity can change
- $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ at inflection points, but must check if actually IP.
- The Second Derivative Test can be used to determine what type of critical points where $\mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}$.
- $\mathrm{f}^{\prime \prime}(\mathrm{x})$ can tell you a lot about a function $\mathrm{f}(\mathrm{x})$
- $\mathrm{f}_{\text {avg }}^{\prime \prime}=\frac{\Delta \mathrm{f}^{\prime}}{\Delta \mathrm{x}}$ can be used to extimate $\mathrm{f}^{\prime \prime}(\mathrm{x})$

second derivative

 definition of $\mathbf{f}^{\prime \prime}$- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ gives the concavity of function $\mathbf{f}(\mathbf{x})$
- $f^{\prime \prime}(x)$ is the rate of change of slope w.r.t x
- $f^{\prime \prime}(x)$ is $(+)$ where $f(x)$ is concave up. (holds $\mathrm{H}_{2} \mathrm{O}$)
- $f^{\prime \prime}(x)$ is $(-)$ where $f(x)$ is concave down. (makes letter A)
- $f^{\prime \prime}(x)$ can be used to find intervals where $f(x)$ is concave up or concave down
- $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ or undefined where the concavity can change
- $f^{\prime \prime}(x)=0$ at inflection points, but must check if actually IP
- The Second Derivative Test can be used to determine what type of critical points where $\mathrm{f}^{\prime}(\mathrm{x})=\mathbf{0}$.
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can tell you a lot about a function $\mathbf{f}(x)$
- $\mathrm{f}_{\text {avg }}^{\prime \prime}=\frac{\Delta \mathrm{f}^{\prime}}{\Delta \mathrm{x}}$ can be used to extimate $\mathrm{f}^{\prime \prime}(\mathrm{x})$

second derivative

 definition of $\mathrm{f}^{\prime \prime}$- $f^{\prime \prime}(x)$ gives the concavity of function $f(x)$
- $f^{\prime \prime}(\mathbf{x})$ is the rate of change of slope w.r.t \mathbf{x}
- $f^{\prime \prime}(x)$ is $(+)$ where $f(x)$ is concave up. (holds $H_{2} O$)
- $f^{\prime \prime}(x)$ is $(-)$ where $f(x)$ is concave down. (makes letter A)
- $f^{\prime \prime}(x)$ can be used to find intervals where $f(x)$ is concave up or concave down
- $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ or undefined where the concavity can change
- $f^{\prime \prime}(x)=0$ at inflection points, but must check if actually IP.
- The Second Derivative Test can be used to determine what type of critical points where $\mathrm{f}^{\prime}(\mathrm{x})=0$.
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can tell you a lot about a function $\mathbf{f}(\mathbf{x})$
- $\mathrm{f}_{\text {avg }}^{\prime \prime}=\frac{\Delta \mathrm{f}^{\prime}}{\Delta x}$ can be used to extimate $\mathrm{f}^{\prime \prime}(\mathrm{x})$

second derivative

 definition of $\mathbf{f}^{\prime \prime}$- $f^{\prime \prime}(x)$ gives the concavity of function $f(x)$
- $f^{\prime \prime}(x)$ is the rate of change of slope w.r.t x
- $f^{\prime \prime}(x)$ is $(+)$ where $f(x)$ is concave up. (holds $H_{2} \mathbf{O}$)
- $f^{\prime \prime}(x)$ is $(-)$ where $f(x)$ is concave down. (makes letter \mathbf{A})
- $f^{\prime \prime}(x)$ can be used to find intervals where $f(x)$ is concave up or concave down
- $\mathbf{f}^{\prime \prime}(\mathbf{x})=0$ or undefined where the concavity can change
- $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ at inflection points, but must check if actually IP.
- The Second Derivative Test can be used to determine what type of critical points where $\mathbf{f}^{\prime}(\mathbf{x})=0$.
- $f^{\prime \prime}(x)$ can tell you a lot about a function $f(x)$
- $\mathrm{f}_{\text {avg }}^{\prime \prime}=\frac{\Delta \mathrm{f}^{\prime}}{\Delta x}$ can be used to extimate $\mathrm{f}^{\prime \prime}(\mathrm{x})$

second derivative

 definition of $\mathbf{f}^{\prime \prime}$- $f^{\prime \prime}(x)$ gives the concavity of function $f(x)$
- $f^{\prime \prime}(x)$ is the rate of change of slope w.r.t x
- $f^{\prime \prime}(x)$ is $(+)$ where $f(x)$ is concave up. (holds $H_{2} \mathbf{O}$)
- $f^{\prime \prime}(x)$ is $(-)$ where $f(x)$ is concave down. (makes letter A)
- $f^{\prime \prime}(x)$ can be used to find intervals where $f(x)$ is concave up or concave down
- $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ or undefined where the concavity can change
- $f^{\prime \prime}(x)=0$ at inflection points, but must check if actually IP.
- The Second Derivative Test can be used to determine what type of critical points where $\mathrm{f}^{\prime}(\mathrm{x})=0$.
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can tell you a lot about a function $\mathbf{f}(\mathbf{x})$
- $f_{\text {avg }}^{\prime \prime}=\frac{\Delta f^{\prime}}{\Delta x}$ can be used to extimate $f^{\prime \prime}(\mathbf{x})$

