# THE DICHOTOMY THEOREMS 

CHRISTIAN ROSENDAL

## 1. The $G_{0}$ dichotomy

A digraph (or directed graph) on a set $X$ is a subset $G \subseteq X^{2} \backslash \Delta$. Given a digraph $G$ on a set $X$ and a subset $A \subseteq X$, we say that $A$ is $G$-discrete if for all $x, y \in A$ we have $(x, y) \notin G$.

Now let $s_{n} \in 2^{n}$ be chosen for every $n \in \mathbb{N}$ such that $\forall s \in 2^{<\mathbb{N}} \exists n s \sqsubseteq s_{n}$. Then we can define a digraph $G_{0}$ on $2^{\mathbb{N}}$ by

$$
G_{0}=\left\{\left(s_{n} 0 x, s_{n} 1 x\right) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}} \mid n \in \mathbb{N} \& x \in 2^{\mathbb{N}}\right\}
$$

Lemma 1. If $B \subseteq 2^{\mathbb{N}}$ has the Baire property and is non-meagre, then $B$ is not $G_{0}$-discrete.
Proof. By assumption on $B$, we can find some $s \in 2^{<\mathbb{N}}$ such that $B$ is comeagre in $N_{s}$. Also, by choice of $\left(s_{n}\right)$, we can find some $n$ such that $s \sqsubseteq s_{n}$, whereby $B$ is comeagre in $N_{s_{n}}$. By the characterisation of comeagre subsets of $2^{\mathbb{N}}$, we see that for some $x \in 2^{\mathbb{N}}$, we have $s_{n} 0 x, s_{n} 1 x \in B$, showing that $B$ is not $G_{0}$-discrete.

Suppose $G$ and $H$ are digraphs on sets $X$ and $Y$ respectively. A homomorphism from $G$ to $H$ is a function $h: X \rightarrow Y$ such that for all $x, y \in X$,

$$
(x, y) \in G \Rightarrow(h(x), h(y)) \in H
$$

Also, if $Z$ is any set, a $Z$-colouring of a digraph $G$ on $X$ is a homomorphism from $G$ to the digraph $\neq$ on $Z$, i.e., a function $h: X \rightarrow Z$ such that for all $x, y \in X$,

$$
(x, y) \in G \Rightarrow h(x) \neq h(y)
$$

Proposition 2. There is no Baire measurable $\mathbb{N}$-colouring of $G_{0}$.
Proof. Note that if $h: 2^{\mathbb{N}} \rightarrow \mathbb{N}$ is a Baire measurable function, then for some $n \in \mathbb{N}$, $B=h^{-1}(n)$ is non-meagre with the Baire property and hence not $G_{0}$-discrete. So $h$ cannot be a homomorphism from $G_{0}$ to $\neq$ on $\mathbb{N}$.

Theorem 3 (The $G_{0}$ dichotomy). Suppose $G$ is an analytic digraph on a Polish space $X$. Then exactly one of the following holds:

- there is a continuous homomorphism from $G_{0}$ to $G$,
- there is a Borel $\mathbb{N}$-colouring of $G$.

Proof. If $X$ is countable, the result is trivial. So if not, let $f: \mathbb{N}^{\mathbb{N}} \rightarrow P$ be a continuous bijection onto the perfect kernel $P$ of $X$. By replacing $G$ with $(f \times$ $f)^{-1}[G]$, there is no loss of generality in assuming that $X=\mathbb{N}^{\mathbb{N}}$.

So suppose $F \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ is a closed set such that

$$
(x, y) \in G \Leftrightarrow \exists z(x, y, z) \in F
$$

Date: April 2009.

In order to produce a continuous homomorphism $h$ from $G_{0}$ to $G$ it suffices to find monotone Lipschitz functions $u, v^{m}: 2^{<\mathbb{N}} \rightarrow \mathbb{N}<\mathbb{N}, m \in \mathbb{N}$, such that for all $m<k$ and $t \in 2^{k-m-1}$,

$$
\left(N_{u\left(s_{m} 0 t\right)} \times N_{u\left(s_{m} 1 t\right)} \times N_{v^{m}(t)}\right) \cap F \neq \emptyset
$$

