THE DICHOTOMY THEOREMS

CHRISTIAN ROSENDAL

1. The G_0 dichotomy

A digraph (or directed graph) on a set X is a subset $G \subseteq X^2 \setminus \Delta$. Given a digraph G on a set X and a subset $A \subseteq X$, we say that A is G-discrete if for all $x, y \in A$ we have $(x, y) \notin G$.

Now let $s_n \in 2^n$ be chosen for every $n \in \mathbb{N}$ such that $\forall s \in 2^{<\mathbb{N}} \exists n \ s \sqsubseteq s_n$. Then we can define a digraph G_0 on $2^{\mathbb{N}}$ by

$$G_0 = \{ (s_n 0x, s_n 1x) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}} \mid n \in \mathbb{N} \& x \in 2^{\mathbb{N}} \}.$$

Lemma 1. If $B \subseteq 2^{\mathbb{N}}$ has the Baire property and is non-meagre, then B is not G_0 -discrete.

Proof. By assumption on B, we can find some $s \in 2^{<\mathbb{N}}$ such that B is comeagre in N_s . Also, by choice of (s_n) , we can find some n such that $s \sqsubseteq s_n$, whereby B is comeagre in N_{s_n} . By the characterisation of comeagre subsets of $2^{\mathbb{N}}$, we see that for some $x \in 2^{\mathbb{N}}$, we have $s_n 0x, s_n 1x \in B$, showing that B is not G_0 -discrete. \Box

Suppose G and H are digraphs on sets X and Y respectively. A homomorphism from G to H is a function $h: X \to Y$ such that for all $x, y \in X$,

$$(x,y)\in G \Rightarrow (h(x),h(y))\in H.$$

Also, if Z is any set, a Z-colouring of a digraph G on X is a homomorphism from G to the digraph \neq on Z, i.e., a function $h: X \to Z$ such that for all $x, y \in X$,

$$(x,y) \in G \Rightarrow h(x) \neq h(y)$$

Proposition 2. There is no Baire measurable \mathbb{N} -colouring of G_0 .

Proof. Note that if $h: 2^{\mathbb{N}} \to \mathbb{N}$ is a Baire measurable function, then for some $n \in \mathbb{N}$, $B = h^{-1}(n)$ is non-meagre with the Baire property and hence not G_0 -discrete. So h cannot be a homomorphism from G_0 to \neq on \mathbb{N} .

Theorem 3 (The G_0 dichotomy). Suppose G is an analytic digraph on a Polish space X. Then exactly one of the following holds:

- there is a continuous homomorphism from G_0 to G,
- there is a Borel \mathbb{N} -colouring of G.

Proof. If X is countable, the result is trivial. So if not, let $f: \mathbb{N}^{\mathbb{N}} \to P$ be a continuous bijection onto the perfect kernel P of X. By replacing G with $(f \times f)^{-1}[G]$, there is no loss of generality in assuming that $X = \mathbb{N}^{\mathbb{N}}$.

So suppose $F \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ is a closed set such that

$$(x,y) \in G \Leftrightarrow \exists z \ (x,y,z) \in F.$$

Date: April 2009.

In order to produce a continuous homomorphism h from G_0 to G it suffices to find monotone Lipschitz functions $u, v^m \colon 2^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$, $m \in \mathbb{N}$, such that for all m < kand $t \in 2^{k-m-1}$,

$$\left(N_{u(s_m0t)} \times N_{u(s_m1t)} \times N_{v^m(t)}\right) \cap F \neq \emptyset.$$

In this case, we can define $h, \tilde{v}^m \colon 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ by $h(w) = \bigcup_n u(w|_n)$ and $\tilde{v}^m(w) = \bigcup_n v^m(w|_n)$. For then if $m \in \mathbb{N}$ and $w \in 2^{\mathbb{N}}$ are given, there are $x_k, y_k, z_k \in \mathbb{N}^{\mathbb{N}}$ such that $x_k \to h(s_m 0w), y_k \to h(s_m 1w)$ and $z_k \to \tilde{v}^m(w)$ such that for all $k, (x_k, y_k, z_k)$. So, as F is closed, also

$$(h(s_m 0w), h(s_m 1w), \tilde{v}^m(w)) \in F,$$

whence $(h(s_m 0w), h(s_m 1w)) \in G$, showing that h is a homomorphism from G_0 to G.

An *n*-approximation is a pair (u, v) of functions $u: 2^n \to \mathbb{N}^n$ and $v: 2^{<n} \to \mathbb{N}^n$. Also, if (u, v) is an *n*-approximation and (u', v') is an n + 1-approximation, we say that (u', v') extends (u, v) if $u(s) \sqsubseteq u'(si)$ and $v(t) \sqsubseteq v'(ti)$ for all $s \in 2^n$, $t \in 2^{<n}$ and i = 0, 1.