second derivative

 definition of $\mathbf{f}^{\prime \prime}$- $f^{\prime \prime}(x)$ gives the concavity of function $f(x)$
- $f^{\prime \prime}(x)$ is the rate of change of slope w.r.t x
- $f^{\prime \prime}(x)$ is $(+)$ where $f(x)$ is concave up. (holds $H_{2} \mathbf{O}$)
- $f^{\prime \prime}(x)$ is $(-)$ where $f(x)$ is concave down. (makes letter A)
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can be used to find intervals where $\mathbf{f}(\mathbf{x})$ is concave up or concave down
- $f^{\prime \prime}(x)=0$ or undefined where the concavity can change
- $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ at inflection points, but must check if actually IP.
- The Second Derivative Test can be used to determine what type of critical points where $\mathbf{f}^{\prime}(\mathrm{x})=0$.
- $\mathrm{f}^{\prime \prime}(\mathrm{x})$ can tell you a lot about a function $\mathrm{f}(\mathrm{x})$
- $\mathrm{f}_{\text {avg }}^{\prime \prime}=\frac{\Delta \mathrm{f}^{\prime}}{\Delta x}$ can be used to extimate $\mathrm{f}^{\prime \prime}(\mathrm{x})$

second derivative

 definition of $\mathbf{f}^{\prime \prime}$- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ gives the concavity of function $f(x)$
- $f^{\prime \prime}(x)$ is the rate of change of slope w.r.t x
- $f^{\prime \prime}(x)$ is $(+)$ where $f(x)$ is concave up. (holds $H_{2} \mathbf{O}$)
- $f^{\prime \prime}(x)$ is $(-)$ where $f(x)$ is concave down. (makes letter A)
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can be used to find intervals where $\mathbf{f}(\mathbf{x})$ is concave up or concave down
- $f^{\prime \prime}(x)=0$ or undefined where the concavity can change
- $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ at inflection points, but must check if actually IP.
- The Second Derivative Test can be used to determine what type of critical points where $f^{\prime}(x)=0$.
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can tell you a lot about a function $f(x)$
- $f_{\text {avg }}^{\prime \prime}=\frac{\Delta f^{\prime}}{\Delta x}$ can be used to extimate $f^{\prime \prime}(x)$

second derivative

 definition of $\mathbf{f}^{\prime \prime}$- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ gives the concavity of function $f(x)$
- $f^{\prime \prime}(x)$ is the rate of change of slope w.r.t x
- $f^{\prime \prime}(x)$ is $(+)$ where $f(x)$ is concave up. (holds $H_{2} \mathbf{O}$)
- $f^{\prime \prime}(x)$ is $(-)$ where $f(x)$ is concave down. (makes letter A)
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can be used to find intervals where $\mathbf{f}(\mathbf{x})$ is concave up or concave down
- $f^{\prime \prime}(x)=0$ or undefined where the concavity can change
- $f^{\prime \prime}(x)=0$ at inflection points, but must check if actually IP.
- The Second Derivative Test can be used to determine what type of critical points where $\mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}$.
- $f^{\prime \prime}(x)$ can tell you a lot about a function $f(x)$
- $f_{\text {avg }}^{\prime \prime}=\frac{\Delta f^{\prime}}{\Delta x}$ can be used to extimate $f^{\prime \prime}(x)$
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ gives the concavity of function $f(x)$
- $f^{\prime \prime}(x)$ is the rate of change of slope w.r.t x
- $f^{\prime \prime}(x)$ is $(+)$ where $f(x)$ is concave up. (holds $H_{2} \mathbf{O}$)
- $f^{\prime \prime}(x)$ is $(-)$ where $f(x)$ is concave down. (makes letter A)
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can be used to find intervals where $\mathbf{f}(\mathbf{x})$ is concave up or concave down
- $f^{\prime \prime}(x)=0$ or undefined where the concavity can change
- $\mathbf{f}^{\prime \prime}(\mathbf{x})=0$ at inflection points, but must check if actually IP.
- The Second Derivative Test can be used to determine what type of critical points where $\mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}$.
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can tell you a lot about a function $\mathbf{f}(\mathbf{x})$

second derivative definition of $f^{\prime \prime}$

- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ gives the concavity of function $f(x)$
- $f^{\prime \prime}(x)$ is the rate of change of slope w.r.t x
- $f^{\prime \prime}(x)$ is $(+)$ where $f(x)$ is concave up. (holds $H_{2} \mathbf{O}$)
- $f^{\prime \prime}(x)$ is $(-)$ where $f(x)$ is concave down. (makes letter A)
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can be used to find intervals where $\mathbf{f}(\mathbf{x})$ is concave up or concave down
- $f^{\prime \prime}(x)=0$ or undefined where the concavity can change
- $\mathbf{f}^{\prime \prime}(\mathbf{x})=0$ at inflection points, but must check if actually IP.
- The Second Derivative Test can be used to determine what type of critical points where $\mathbf{f}^{\prime}(\mathbf{x})=\mathbf{0}$.
- $\mathbf{f}^{\prime \prime}(\mathbf{x})$ can tell you a lot about a function $\mathbf{f}(\mathbf{x})$
- $f_{\text {avg }}^{\prime \prime}=\frac{\Delta f^{\prime}}{\Delta x}$ can be used to extimate $f^{\prime \prime}(x)$

TBA A few slides with notes from the lecture are missing here and will be added latter. The missing slides show how f " is related to the curvature of a graph, inflection points and how the second derivative test works.

second derivative

example: find intervals concave up/down

Typical Exam Problem:

Given $f(x)=x^{4}-6 x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.

second derivative

example: find intervals concave up/down

Typical Exam Problem:

Given $f(x)=x^{4}-6 x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.