In this case, we can define $h, \tilde{v}^{m}: 2^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ by $h(w)=\bigcup_{n} u\left(\left.w\right|_{n}\right)$ and $\tilde{v}^{m}(w)=$ $\bigcup_{n} v^{m}\left(\left.w\right|_{n}\right)$. For then if $m \in \mathbb{N}$ and $w \in 2^{\mathbb{N}}$ are given, there are $x_{k}, y_{k}, z_{k} \in \mathbb{N}^{\mathbb{N}}$ such that $x_{k} \rightarrow h\left(s_{m} 0 w\right), y_{k} \rightarrow h\left(s_{m} 1 w\right)$ and $z_{k} \rightarrow \tilde{v}^{m}(w)$ such that for all $k$, $\left(x_{k}, y_{k}, z_{k}\right)$. So, as $F$ is closed, also

$$
\left(h\left(s_{m} 0 w\right), h\left(s_{m} 1 w\right), \tilde{v}^{m}(w)\right) \in F
$$

whence $\left(h\left(s_{m} 0 w\right), h\left(s_{m} 1 w\right)\right) \in G$, showing that $h$ is a homomorphism from $G_{0}$ to $G$.

An $n$-approximation is a pair $(u, v)$ of functions $u: 2^{n} \rightarrow \mathbb{N}^{n}$ and $v: 2^{<n} \rightarrow \mathbb{N}^{n}$. Also, if ( $u, v$ ) is an $n$-approximation and $\left(u^{\prime}, v^{\prime}\right)$ is an $n+1$-approximation, we say that $\left(u^{\prime}, v^{\prime}\right)$ extends $(u, v)$ if $u(s) \sqsubseteq u^{\prime}(s i)$ and $v(t) \sqsubseteq v^{\prime}(t i)$ for all $s \in 2^{n}, t \in 2^{<n}$ and $i=0,1$.

Suppose $A \subseteq X$ and $(u, v)$ is an $n$-approximation. We define the set of $A$ realisations, $\mathbb{R}(\bar{A}, u, v)$, to be the set of pairs of tuples $\left(x_{s}\right)_{s \in 2^{n}} \in \prod_{s \in 2^{n}}\left(A \cap N_{u(s)}\right)$ and $\left(z_{t}\right)_{t \in 2^{<n}} \in \prod_{t \in 2^{<n}} N_{v(t)}$ such that

$$
\left(x_{s_{m} 0 t}, x_{s_{m} 1 t}, z_{t}\right) \in F
$$

for all $s \in 2^{n}, m \in \mathbb{N}$ and $t \in 2^{n-m-1}$. So if $\left(u_{0}, v_{0}\right)$ is the unique 0 -approximation (i.e., $u(\emptyset)=\emptyset$ and $v$ is the function with empty domain), we have $\mathbb{R}\left(A, u_{0}, v_{0}\right)=$ $\left\{x_{\emptyset} \mid x_{\emptyset} \in A\right\}=A$. If $(u, v)$ has no $A$-realised extension, we say that $(u, v)$ is A-terminal.

Lemma 4. Suppose $(u, v)$ is an A-terminal $n$-approximation, then

$$
\mathbb{D}(A, u, v)=\left\{x_{s_{n}} \mid\left(\left(x_{s}\right)_{s \in 2^{n}},\left(z_{t}\right)_{t \in 2^{<n}}\right) \in \mathbb{R}(A, u, v)\right\}
$$

is $G$-discrete.
Proof. Suppose toward a contradiction that

$$
\left(\left(x_{s}^{0}\right)_{s \in 2^{n}},\left(z_{t}^{0}\right)_{t \in 2^{<n}}\right),\left(\left(x_{s}^{1}\right)_{s \in 2^{n}},\left(z_{t}^{1}\right)_{t \in 2^{<n}}\right) \in \mathbb{R}(A, u, v)
$$

satisfy $\left(x_{s_{n}}^{0}, x_{s_{n}}^{1}\right) \in G$. Then for some $z_{\emptyset} \in \mathbb{N}^{\mathbb{N}}$, we have

$$
\left(x_{s_{n}}^{0}, x_{s_{n}}^{1}, z_{\emptyset}\right) \in F
$$

and hence, setting $x_{s i}=x_{s}^{i}$ and $z_{t i}=z_{t}^{i}$ for all si $\in 2^{n}$ and $t i \in 2^{<n+1} \backslash\{\emptyset\}$, we get an $A$-realisation $\left(\left(x_{s}\right)_{s \in 2^{n+1}},\left(z_{t}\right)_{t \in 2^{<n+1}}\right)$ of an extension of $(u, v)$, contradicting that $(u, v)$ is $A$-terminal.

