THE DICHOTOMY THEOREMS

CHRISTIAN ROSENDAL

1. THE GGy DICHOTOMY

A digraph (or directed graph) on a set X is a subset G C X2\ A. Given a
digraph G on a set X and a subset A C X, we say that A is G-discrete if for all
x,y € A we have (z,y) ¢ G.

Now let s,, € 2™ be chosen for every n € N such that Vs € 2<N3p s C s,. Then
we can define a digraph G on 2N by

Go = {(sn0z,sp12) € 2" x 2" | n e N& = € 2"}

Lemma 1. If B C 2V has the Baire property and is non-meagre, then B is not
Go-discrete.

Proof. By assumption on B, we can find some s € 2<N such that B is comeagre in
Ns. Also, by choice of (s,,), we can find some n such that s C s, whereby B is
comeagre in N, . By the characterisation of comeagre subsets of 2V, we see that
for some = € 2V, we have s,0z, s, 1z € B, showing that B is not Go-discrete. [

Suppose G and H are digraphs on sets X and Y respectively. A homomorphism
from G to H is a function h: X — Y such that for all z,y € X,

(z,y) € G = (h(z),h(y)) € H.
Also, if Z is any set, a Z-colouring of a digraph G on X is a homomorphism from
G to the digraph # on Z, i.e., a function h: X — Z such that for all z,y € X,
(z,y) € G = h(z) # h(y).
Proposition 2. There is no Baire measurable N-colouring of Gg.

Proof. Note that if h: 2V — N is a Baire measurable function, then for some n € N,
B = h~!(n) is non-meagre with the Baire property and hence not Go-discrete. So
h cannot be a homomorphism from Gy to # on N. ]

Theorem 3 (The Gq dichotomy). Suppose G is an analytic digraph on a Polish
space X. Then exactly one of the following holds:

- there is a continuous homomorphism from Gy to G,

- there is a Borel N-colouring of G.

Proof. If X is countable, the result is trivial. So if not, let f: N¥ — P be a
continuous bijection onto the perfect kernel P of X. By replacing G with (f x
f)7Y[G], there is no loss of generality in assuming that X = NN,

So suppose F' C NN x NN x NN is a closed set such that

(x,y) € G & 3z (x,y,2) € F.

Date: April 2009.



2 CHRISTIAN ROSENDAL

In order to produce a continuous homomorphism h from Gy to G it suffices to find
monotone Lipschitz functions u,v™: 2<N — N<N m € N, such that for all m < k
and t € 2F—m—1

(Nu(s,m0t) X Nu(sn1t) X Nym(yy) N F # 0.
In this case, we can define h,o™: 2% — NN by h(w) = U, u(wl|,) and 9™ (w) =
U,, v"™(w|,). For then if m € N and w € 2V are given, there are x, yy, 2, € NV
such that xr — h(s,0w), yp — h(s,lw) and zp — 9™ (w) such that for all k,
(Tk, Yk, 2k ). So, as F is closed, also

(h(sm0w), h(smlw), 0™ (w)) € F,

whence (h(spy,0w), h(smlw)) € G, showing that h is a homomorphism from Gg to
G.

An n-approzimation is a pair (u,v) of functions u: 2" — N™ and v: 2<™ — N,
Also, if (u,v) is an n-approximation and (u/,v") is an n + l-approximation, we say
that (u/,v") extends (u,v) if u(s) C o/(s7) and v(t) C v'(t7) for all s € 2™, ¢ € 2<™
and ¢ =0, 1.

Suppose A C X and (u,v) is an n-approximation. We define the set of A-
realisations, R(A,u, v), to be the set of pairs of tuples (z4)scon € [[con (AﬂNu(s))
and (2¢)¢c2<n € [[;c0<n Ny(r) such that

(Ism0t, Ts,,1ts Zt) eF

for all s € 2", m € Nand t € 2°=™1. So if (ug,vo) is the unique O-approximation
(i.e., u(@) = 0 and v is the function with empty domain), we have R(A, ug,v9) =
{zg | zp € A} = A. If (u,v) has no A-realised extension, we say that (u,v) is
A-terminal.

Lemma 4. Suppose (u,v) is an A-terminal n-approzimation, then
D(Avuav) = {J;Sn, | ((xs)s€2"7 (Zt)t€2<") € R(A’uv U)}

is G-discrete.
Proof. Suppose toward a contradiction that

(@2)sean, (2)ee2<n), ((z3)se2n, (2 Jrea<n) € R(A, u,v)
satisfy (29 ,z! ) € G. Then for some z5 € N, we have

Sn
(:EO xin,z@) e F,

and hence, setting r,; = x% and zy; = 2} for all si € 2" and ti € 2<"1\ {0}, we
get an A-realisation ((s)scon+1, (2¢)tca<n+1) of an extension of (u,v), contradicting
that (u,v) is A-terminal. O
Now define ® C P(X) by
®(A) & A is G-discrete.