1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.
evaluate $\mathrm{f}^{\prime \prime}(\mathrm{x})$ at one test point in each interval

second derivative

example: find intervals concave up/down

Typical Exam Problem:

Given $f(x)=x^{4}-\mathbf{6} x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.

1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.
2nd evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.

second derivative

example: find intervals concave up/down

Typical Exam Problem:

Given $f(x)=x^{4}-\mathbf{6} x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.

1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.
2nd evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.

- If $f^{\prime \prime}=(+)$ (holds water) at one test point in an interval then $\mathbf{f}(\mathbf{x})$ is concave up at that test point and at every point in the same interval.
- If $\mathrm{f}^{\prime \prime}=(-)$ (makes letter A$)$ at one test point in an interval then $\mathbf{f}(\mathbf{x})$ is concave down at that test point and at every point in the same interval
- Repeat for one test point in each interval. Organize your work by drawing a number line with boundaries etc.

second derivative

example: find intervals concave up/down

Typical Exam Problem:

Given $f(x)=x^{4}-\mathbf{6} x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.
2nd evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.

- If $\mathbf{f}^{\prime \prime}=(+)$ (holds water) at one test point in an interval then $\mathbf{f}(\mathbf{x})$ is concave up at that test point and at every point in the same interval.
- If $\mathbf{f}^{\prime \prime}=(-)$ (makes letter $\left.\mathbf{A}\right)$ at one test point in an interval then $f(x)$ is concave down at that test point and at every point in the same interval.
- Repeat for one test point in each interval. Organize your work by drawing a number line with boundaries etc.

second derivative

example: find intervals concave up/down

Typical Exam Problem:

Given $f(x)=x^{4}-6 x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.

1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.
2nd evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.

- If $\mathbf{f}^{\prime \prime}=(+)$ (holds water) at one test point in an interval then $\mathbf{f}(\mathbf{x})$ is concave up at that test point and at every point in the same interval.
- If $\mathbf{f}^{\prime \prime}=(-)$ (makes letter \mathbf{A}) at one test point in an interval then $\mathbf{f}(\mathbf{x})$ is concave down at that test point and at every point in the same interval.
- Repeat for one test point in each interval. Organize your work by drawing a number line with boundaries etc.

second derivative

example: find intervals concave up/down
Given $f(x)=x^{4}-\mathbf{6} x^{2}-\mathbf{1 2}$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.

second derivative

example: find intervals concave up/down

Given $f(x)=x^{4}-\mathbf{6} x^{2}-\mathbf{1 2}$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.
evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.

second derivative

example: find intervals concave up/down
Given $f(x)=x^{4}-\mathbf{6} x^{2}-\mathbf{1 2}$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.

- $f^{\prime}=4 x^{3}-12 x$
- $\mathrm{f}^{\prime \prime}=12 \mathrm{x}^{2}-12=12\left(\mathrm{x}^{2}-1\right)=12(\mathrm{x}-1)(\mathrm{x}+1)$
- solve $f^{\prime \prime}=12(x-1)(x+1)=0$ gives boundaries where
concavity can change at $x=1$, and $x=-1$
evaluate $\mathrm{f}^{\prime \prime \prime}(\mathrm{x})$ at one test point in each interval

second derivative

example: find intervals concave up/down
Given $f(x)=x^{4}-\mathbf{6} x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.

- $f^{\prime}=4 x^{3}-12 x$
- $\mathrm{f}^{\prime \prime}=12 \mathrm{x}^{2}-12=12\left(\mathrm{x}^{2}-1\right)=12(\mathrm{x}-1)(\mathrm{x}+1)$
- solve $\mathrm{f}^{\prime \prime}=12(\mathrm{x}-1)(\mathrm{x}+1)=0$ gives boundaries where
concavity can change at $x=1$, and $x=-1$
evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.

second derivative

example: find intervals concave up/down
Given $f(x)=x^{4}-\mathbf{6} x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.

- $f^{\prime}=4 x^{3}-12 x$
- $\mathrm{f}^{\prime \prime}=12 \mathrm{x}^{2}-12=12\left(\mathrm{x}^{2}-1\right)=12(\mathrm{x}-1)(\mathrm{x}+1)$
- solve $f^{\prime \prime}=12(x-1)(x+1)=0$ gives boundaries where concavity can change at $x=1$, and $x=-1$

second derivative

example: find intervals concave up/down
Given $f(x)=x^{4}-\mathbf{6} x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.

- $f^{\prime}=4 x^{3}-12 x$
- $\mathrm{f}^{\prime \prime}=12 \mathrm{x}^{2}-12=12\left(\mathrm{x}^{2}-1\right)=12(\mathrm{x}-1)(\mathrm{x}+1)$
- solve $\mathrm{f}^{\prime \prime}=12(\mathrm{x}-1)(\mathrm{x}+1)=0$ gives boundaries where concavity can change at $\mathbf{x}=\mathbf{1}$, and $\mathbf{x}=-\mathbf{1}$
2nd evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.

second derivative

example: find intervals concave up/down
Given $f(x)=x^{4}-\mathbf{6} x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.