Now define $\Phi \subseteq P(X)$ by

$$
\Phi(A) \Leftrightarrow A \text { is } G \text {-discrete. }
$$

Since $G$ is analytic, $\Phi$ is $\boldsymbol{\Pi}_{1}^{1}$ on $\boldsymbol{\Sigma}_{1}^{1}$, and so, by the First Reflection Theorem, any $G$-discrete analytic set $A$ is contained in a $G$-discrete Borel set $A^{\prime}$. Using this, we can define a function $D$ assigning to each Borel set $A \subseteq X$ a Borel subset given by

$$
D(A)=A \backslash \bigcup\left\{\mathbb{D}(A, u, v)^{\prime} \mid(u, v) \text { is } A \text {-terminal }\right\}
$$

Note that, as there are only countably many approximations $(u, v)$, the set $A \backslash D(A)$ is a countable union of $G$-discrete Borel sets.

Lemma 5. Suppose $(u, v)$ is an n-approximation all of whose extensions are $A$ terminal. Then $(u, v)$ is $D(A)$-terminal.
Proof. Note that if $(u, v)$ is not $D(A)$-terminal, there is some extension $\left(u^{\prime}, v^{\prime}\right)$ of $(u, v)$ and some realisation $\left(\left(x_{s}\right)_{s \in 2^{n+1}},\left(z_{t}\right)_{t \in 2^{<n+1}}\right) \in \mathbb{R}\left(D(A), u^{\prime}, v^{\prime}\right) \subseteq \mathbb{R}\left(A, u^{\prime}, v^{\prime}\right)$. But since $\left(u^{\prime}, v^{\prime}\right)$ is $A$-terminal, we have $\mathbb{D}\left(A, u^{\prime}, v^{\prime}\right) \cap D(A)=\emptyset$, contradicting that $\phi\left(x_{s_{n+1}}\right) \in \mathbb{D}\left(A, u^{\prime}, v^{\prime}\right) \cap D(A)$.

Now define, by transfinite induction, $D^{0}(X)=X, D^{\xi+1}(X)=D\left(D^{\xi}(X)\right)$ and $D^{\lambda}(X)=\bigcap_{\xi<\lambda} D^{\xi}(X)$, whenever $\lambda$ is a limit ordinal. Then $\left(D^{\xi}(X)\right)_{\xi<\omega_{1}}$ is a wellordered, decreasing sequence of Borel subsets of $X$, so the sets $T_{\xi}$ of approximations $(u, v)$ that are $D^{\xi}(X)$-terminal is an increasing sequence of subsets of the countable set of all approximations. It follows that for some $\xi<\omega_{1}$, we have $T_{\xi}=T_{\xi+1}$.

Now if $(u, v) \notin T_{\xi+1}$, then $(u, v)$ is not $D\left(D^{\xi}(X)\right)$-terminal and hence admits an extension $\left(u^{\prime}, v^{\prime}\right)$ that is not $D^{\xi}(X)$-terminal either, whereby $\left(u^{\prime}, v^{\prime}\right) \notin T_{\xi}=T_{\xi+1}$. So if $\left(u_{0}, v_{0}\right)$ denotes the unique 0 -approximation and $\left(u_{0}, v_{0}\right) \notin T_{\xi+1}$, we can inductively construct $\left(u_{n}, v_{n}\right) \notin T_{\xi+1}$ extending each other. Setting

$$
u=\bigcup_{n} u_{n}
$$

and for $t \in 2^{n}$

$$
v^{m}(t)=v_{n+m+1}(t),
$$

we have the required monotone Lipschitz functions $u, v^{m}: 2^{<\mathbb{N}} \rightarrow \mathbb{N}<\mathbb{N}$ to produce a continuous homomorphism from $G_{0}$ to $G$.