Suppose $A \subseteq X$ and (u, v) is an *n*-approximation. We define the set of A-realisations, $\mathbb{R}(A, u, v)$, to be the set of pairs of tuples $(x_s)_{s \in 2^n} \in \prod_{s \in 2^n} (A \cap N_{u(s)})$ and $(z_t)_{t \in 2^{<n}} \in \prod_{t \in 2^{<n}} N_{v(t)}$ such that

$$(x_{s_m0t}, x_{s_m1t}, z_t) \in F$$

for all $s \in 2^n$, $m \in \mathbb{N}$ and $t \in 2^{n-m-1}$. So if (u_0, v_0) is the unique 0-approximation (i.e., $u(\emptyset) = \emptyset$ and v is the function with empty domain), we have $\mathbb{R}(A, u_0, v_0) = \{x_{\emptyset} \mid x_{\emptyset} \in A\} = A$. If (u, v) has no A-realised extension, we say that (u, v) is A-terminal.

Lemma 4. Suppose (u, v) is an A-terminal n-approximation, then

$$\mathbb{D}(A, u, v) = \{ x_{s_n} \mid ((x_s)_{s \in 2^n}, (z_t)_{t \in 2^{< n}}) \in \mathbb{R}(A, u, v) \}$$

is G-discrete.

Proof. Suppose toward a contradiction that

$$((x_s^0)_{s\in 2^n}, (z_t^0)_{t\in 2^{$$

satisfy $(x_{s_n}^0, x_{s_n}^1) \in G$. Then for some $z_{\emptyset} \in \mathbb{N}^{\mathbb{N}}$, we have

$$(x_{s_n}^0, x_{s_n}^1, z_{\emptyset}) \in F,$$

and hence, setting $x_{si} = x_s^i$ and $z_{ti} = z_t^i$ for all $si \in 2^n$ and $ti \in 2^{<n+1} \setminus \{\emptyset\}$, we get an A-realisation $((x_s)_{s \in 2^{n+1}}, (z_t)_{t \in 2^{<n+1}})$ of an extension of (u, v), contradicting that (u, v) is A-terminal.

Now define $\Phi \subseteq P(X)$ by

$$\Phi(A) \Leftrightarrow A$$
 is *G*-discrete.

Since G is analytic, Φ is Π_1^1 on Σ_1^1 , and so, by the First Reflection Theorem, any G-discrete analytic set A is contained in a G-discrete Borel set A'. Using this, we can define a function D assigning to each Borel set $A \subseteq X$ a Borel subset given by

$$D(A) = A \setminus \bigcup \{ \mathbb{D}(A, u, v)' \mid (u, v) \text{ is } A \text{-terminal } \}.$$

Note that, as there are only countably many approximations (u, v), the set $A \setminus D(A)$ is a countable union of G-discrete Borel sets.

Lemma 5. Suppose (u, v) is an n-approximation all of whose extensions are Aterminal. Then (u, v) is D(A)-terminal.

Proof. Note that if (u, v) is not D(A)-terminal, there is some extension (u', v') of (u, v) and some realisation $((x_s)_{s \in 2^{n+1}}, (z_t)_{t \in 2^{< n+1}}) \in \mathbb{R}(D(A), u', v') \subseteq \mathbb{R}(A, u', v')$. But since (u', v') is A-terminal, we have $\mathbb{D}(A, u', v') \cap D(A) = \emptyset$, contradicting that $\phi(x_{s_{n+1}}) \in \mathbb{D}(A, u', v') \cap D(A)$.

Now define, by transfinite induction, $D^0(X) = X$, $D^{\xi+1}(X) = D(D^{\xi}(X))$ and $D^{\lambda}(X) = \bigcap_{\xi < \lambda} D^{\xi}(X)$, whenever λ is a limit ordinal. Then $(D^{\xi}(X))_{\xi < \omega_1}$ is a well-ordered, decreasing sequence of Borel subsets of X, so the sets T_{ξ} of approximations (u, v) that are $D^{\xi}(X)$ -terminal is an increasing sequence of subsets of the countable set of all approximations. It follows that for some $\xi < \omega_1$, we have $T_{\xi} = T_{\xi+1}$.

Now if $(u, v) \notin T_{\xi+1}$, then (u, v) is not $D(D^{\xi}(X))$ -terminal and hence admits an extension (u', v') that is not $D^{\xi}(X)$ -terminal either, whereby $(u', v') \notin T_{\xi} = T_{\xi+1}$. So if (u_0, v_0) denotes the unique 0-approximation and $(u_0, v_0) \notin T_{\xi+1}$, we can inductively construct $(u_n, v_n) \notin T_{\xi+1}$ extending each other. Setting

$$u = \bigcup_{n} u_n$$

and for $t \in 2^n$

$$v^m(t) = v_{n+m+1}(t)$$

we have the required monotone Lipschitz functions $u, v^m \colon 2^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ to produce a continuous homomorphism from G_0 to G.