- $f^{\prime}=4 x^{3}-12 x$
- $\mathrm{f}^{\prime \prime}=12 \mathrm{x}^{2}-12=12\left(\mathrm{x}^{2}-1\right)=12(\mathrm{x}-1)(\mathrm{x}+1)$
- solve $\mathrm{f}^{\prime \prime}=12(\mathrm{x}-1)(\mathrm{x}+1)=0$ gives boundaries where concavity can change at $\mathbf{x}=1$, and $\mathbf{x}=-\mathbf{1}$
2nd evaluate $\mathbf{f}^{\prime \prime} \mathbf{(x)}$ at one test point in each interval.
- Convenient test points $x=-2,0$ and 2

Positive (holds water) \Rightarrow concave up in this interval.

- $\mathbf{f}^{\prime \prime}(0)=12((0)-1)((0)+1)=(-)(+)=(-)$ Negative
(makes letter $A) \Rightarrow$ concave down in this interval
- $\mathrm{f}^{\prime \prime}(2)=12((2)-1)((2)+1)=(+)(+)=(+)$ Positive
(holds water) \Rightarrow concave up in this interval
- now organize results by drawing a number line with boundaries etc.

second derivative

example: find intervals concave up/down
Given $f(x)=x^{4}-\mathbf{6} x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.

- $f^{\prime}=4 x^{3}-12 x$
- $\mathrm{f}^{\prime \prime}=12 \mathrm{x}^{2}-12=12\left(\mathrm{x}^{2}-1\right)=12(\mathrm{x}-1)(\mathrm{x}+1)$
- solve $f^{\prime \prime}=12(x-1)(x+1)=0$ gives boundaries where concavity can change at $\mathbf{x}=1$, and $\mathbf{x}=-\mathbf{1}$
2nd evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.
- Convenient test points $x=-2,0$ and 2
- $\mathrm{f}^{\prime \prime}(-2)=12((-2)-1)((-2)+1)=(-)(-)=(+)$ Positive (holds water) \Rightarrow concave up in this interval.
 etc.

second derivative

example: find intervals concave up/down
Given $f(x)=x^{4}-\mathbf{6} x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.

- $f^{\prime}=4 x^{3}-12 x$
- $\mathrm{f}^{\prime \prime}=12 \mathrm{x}^{2}-12=12\left(\mathrm{x}^{2}-1\right)=12(\mathrm{x}-1)(\mathrm{x}+1)$
- solve $\mathrm{f}^{\prime \prime}=12(\mathrm{x}-1)(\mathrm{x}+1)=0$ gives boundaries where concavity can change at $\mathbf{x}=1$, and $\mathbf{x}=-\mathbf{1}$
2nd evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.
- Convenient test points $x=-2,0$ and 2
- $\mathrm{f}^{\prime \prime}(-2)=12((-2)-1)((-2)+1)=(-)(-)=(+)$

Positive (holds water) \Rightarrow concave up in this interval.

- $f^{\prime \prime}(0)=12((0)-1)((0)+1)=(-)(+)=(-)$ Negative (makes letter $A) \Rightarrow$ concave down in this interval.
- $f^{\prime \prime}(2)=12((2)-1)((2)+1)=(+)(+)=(+)$ Positive (holds water) \Rightarrow concave up in this interval
- now organize results by drawing a number line with boundaries etc.

second derivative

example: find intervals concave up/down

Given $f(x)=x^{4}-\mathbf{6} x^{2}-\mathbf{1 2}$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.

- $f^{\prime}=4 x^{3}-12 x$
- $\mathrm{f}^{\prime \prime}=12 \mathrm{x}^{2}-12=12\left(\mathrm{x}^{2}-1\right)=12(\mathrm{x}-1)(\mathrm{x}+1)$
- solve $f^{\prime \prime}=12(x-1)(x+1)=0$ gives boundaries where concavity can change at $\mathbf{x}=1$, and $\mathbf{x}=-\mathbf{1}$
2nd evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.
- Convenient test points $x=-2,0$ and 2
- $\mathrm{f}^{\prime \prime}(-2)=12((-2)-1)((-2)+1)=(-)(-)=(+)$

Positive (holds water) \Rightarrow concave up in this interval.

- $\mathrm{f}^{\prime \prime}(\mathbf{0})=\mathbf{1 2}((0)-1)((0)+1)=(-)(+)=(-)$ Negative (makes letter A$) \Rightarrow$ concave down in this interval.
- $\mathrm{f}^{\prime \prime}(2)=12((2)-1)((2)+1)=(+)(+)=(+)$ Positive (holds water) \Rightarrow concave up in this interval.
- now organize results by drawing a number line with boundaries etc.

second derivative

example: find intervals concave up/down
Given $f(x)=x^{4}-\mathbf{6} x^{2}-\mathbf{1 2}$, use $\mathbf{f}^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.
1st set $\mathbf{f}^{\prime \prime}=\mathbf{0}$ to determine where the concavity can change.