Conversely, if $\left(u_{0}, v_{0}\right) \in T_{\xi+1}$, then $\left(u_{0}, v_{0}\right)$ is $D^{\xi+1}(X)$-terminal and hence $D^{\xi+2}(X) \subseteq D^{\xi+1}(X) \backslash \mathbb{D}\left(D^{\xi+1}(X), u_{0}, v_{0}\right)$. But, since $\left(u_{0}, v_{0}\right)$ is the unique 0 approximation, we have

$$
\mathbb{D}\left(D^{\xi+1}(X), u_{0}, v_{0}\right)=\mathbb{R}\left(D^{\xi+1}(X), u_{0}, v_{0}\right)=D^{\xi+1}(X)
$$

whereby $D^{\xi+2}(X)=\emptyset$. It follows that

$$
X=\bigcup_{\zeta<\xi+2} D^{\zeta}(X) \backslash D^{\zeta+1}(X)
$$

is a countable union of $G$-discrete Borel sets. We can then define a Borel $\mathbb{N}$ colouring of $G$ by letting $c(x)$ be a code for the discrete Borel subset of $X$ to which $x$ belongs.

## 2. The Mycielski, Silver and Burgess dichotomies

Theorem 6 (Mycielski's Independence Theorem). Suppose $X$ is a perfect Polish space and $R \subseteq X^{2}$ is a comeagre set. Then there is a continuous injection $\phi: 2^{\mathbb{N}} \rightarrow$ $X$ such that for all distinct $x, y \in 2^{\mathbb{N}}$ we have $(\phi(x), \phi(y)) \in R$.

Proof. Let $d \leq 1$ be a compatible complete metric on $X$ and choose a decreasing sequence of dense open subsets $U_{n} \subseteq X^{2}$ such that $\bigcap_{n \in \mathbb{N}} U_{n} \subseteq R$. We construct a Cantor scheme $\left(C_{s}\right)_{s \in 2<N}$ of non-empty open subsets of $X$ by induction on the length of $s$ such that for all distinct $s, t \in 2^{n}$ and $i=0,1$, we have

$$
\bar{C}_{s i} \subseteq C_{s}, \quad \operatorname{diam}\left(C_{s}\right) \leq \frac{1}{|s|+1}, \quad \text { and } \quad C_{s} \times C_{t} \subseteq U_{n-1}
$$

To see how this is done, suppose that $C_{s}$ has been defined for all $s \in 2^{n}$. Since $X$ is perfect, we can find disjoint, non-empty open subsets $D_{s 0}$ and $D_{s 1}$ of $C_{s}$ for every
$s \in 2^{n}$. Now, as $U_{n}$ is dense, $U_{n} \cap\left(D_{t} \times D_{t^{\prime}}\right) \neq \emptyset$ for all distinct $t, t^{\prime} \in 2^{n+1}$ and so we can inductively shrink the $D_{t}$ to open subsets $C_{t}$ such that whenever $t, t^{\prime} \in 2^{n+1}$ are distinct, we have $C_{t} \times C_{t^{\prime}} \subseteq U_{n}$. By further shrinking the $C_{s i}$ if necessary, we can ensure that $\bar{C}_{s i} \subseteq C_{s}$ and $\operatorname{diam}\left(C_{s}\right) \leq \frac{1}{|s|+1}$. Now letting $\phi: 2^{\mathbb{N}} \rightarrow X$ be defined by $\{\phi(x)\}=\bigcap_{n \in \mathbb{N}} C_{\left.x\right|_{n}}$, we see that $\phi$ is continuous. Also, if $x, y \in 2^{\mathbb{N}}$ are distinct, then for all but finitely many $n$ we have $(\phi(x), \phi(y)) \in C_{\left.x\right|_{n}} \times C_{\left.y\right|_{n}} \subseteq U_{n-1}$, so, since the $U_{n}$ are decreasing, we have $(x, y) \in \bigcap_{n \in \mathbb{N}} U_{n} \subseteq R$.

Theorem 7 (The Silver Dichotomy). Suppose $E$ is a conalytic equivalence relation on a Polish space $X$. Then exactly one of the following holds

- E has at most countably many classes,
- there is a continuous injection $\phi: 2^{\mathbb{N}} \rightarrow X$ such that for distinct $x, y \in 2^{\mathbb{N}}$, $\neg \phi(x) E \phi(y)$.

Proof. We define an analytic digraph $G$ on $X$ by setting $G=X^{2} \backslash E$. Notice first that if $c: X \rightarrow \mathbb{N}$ is a Borel $\mathbb{N}$-colouring of $G$, then for all $x, y \in X$,

$$
\neg x E y \Rightarrow(x, y) \in G \Rightarrow c(x) \neq c(y) .
$$

So for any $n \in \mathbb{N}, c^{-1}(n)$ is contained in a single equivalence class of $E$. Moreover, as $X=\bigcup_{n \in \mathbb{N}} c^{-1}(n)$, this shows that $X$ is covered by countably many $E$-equivalence classes.