Since G is analytic, ® is II] on 31, and so, by the First Reflection Theorem, any
G-discrete analytic set A is contained in a G-discrete Borel set A’. Using this, we
can define a function D assigning to each Borel set A C X a Borel subset given by

D(A) = A\ U{D(Au,v)’ | (u,v) is A-terminal }.

Note that, as there are only countably many approximations (u,v), the set A\ D(A)
is a countable union of G-discrete Borel sets.
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Lemma 5. Suppose (u,v) is an n-approzimation all of whose extensions are A-
terminal. Then (u,v) is D(A)-terminal.

Proof. Note that if (u,v) is not D(A)-terminal, there is some extension (u’,v’) of
(u, v) and some realisation ((zs)seon+1, (2¢)ica<n+1) € R(D(A), v, v") CR(A, v/, v").
But since (u/, v’) is A-terminal, we have D(A, v, v") N D(A) = @, contradicting that
H(zs,.,) € D(A,u',v") N D(A). O

Now define, by transfinite induction, D°(X) = X, D¢t1(X) = D(D4(X)) and
DMNX) = Ne<x D&(X), whenever A is a limit ordinal. Then (D%(X))¢<w, is a well-
ordered, decreasing sequence of Borel subsets of X, so the sets T of approximations
(u,v) that are D®(X)-terminal is an increasing sequence of subsets of the countable
set of all approximations. It follows that for some ¢ < w;, we have Ty = T¢ 1.

Now if (u,v) & Tei1, then (u,v) is not D(D®(X))-terminal and hence admits an
extension (u',v’) that is not D%(X)-terminal either, whereby (u/,v') ¢ Te = Te1.
So if (up,v) denotes the unique O-approximation and (ug,vg) ¢ Tey1, we can
inductively construct (u,,v,) € Tey1 extending each other. Setting

u=Jun
n

and for ¢t € 2™
v™(t) = Vnym1(t),
we have the required monotone Lipschitz functions u, v™: 2<N — N<N to produce
a continuous homomorphism from Gy to G.
Conversely, if (ug,v0) € Tet1, then (ug,vp) is D5H1(X)-terminal and hence
D$2(X) C DSFL(X) \ D(DSFTH(X), up,v0). But, since (ug,vp) is the unique 0-
approximation, we have

D(D*H(X), ug, vo) = R(DSTH(X), ug, vg) = D*TH(X),
whereby D**2(X) = (). It follows that

X= |J Dx)\D(X)
¢<€+2
is a countable union of G-discrete Borel sets. We can then define a Borel N-
colouring of G by letting ¢(x) be a code for the discrete Borel subset of X to which
x belongs. O

2. THE MYCIELSKI, SILVER AND BURGESS DICHOTOMIES

Theorem 6 (Mycielski’s Independence Theorem). Suppose X is a perfect Polish
space and R C X? is a comeagre set. Then there is a continuous injection ¢: 2N —
X such that for all distinct x,y € 2% we have (¢(z), ¢(y)) € R.

Proof. Let d < 1 be a compatible complete metric on X and choose a decreasing
sequence of dense open subsets U, C X? such that ﬂneN U, € R. We construct
a Cantor scheme (Cj)gco<n of non-empty open subsets of X by induction on the
length of s such that for all distinct s,¢ € 2™ and ¢ = 0,1, we have

Cyi C Cy,  diam(Cy) and Cs x Cy C Up_1.

1
<0
[s| +1
To see how this is done, suppose that C has been defined for all s € 2”. Since X is
perfect, we can find disjoint, non-empty open subsets Dy and Dy of Cy for every
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s € 2. Now, as U, is dense, U, N (D; x Dy) # 0 for all distinct ¢,¢' € 2"+ and so
we can inductively shrink the D; to open subsets C; such that whenever ¢, ¢’ € 27+!
are distinct, we have Cy x Cyp C U,,. By further shrinking the Cy; if necessary, we
can ensure that C; C Cy and diam(Cy) < M% Now letting ¢: 2V — X be defined

by {¢(2)} = N,en Cal,.» We see that ¢ is continuous. Also, if z,y € 2N are distinct,
then for all but finitely many n we have (¢(x),¢(y)) € Cy, x Cy,, € Un_1, so,

since the U,, are decreasing, we have (z,y) € (,cyUn C R. O

Theorem 7 (The Silver Dichotomy). Suppose E is a conalytic equivalence relation
on a Polish space X. Then exactly one of the following holds

- E has at most countably many classes,
- there is a continuous injection ¢: 2V — X such that for distinct x,y € 2V,

—¢(x)E¢(y).

Proof. We define an analytic digraph G on X by setting G = X2\ E. Notice first
that if ¢: X — N is a Borel N-colouring of G, then for all z,y € X,

~2By = (2,y) € G = c(z) # cly).

So for any n € N, ¢~!(n) is contained in a single equivalence class of E. Moreover, as
X =U,en c~!(n), this shows that X is covered by countably many E-equivalence
classes.