- $f^{\prime}=4 x^{3}-12 x$
- $\mathrm{f}^{\prime \prime}=12 \mathrm{x}^{2}-12=12\left(\mathrm{x}^{2}-1\right)=12(\mathrm{x}-1)(\mathrm{x}+1)$
- solve $f^{\prime \prime}=12(x-1)(x+1)=0$ gives boundaries where concavity can change at $\mathbf{x}=1$, and $\mathbf{x}=-\mathbf{1}$
2nd evaluate $\mathbf{f}^{\prime \prime}(\mathbf{x})$ at one test point in each interval.
- Convenient test points $x=-2,0$ and 2
- $\mathrm{f}^{\prime \prime}(-2)=12((-2)-1)((-2)+1)=(-)(-)=(+)$

Positive (holds water) \Rightarrow concave up in this interval.

- $\mathrm{f}^{\prime \prime}(\mathbf{0})=\mathbf{1 2}((0)-1)((0)+1)=(-)(+)=(-)$ Negative (makes letter $A) \Rightarrow$ concave down in this interval.
- $\mathbf{f}^{\prime \prime}(2)=12((2)-1)((2)+1)=(+)(+)=(+)$ Positive (holds water) \Rightarrow concave up in this interval.
- now organize results by drawing a number line with boundaries etc.

second derivative

example: find intervals concave up/down

Given $f(x)=x^{4}-6 x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.

$f(x)$ is concave up for $-\infty<x<-1$ and for $1<x<\infty$ and
$f(x)$ is concave down for $-1<x<1$

second derivative

example: find intervals concave up/down

Given $f(x)=x^{4}-6 x^{2}-12$, use $f^{\prime \prime}$ to determine where the graph of $\mathbf{f}(\mathbf{x})$ is concave up and where it is concave down.

$f(x)$ is concave up for $-\infty<x<-1$ and for $1<x<\infty$ and
$f(x)$ is concave down for $-1<x<1$

second derivative
 Second Derivative Test

- If $f^{\prime}\left(x_{c}\right)=\mathbf{0}$ then x_{c} is a critical number (CN)
- The point on the graph $\left(x_{c}, f\left(x_{c}\right)\right)$ is a critical point (CP)
- The second derivative can be used to determine what kind of CP

Definition (Second Derivative Test)

- Given x_{c} is a critical number where $f^{\prime}\left(x_{c}\right)=0$ then if:
- $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{c}}\right)=(+)$ (holds water) then the CP is a Relative Minimum
- $f^{\prime \prime}\left(x_{c}\right)=(-)$ (makes letter A) then the CP is a Relative Maximum
- $\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathbf{e}}\right)=\mathbf{0}$ then the second derivative cannot determine what kind of CP and you must then use the First Derivative Test.

second derivative
 Second Derivative Test

- If $\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)=\mathbf{0}$ then $\mathbf{x}_{\mathbf{c}}$ is a critical number (CN)
- The point on the graph $\left(x_{c}, f\left(x_{c}\right)\right)$ is a critical point (CP).
- The second derivative can be used to determine what kind of CP

Definition (Second Derivative Test)

- Given x_{c} is a critical number where $f^{\prime}\left(x_{c}\right)=0$ then if:
- $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{c}}\right)=(+)$ (holds water) then the CP is a Relative Minimum
- $f^{\prime \prime}\left(x_{c}\right)=(-)$ (makes letter A) then the CP is a Relative Maximum
- $\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathbf{e}}\right)=\mathbf{0}$ then the second derivative cannot determine what kind of CP and you must then use the First Derivative Test.

second derivative
 Second Derivative Test

- If $\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)=\mathbf{0}$ then $\mathbf{x}_{\mathbf{c}}$ is a critical number (CN)
- The point on the graph $\left(\mathbf{x}_{\mathbf{c}}, \mathbf{f}\left(\mathbf{x}_{\mathbf{c}}\right)\right)$ is a critical point (CP).
- The second derivative can be used to determine what kind of CP .

Definition (Second Derivative Test)

- Given x_{c} is a critical number where $f^{\prime}\left(x_{c}\right)=0$ then if:
- $f^{\prime \prime}\left(x_{\mathrm{c}}\right)=(+)$ (holds water) then the CP is a Relative Minimum
- $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{c}}\right)=(-)$ (makes letter A$)$ then the CP is a Relative Maximum
e $\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathrm{c}}\right)=\mathbf{0}$ then the second derivative cannot determine what kind of CP and you must then use the First Derivative Test.

second derivative
 Second Derivative Test

- If $\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)=\mathbf{0}$ then $\mathbf{x}_{\mathbf{c}}$ is a critical number (CN)
- The point on the graph $\left(\mathbf{x}_{\mathbf{c}}, \mathbf{f}\left(\mathbf{x}_{\mathbf{c}}\right)\right)$ is a critical point (CP).
- The second derivative can be used to determine what kind of CP .

Definition (Second Derivative Test)

- Given x_{c} is a critical number where $f^{\prime}\left(x_{c}\right)=0$ then if:
- $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{c}}\right)=(+)$ (holds water) then the CP is a Relative Minimum
- $\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathrm{c}}\right)=(-)$ (makes letter A) then the CP is a Relative Maximum
- $f^{\prime \prime}\left(x_{c}\right)=0$ then the second derivative cannot determine what kind of CP and you must then use the First Derivative Test

second derivative
 Second Derivative Test

- If $\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)=\mathbf{0}$ then $\mathbf{x}_{\mathbf{c}}$ is a critical number (CN)
- The point on the graph $\left(\mathbf{x}_{\mathbf{c}}, \mathbf{f}\left(\mathbf{x}_{\mathbf{c}}\right)\right)$ is a critical point (CP).
- The second derivative can be used to determine what kind of CP .