So suppose instead that there is no Borel $\mathbb{N}$-colouring of $G$. Then by Theorem 3 there is a continuous homomorphism $h: 2^{\mathbb{N}} \rightarrow X$ from $G_{0}$ to $G$. Now let $F=\left\{(x, y) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}} \mid h(x) E h(y)\right\}$. Then $F$ is meagre. For otherwise, by the Kuratowski-Ulam Theorem, there is some $x \in 2^{\mathbb{N}}$ such that $F_{x}$ is non-meagre and hence, by Lemma 1 , there are $y, z \in F_{x}$ such that $(y, z) \in G_{0}$. As $h$ is a homomorphism it follows that $(h(y), h(z)) \in G=X^{2} \backslash E$, which contradicts that $h(y) E h(x) E h(z)$. Therefore, applying Mycielski's Theorem to the meagre set $F$, we get a continuous function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ such that for distinct $x, y \in 2^{\mathbb{N}}$, $(f(x), f(y)) \notin F$, i.e., $\neg h \circ f(x) E h \circ f(y)$. Letting $\phi=h \circ f$, we have the result.

Lemma 8. Suppose $E$ is an analytic equivalence relation on a Polish space $X$. Then there is a decreasing sequence $\left(E_{\xi}\right)_{\xi<\omega_{1}}$ of Borel equivalence relations on $X$ whose intersection is $E$.

Proof. We claim that if $C \subseteq X^{2}$ is an analytic set disjoint from $E$, there is a Borel equivalence relation $F$ separating $E$ from $C$. To see this, define the following property $\Phi$ of pairs of subsets of $X^{2}$

$$
\begin{aligned}
\Phi(A, B) & \Leftrightarrow \forall x, y, z((x, y) \notin A \vee(y, z) \notin A \vee(x, z) \notin B) \\
& \& \forall x, y((x, y) \notin A \vee(y, x) \notin B) \\
& \& \forall x(x, x) \notin B \\
& \& \forall x, y((x, y) \notin A \vee(x, y) \notin C)
\end{aligned}
$$

Clearly, $\Phi$ is $\boldsymbol{\Pi}_{1}^{1}$ on $\boldsymbol{\Sigma}_{1}^{1}$, hereditary, and continuous upward in the second variable. Moreover, $\Phi(E, \sim E)$, so by the Second Reflection Theorem there is a Borel set $F \supseteq E$ such that $\Phi(F, \sim F)$. By definition of $\Phi, F$ is then a Borel equivalence relation disjoint from $C$.

Now, by the Lusin-Sierpiński Theorem, there is a decreasing sequence $\left(H_{\xi}\right)_{\xi<\omega_{1}}$ of Borel sets with intersection $E$. Using the above claim, we can, by transfinite
induction, choose a sequence $\left(F_{\xi}\right)_{\xi<\omega_{1}}$ of Borel equivalence relations containing $E$ such that each $F_{\xi}$ separates $E$ from $\sim\left(H_{\xi} \cap \bigcap_{\zeta<\xi} F_{\zeta}\right)$. It follows that the sequence $\left(F_{\xi}\right)_{\xi<\omega_{1}}$ is decreasing and, by choice of $H_{\xi}$, that it has intersection $E$.

Theorem 9 (The Burgess Dichotomy). Let $E$ be an analytic equivalence relation on a Polish space $X$. Then one of the following holds

- E has at most $\aleph_{1}$ classes,
- there is a continuous injection $\phi: 2^{\mathbb{N}} \rightarrow X$ such that for distinct $x, y \in 2^{\mathbb{N}}$, $\neg \phi(x) E \phi(y)$.

Proof. Using Lemma 8, we can find a decreasing sequence $\left(E_{\xi}\right)_{\xi<o m_{1}}$ of Borel equivalence relations whose intersection is $E$. Note that if for any $\xi$ there is a continuous injection $\phi: 2^{\mathbb{N}} \rightarrow X$ such that for distinct $x, y \in 2^{\mathbb{N}}, \neg \phi(x) E_{\xi} \phi(y)$, then the same holds for $E$. So suppose not. Then by Silver's Dichotomy, Theorem 7, each $E_{\xi}$ has at most countably many classes $B_{\xi, n}, n \in \mathbb{N}$. Let $\left\{A_{\xi}\right\}_{\xi<\omega_{1}}=\left\{B_{\xi, n}\right\}_{\xi<\omega_{1}, n \in \mathbb{N}}$.