So suppose instead that there is no Borel N-colouring of G. Then by Theo-
rem 3 there is a continuous homomorphism h: 2N — X from Gy to G. Now let
F = {(z,y) € 2% x 2¥ | h(2)Eh(y)}. Then F is meagre. For otherwise, by the
Kuratowski-Ulam Theorem, there is some z € 2V such that F, is non-meagre
and hence, by Lemma 1, there are y,z € F, such that (y,z) € Go. As h is
a homomorphism it follows that (h(y),h(z)) € G = X?\ E, which contradicts
that h(y)Eh(x)Eh(z). Therefore, applying Mycielski’s Theorem to the meagre set
F, we get a continuous function f: 2N — 2N such that for distinct =,y € 2N,
(f(x), f(y)) ¢ F,ie., —ho f(zx)Eho f(y). Letting ¢ = ho f, we have the result. O

Lemma 8. Suppose E is an analytic equivalence relation on a Polish space X.
Then there is a decreasing sequence (E¢)e<y, of Borel equivalence relations on X
whose intersection is E.

Proof. We claim that if C C X2 is an analytic set disjoint from E, there is a
Borel equivalence relation F' separating E from C. To see this, define the following
property ® of pairs of subsets of X?

(A, B) & Ve, y,z ((z,y) AV (y,2) ¢ AV (2,2) ¢ B)

&va,y ((z,y) ¢ AV (y,2) ¢ B)
&V (v,x) ¢ B

&vry ((wy) ¢ AV (2.y) ¢ C).

Clearly, @ is IT} on X1, hereditary, and continuous upward in the second variable.
Moreover, ®(E,~ E), so by the Second Reflection Theorem there is a Borel set
F D FE such that ®(F,~ F). By definition of ®, F is then a Borel equivalence
relation disjoint from C.

Now, by the Lusin-Sierpinski Theorem, there is a decreasing sequence (Hg)e<w,
of Borel sets with intersection E. Using the above claim, we can, by transfinite
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induction, choose a sequence (F¢)e<., of Borel equivalence relations containing E
such that each F¢ separates E' from ~ (He N(._ F¢). It follows that the sequence
(Fe)e<w, is decreasing and, by choice of He, that it has intersection E. O

Theorem 9 (The Burgess Dichotomy). Let E be an analytic equivalence relation
on a Polish space X. Then one of the following holds

- FE has at most Xy classes,
- there is a continuous injection ¢: 2N — X such that for distinct x,y € 2V,

—¢(x)E(y).

Proof. Using Lemma 8, we can find a decreasing sequence (Eg¢)¢<om, of Borel equiv-
alence relations whose intersection is E. Note that if for any £ there is a continuous
injection ¢: 2 — X such that for distinct z,y € 2N, =¢(z) E¢é(y), then the same
holds for E. So suppose not. Then by Silver’s Dichotomy, Theorem 7, each E¢ has
at most countably many classes Be ,,, n € N. Let {A¢}ecw, = {Ben}ecws nen.

Suppose now that F has at least Ny classes. We say that C C X is large if it
intersects at least Ny classes of E. Note that if C' is large, then for some £, both
CnNAg and C\ A¢ are large. For if not, we let for every £ < wy,

) OnNAg, it CNAgis not large;
R Ve \ A¢,  otherwise.

Then U£<w1 C¢ will intersect at most N; F-classes and so

c\ U Ge= (1 oG

E<wy E<wt

will be large. But for all z,y € (., €\ C¢ and all { < w1, we have z € A¢ if and
only if y € A¢ and hence zEy, contradicting the largeness of C'.

Now let Uy = {Up}nen be a countable basis for the topology on X. We define
inductively countable families U,, and A,, of Borel subsets of X such that
Z/[O Q.AO gbﬁ Q.A1 Q ceey
each U,, is the basis for a Polish topology on X,
each A, is a Boolean algebra of subsets of X,
it C e U, is large, then there is some A € A, such that both C N A¢ and
C\ A¢ are large.

It follows that A = (J, cyy An is a Boolean algebra whose elements form the basis
for a Polish topology on X and such that whenever C' € A is large there is another
A¢ € A such that both C'N A and C \ A¢ are large. Let d < 1 be a complete
metric on X compatible with the topology induced by A. Now, using that if
Unen Cn is large, then some C), is large, we can build a Cantor scheme (C),co<n
of elements of A such that Cy = X, diam(C;) < \slﬁ’ each Cj is large and for
every s there is some £ < w; such that Cso C Ag, while Cs; €~ Ag. It follows that
if ¢: 2V — X is defined by {¢(z)} = Mnen Cal,.» then for distinet z,y € 2N we have

—¢(x) Ed(y). O

Now as the isomorphism relation between the countable models of an L, -
sentence is an analytic equivalence relation, we have the following corollary, initially
proved by analysing the space of complete types.
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Corollary 10 (Morley’s Theorem). Suppose L is a countable language and o is
a Ly, sentence. Then there are either a continuum of non-isomorphic countable
models of o or at most Ry non-isomorphic models of o.