Definition (Second Derivative Test)

- Given $\mathbf{x}_{\mathbf{c}}$ is a critical number where $\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)=\mathbf{0}$ then if:
- $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{c}}\right)=(+)$ (holds water) then the CP is a Relative Minimum
- $f^{\prime \prime}\left(x_{c}\right)=(-)$ (makes letter A) then the CP is a Relative Maximum
- $\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathrm{c}}\right)=\mathbf{0}$ then the second derivative cannot determine what kind of CP and you must then use the First Derivative Test.

second derivative Second Derivative Test

- If $\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)=\mathbf{0}$ then $\mathbf{x}_{\mathbf{c}}$ is a critical number (CN)
- The point on the graph $\left(\mathbf{x}_{\mathbf{c}}, \mathbf{f}\left(\mathbf{x}_{\mathbf{c}}\right)\right)$ is a critical point (CP).
- The second derivative can be used to determine what kind of CP .

Definition (Second Derivative Test)

- Given $\mathbf{x}_{\mathbf{c}}$ is a critical number where $\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)=\mathbf{0}$ then if:
- $\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathbf{c}}\right)=(+)$ (holds water) then the CP is a Relative Minimum
- $f^{\prime \prime}\left(x_{c}\right)=(-)$ (makes letter A) then the CP is a Relative Maximum
- $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{c}}\right)=0$ then the second derivative cannot determine what kind of CP and you must then use the First Derivative Test.

second derivative Second Derivative Test

- If $\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)=\mathbf{0}$ then $\mathbf{x}_{\mathbf{c}}$ is a critical number (CN)
- The point on the graph $\left(\mathbf{x}_{\mathbf{c}}, \mathbf{f}\left(\mathbf{x}_{\mathbf{c}}\right)\right)$ is a critical point (CP).
- The second derivative can be used to determine what kind of CP.

Definition (Second Derivative Test)

- Given $\mathbf{x}_{\mathbf{c}}$ is a critical number where $\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{c}}\right)=\mathbf{0}$ then if:
- $\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathbf{c}}\right)=(+)$ (holds water) then the CP is a Relative Minimum
- $\mathbf{f}^{\prime \prime}\left(\mathbf{x}_{\mathbf{c}}\right)=(-)$ (makes letter A) then the CP is a Relative Maximum
- $f^{\prime \prime}\left(x_{c}\right)=0$ then the second derivative cannot determine what kind of CP and you must then use the First Derivative Test.

second derivative

example: second derivative text

Typical Exam Problem:

Given $f(x)=100-(x-4)^{2}$, find all critical numbers x_{c}, find all critical points, then use the Second Derivative Test to determine what kind of $C P$

second derivative

example: second derivative text

Typical Exam Problem:

Given $f(x)=100-(x-4)^{2}$, find all critical numbers x_{c}, find all critical points, then use the Second Derivative Test to determine what kind of $C P$

- $f^{\prime}=-2(x-4)=2(4-x)=0$ gives $x_{c}=4$
- Critical Point is $(4,100)$
- $f^{\prime \prime}(x)=-2$
- now use the second derivative test
- $\mathrm{f}^{\prime \prime}(4)=-2=(-)$ Negative (makes letter A$)$ indicates that the $\mathrm{CP}(4,100)$ is a relative maximum.

Typical Exam Problem:

Given $f(x)=100-(x-4)^{2}$, find all critical numbers x_{c}, find all critical points, then use the Second Derivative Test to determine what kind of $C P$

- $f^{\prime}=-2(x-4)=2(4-x)=0$ gives $x_{c}=4$
- Critical Point is $(4,100)$
- $\mathrm{f}^{\prime \prime}(\mathrm{x})=-2$
- now use the second derivative test
- $\mathbf{f}^{\prime \prime}(4)=-2=(-)$ Negative (makes letter A) indicates that the CP $(4,100)$ is a relative maximum

Typical Exam Problem:

Given $f(x)=100-(x-4)^{2}$, find all critical numbers x_{c}, find all critical points, then use the Second Derivative Test to determine what kind of $C P$

- $f^{\prime}=-2(x-4)=2(4-x)=0$ gives $x_{c}=4$
- Critical Point is $(\mathbf{4}, \mathbf{1 0 0})$
- $f^{\prime \prime}(x)=-2$
- now use the second derivative test
- $f^{\prime \prime}(4)=-2=(-)$ Negative (makes letter A) indicates that the $C P(4,100)$ is a relative maximum .

Typical Exam Problem:

Given $f(x)=100-(x-4)^{2}$, find all critical numbers x_{c}, find all critical points, then use the Second Derivative Test to determine what kind of $C P$

- $f^{\prime}=-2(x-4)=2(4-x)=0$ gives $x_{c}=4$
- Critical Point is $(\mathbf{4}, \mathbf{1 0 0})$
- $f^{\prime \prime}(x)=-2$
- now use the second derivative test
- $\mathrm{f}^{\prime \prime}(4)=-2=(-)$ Negative (makes letter A$)$ indicates that the $\mathrm{CP}(4,100)$ is a relative maximum.