Suppose now that $E$ has at least $\aleph_{2}$ classes. We say that $C \subseteq X$ is large if it intersects at least $\aleph_{2}$ classes of $E$. Note that if $C$ is large, then for some $\xi$, both $C \cap A_{\xi}$ and $C \backslash A_{\xi}$ are large. For if not, we let for every $\xi<\omega_{1}$,

$$
C_{\xi}= \begin{cases}C \cap A_{\xi}, & \text { if } C \cap A_{\xi} \text { is not large } ; \\ C \backslash A_{\xi}, & \text { otherwise } .\end{cases}
$$

Then $\bigcup_{\xi<\omega_{1}} C_{\xi}$ will intersect at most $\aleph_{1} E$-classes and so

$$
C \backslash \bigcup_{\xi<\omega_{1}} C_{\xi}=\bigcap_{\xi<\omega_{1}} C \backslash C_{\xi}
$$

will be large. But for all $x, y \in \bigcap_{\xi<\omega_{1}} C \backslash C_{\xi}$ and all $\xi<\omega_{1}$, we have $x \in A_{\xi}$ if and only if $y \in A_{\xi}$ and hence $x E y$, contradicting the largeness of $C$.

Now let $\mathcal{U}_{0}=\left\{U_{n}\right\}_{n \in \mathbb{N}}$ be a countable basis for the topology on $X$. We define inductively countable families $\mathcal{U}_{n}$ and $\mathcal{A}_{n}$ of Borel subsets of $X$ such that

- $\mathcal{U}_{0} \subseteq \mathcal{A}_{0} \subseteq \mathcal{U}_{1} \subseteq \mathcal{A}_{1} \subseteq \ldots$,
- each $\mathcal{U}_{n}$ is the basis for a Polish topology on $X$,
- each $\mathcal{A}_{n}$ is a Boolean algebra of subsets of $X$,
- if $C \in \mathcal{U}_{n}$ is large, then there is some $A_{\xi} \in \mathcal{A}_{n}$, such that both $C \cap A_{\xi}$ and $C \backslash A_{\xi}$ are large.
It follows that $\mathcal{A}=\bigcup_{n \in \mathbb{N}} \mathcal{A}_{n}$ is a Boolean algebra whose elements form the basis for a Polish topology on $X$ and such that whenever $C \in \mathcal{A}$ is large there is another $A_{\xi} \in \mathcal{A}$ such that both $C \cap A_{\xi}$ and $C \backslash A_{\xi}$ are large. Let $d \leq 1$ be a complete metric on $X$ compatible with the topology induced by $\mathcal{A}$. Now, using that if $\bigcup_{n \in \mathbb{N}} C_{n}$ is large, then some $C_{n}$ is large, we can build a Cantor scheme $\left(C_{s}\right)_{s \in 2<\mathbb{N}}$ of elements of $\mathcal{A}$ such that $C_{\emptyset}=X, \operatorname{diam}\left(C_{s}\right) \leq \frac{1}{|s|+1}$, each $C_{s}$ is large and for every $s$ there is some $\xi<\omega_{1}$ such that $C_{s 0} \subseteq A_{\xi}$, while $C_{s 1} \subseteq \sim A_{\xi}$. It follows that if $\phi: 2^{\mathbb{N}} \rightarrow X$ is defined by $\{\phi(x)\}=\bigcap_{n \in \mathbb{N}} C_{\left.x\right|_{n}}$, then for distinct $x, y \in 2^{\mathbb{N}}$ we have $\neg \phi(x) E \phi(y)$.

Now as the isomorphism relation between the countable models of an $L_{\omega_{1} \omega^{-}}$ sentence is an analytic equivalence relation, we have the following corollary, initially proved by analysing the space of complete types.

Corollary 10 (Morley's Theorem). Suppose $L$ is a countable language and $\sigma$ is a $L_{\omega_{1} \omega}$ sentence. Then there are either a continuum of non-isomorphic countable models of $\sigma$ or at most $\aleph_{1}$ non-isomorphic models of $\sigma$.