Typical Exam Problem:

Given $f(x)=100-(x-4)^{2}$, find all critical numbers x_{c}, find all critical points, then use the Second Derivative Test to determine what kind of $C P$

- $f^{\prime}=-2(x-4)=2(4-x)=0$ gives $x_{c}=4$
- Critical Point is $(\mathbf{4}, \mathbf{1 0 0})$
- $f^{\prime \prime}(x)=-2$
- now use the second derivative test
- $f^{\prime \prime}(4)=-2=(-)$ Negative (makes letter A) indicates that the $C P(4,100)$ is a relative maximum.

second derivative

inflection point

- An inflection point is a point where the concavity changes from up to down or down to up.
- An inflection point will occur where $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$.
- However, the converse may not be true so you must check the sign of $f^{\prime \prime}(x)$ on each side of the point where $f^{\prime \prime}(x)=0$.
- If the signs of $\mathrm{f}^{\prime \prime}(\mathrm{x})$ are different on opposite sides of the point where $\mathbf{f}^{\prime \prime}(\mathbf{x})=\mathbf{0}$ then the point is an inflection point.

second derivative

 inflection point- An inflection point is a point where the concavity changes from up to down or down to up.
- An inflection point will occur where $\mathbf{f}^{\prime \prime}(\mathbf{x})=\mathbf{0}$.
- However, the converse may not be true so you must check the sign of $f^{\prime \prime}(x)$ on each side of the point where $f^{\prime \prime}(x)=0$.
- If the signs of $f^{\prime \prime}(x)$ are different on opposite sides of the point where $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ then the point is an inflection point.

second derivative

 inflection point- An inflection point is a point where the concavity changes from up to down or down to up.
- An inflection point will occur where $\mathbf{f}^{\prime \prime}(\mathbf{x})=\mathbf{0}$.
- However, the converse may not be true so you must check the sign of $f^{\prime \prime}(x)$ on each side of the point where $f^{\prime \prime}(x)=0$.
- If the signs of $\mathrm{f}^{\prime \prime}(\mathrm{x})$ are different on opposite sides of the point where $\mathbf{f}^{\prime \prime}(\mathbf{x})=\mathbf{0}$ then the point is an inflection point.
- An inflection point is a point where the concavity changes from up to down or down to up.
- An inflection point will occur where $\mathbf{f}^{\prime \prime}(\mathbf{x})=\mathbf{0}$.
- However, the converse may not be true so you must check the sign of $\mathbf{f}^{\prime \prime}(\mathbf{x})$ on each side of the point where $\mathbf{f}^{\prime \prime}(\mathbf{x})=\mathbf{0}$.
- If the signs of $f^{\prime \prime}(\mathbf{x})$ are different on opposite sides of the point where $\mathbf{f}^{\prime \prime}(\mathbf{x})=\mathbf{0}$ then the point is an inflection point.

second derivative

example: inflection point

Typical exam problem:

Given $f(x)=(x-2)^{3}+1$, find all inflection points (if any).

second derivative

example: inflection point
Typical exam problem:
Given $f(x)=(x-2)^{3}+1$, find all inflection points (if any).

- $f^{\prime}=3(x-2)^{2}$
- $f^{\prime \prime}=6(x-2)$
- solve $\mathrm{f}^{\prime \prime}=\mathbf{6}(\mathrm{x}-2)=0$ for possible IPs.
- There may be an inflection at $\mathbf{x}=2$
- The point $(2,1)$ may be an IP, need to check the sign of $f^{\prime \prime}(x)$ on both sides of the point.
- $\mathbf{f}^{\prime \prime}(\mathbf{1})=\mathbf{6}(\mathbf{1}-\mathbf{2})=(-)$ Negative (letter $\left.A\right) \Rightarrow$ concave
down on left of point
- $f^{\prime \prime}(3)=6(3-2)=(+)$ Positive (holds water) \Rightarrow concave
up on right of point
- since the concavity is different on opposite sides of the point,
$(2,1)$ is an inflection point.

second derivative

example: inflection point
Typical exam problem:
Given $f(x)=(x-2)^{3}+1$, find all inflection points (if any).

- $f^{\prime}=3(x-2)^{2}$
- $f^{\prime \prime}=6(x-2)$
- solve $\mathrm{f}^{\prime \prime}=6(\mathrm{x}-2)=0$ for possible IPs.
- There may be an inflection at $x=2$
- The point $(2,1)$ may be an IP, need to check the sign of $f^{\prime \prime}(x)$ on both sides of the point.
- $f^{\prime \prime}(\mathbf{1})=\mathbf{6}(\mathbf{1}-2)=(-)$ Negative (letter $\left.A\right) \Rightarrow$ concave
down on left of point
- $f^{\prime \prime}(3)=6(3-2)=(+)$ Positive (holds water) \Rightarrow concave
up on right of point
- since the concavity is different on opposite sides of the point,
$(2,1)$ is an inflection point.

second derivative

example: inflection point
Typical exam problem:
Given $f(x)=(x-2)^{3}+1$, find all inflection points (if any).

- $f^{\prime}=3(x-2)^{2}$
- $f^{\prime \prime}=6(x-2)$
- solve $\mathrm{f}^{\prime \prime}=6(x-2)=0$ for possible IPs.
- There may be an inflection at $x=2$
- The point $(2,1)$ may be an IP, need to check the sign of $f^{\prime \prime}(x)$ on both sides of the point.
- $f^{\prime \prime}(1)=6(1-2)=(-)$ Negative (letter A) \Rightarrow concave
down on left of point
- $f^{\prime \prime}(3)=6(3-2)=(+)$ Positive (holds water) \Rightarrow concave
up on right of point
- since the concavity is different on opposite sides of the point,
$(2,1)$ is an inflection point.

second derivative

example: inflection point

Typical exam problem:
Given $f(x)=(x-2)^{3}+1$, find all inflection points (if any).

- $f^{\prime}=3(x-2)^{2}$
- $f^{\prime \prime}=6(x-2)$
- solve $f^{\prime \prime}=\mathbf{6}(x-2)=0$ for possible IPs.
- There may be an inflection at $\mathbf{x}=\mathbf{2}$
- The point $(2,1)$ may be an IP, need to check the sign of $f^{\prime \prime}(x)$ on both sides of the point.
- $f^{\prime \prime}(\mathbf{1})=\mathbf{6}(\mathbf{1}-\mathbf{2})=(-)$ Negative (letter $\left.A\right) \Rightarrow$ concave
down on left of point
- $f^{\prime \prime}(3)=6(3-2)=(+)$ Positive (holds water) \Rightarrow concave
up on right of point
- since the concavity is different on opposite sides of the point,
$(2,1)$ is an inflection point.

second derivative

example: inflection point

Typical exam problem:
Given $f(x)=(x-2)^{3}+1$, find all inflection points (if any).

- $f^{\prime}=3(x-2)^{2}$
- $f^{\prime \prime}=6(x-2)$
- solve $f^{\prime \prime}=\mathbf{6}(x-2)=0$ for possible IPs.
- There may be an inflection at $\mathbf{x}=\mathbf{2}$
- The point $(2,1)$ may be an IP, need to check the sign of $\mathbf{f}^{\prime \prime}(\mathbf{x})$ on both sides of the point.
- $f^{\prime \prime}(1)=6(1-2)=(-)$ Negative (letter $\left.A\right) \Rightarrow$ concave
down on left of point
- $f^{\prime \prime}(3)=6(3-2)=(+)$ Positive (holds water) \Rightarrow concave
up on right of point
- since the concavity is different on opposite sides of the point, $(2,1)$ is an inflection point.

second derivative

example: inflection point

Typical exam problem:
Given $f(x)=(x-2)^{3}+1$, find all inflection points (if any).

- $f^{\prime}=3(x-2)^{2}$
- $f^{\prime \prime}=6(x-2)$
- solve $f^{\prime \prime}=\mathbf{6}(x-2)=0$ for possible IPs.
- There may be an inflection at $\mathbf{x}=\mathbf{2}$
- The point $(\mathbf{2}, \mathbf{1})$ may be an IP, need to check the sign of $\mathbf{f}^{\prime \prime}(\mathbf{x})$ on both sides of the point.
- $f^{\prime \prime}(1)=6(1-2)=(-)$ Negative (letter $\left.A\right) \Rightarrow$ concave down on left of point
- $f^{\prime \prime}(3)=6(3-2)=(+)$ Positive (holds water) \Rightarrow concave
up on right of point
- since the concavity is different on opposite sides of the point, $(2,1)$ is an inflection point.

second derivative

example: inflection point

Typical exam problem:
Given $f(x)=(x-2)^{3}+1$, find all inflection points (if any).

- $f^{\prime}=3(x-2)^{2}$
- $f^{\prime \prime}=6(x-2)$
- solve $f^{\prime \prime}=\mathbf{6}(x-2)=0$ for possible IPs.
- There may be an inflection at $\mathbf{x}=\mathbf{2}$
- The point $(\mathbf{2}, \mathbf{1})$ may be an IP, need to check the sign of $f^{\prime \prime}(x)$ on both sides of the point.
- $f^{\prime \prime}(\mathbf{1})=\mathbf{6}(\mathbf{1}-\mathbf{2})=(-)$ Negative (letter $\left.A\right) \Rightarrow$ concave down on left of point
- $f^{\prime \prime}(3)=6(3-2)=(+)$ Positive (holds water) \Rightarrow concave up on right of point
- since the concavity is different on opposite sides of the point, $(2,1)$ is an inflection point.

second derivative

example: inflection point

Typical exam problem:
Given $f(x)=(x-2)^{3}+1$, find all inflection points (if any).

- $f^{\prime}=3(x-2)^{2}$
- $f^{\prime \prime}=6(x-2)$
- solve $f^{\prime \prime}=\mathbf{6}(x-2)=0$ for possible IPs.
- There may be an inflection at $\mathbf{x}=\mathbf{2}$
- The point $(\mathbf{2}, \mathbf{1})$ may be an IP, need to check the sign of $f^{\prime \prime}(x)$ on both sides of the point.
- $f^{\prime \prime}(\mathbf{1})=\mathbf{6}(\mathbf{1}-\mathbf{2})=(-)$ Negative (letter $\left.A\right) \Rightarrow$ concave down on left of point
- $f^{\prime \prime}(3)=6(3-2)=(+)$ Positive (holds water) \Rightarrow concave up on right of point
- since the concavity is different on opposite sides of the point, $(2,1)$ is an inflection point.