Conversely, if $(u_0, v_0) \in T_{\xi+1}$, then (u_0, v_0) is $D^{\xi+1}(X)$ -terminal and hence $D^{\xi+2}(X) \subseteq D^{\xi+1}(X) \setminus \mathbb{D}(D^{\xi+1}(X), u_0, v_0)$. But, since (u_0, v_0) is the unique 0-approximation, we have

$$\mathbb{D}(D^{\xi+1}(X), u_0, v_0) = \mathbb{R}(D^{\xi+1}(X), u_0, v_0) = D^{\xi+1}(X),$$

whereby $D^{\xi+2}(X) = \emptyset$. It follows that

$$X = \bigcup_{\zeta < \xi + 2} D^{\zeta}(X) \setminus D^{\zeta + 1}(X)$$

is a countable union of G-discrete Borel sets. We can then define a Borel \mathbb{N} colouring of G by letting c(x) be a code for the discrete Borel subset of X to which
x belongs.

2. The Mycielski, Silver and Burgess dichotomies

Theorem 6 (Mycielski's Independence Theorem). Suppose X is a perfect Polish space and $R \subseteq X^2$ is a comeagre set. Then there is a continuous injection $\phi: 2^{\mathbb{N}} \to X$ such that for all distinct $x, y \in 2^{\mathbb{N}}$ we have $(\phi(x), \phi(y)) \in R$.

Proof. Let $d \leq 1$ be a compatible complete metric on X and choose a decreasing sequence of dense open subsets $U_n \subseteq X^2$ such that $\bigcap_{n \in \mathbb{N}} U_n \subseteq R$. We construct a Cantor scheme $(C_s)_{s \in 2^{<\mathbb{N}}}$ of non-empty open subsets of X by induction on the length of s such that for all distinct $s, t \in 2^n$ and i = 0, 1, we have

$$\overline{C}_{si} \subseteq C_s$$
, diam $(C_s) \le \frac{1}{|s|+1}$, and $C_s \times C_t \subseteq U_{n-1}$.

To see how this is done, suppose that C_s has been defined for all $s \in 2^n$. Since X is perfect, we can find disjoint, non-empty open subsets D_{s0} and D_{s1} of C_s for every

CHRISTIAN ROSENDAL

 $s \in 2^n$. Now, as U_n is dense, $U_n \cap (D_t \times D_{t'}) \neq \emptyset$ for all distinct $t, t' \in 2^{n+1}$ and so we can inductively shrink the D_t to open subsets C_t such that whenever $t, t' \in 2^{n+1}$ are distinct, we have $C_t \times C_{t'} \subseteq U_n$. By further shrinking the C_{si} if necessary, we can ensure that $\overline{C}_{si} \subseteq C_s$ and diam $(C_s) \leq \frac{1}{|s|+1}$. Now letting $\phi: 2^{\mathbb{N}} \to X$ be defined by $\{\phi(x)\} = \bigcap_{n \in \mathbb{N}} C_{x|_n}$, we see that ϕ is continuous. Also, if $x, y \in 2^{\mathbb{N}}$ are distinct, then for all but finitely many n we have $(\phi(x), \phi(y)) \in C_{x|_n} \times C_{y|_n} \subseteq U_{n-1}$, so, since the U_n are decreasing, we have $(x, y) \in \bigcap_{n \in \mathbb{N}} U_n \subseteq R$.

Theorem 7 (The Silver Dichotomy). Suppose E is a conalytic equivalence relation on a Polish space X. Then exactly one of the following holds

- E has at most countably many classes,
- there is a continuous injection $\phi: 2^{\mathbb{N}} \to X$ such that for distinct $x, y \in 2^{\mathbb{N}}$, $\neg \phi(x) E \phi(y)$.

Proof. We define an analytic digraph G on X by setting $G = X^2 \setminus E$. Notice first that if $c: X \to \mathbb{N}$ is a Borel N-colouring of G, then for all $x, y \in X$,

$$\neg xEy \Rightarrow (x,y) \in G \Rightarrow c(x) \neq c(y).$$

So for any $n \in \mathbb{N}$, $c^{-1}(n)$ is contained in a single equivalence class of E. Moreover, as $X = \bigcup_{n \in \mathbb{N}} c^{-1}(n)$, this shows that X is covered by countably many E-equivalence classes.

So suppose instead that there is no Borel N-colouring of G. Then by Theorem 3 there is a continuous homomorphism $h: 2^{\mathbb{N}} \to X$ from G_0 to G. Now let $F = \{(x, y) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}} \mid h(x)Eh(y)\}$. Then F is meagre. For otherwise, by the Kuratowski–Ulam Theorem, there is some $x \in 2^{\mathbb{N}}$ such that F_x is non-meagre and hence, by Lemma 1, there are $y, z \in F_x$ such that $(y, z) \in G_0$. As h is a homomorphism it follows that $(h(y), h(z)) \in G = X^2 \setminus E$, which contradicts that h(y)Eh(x)Eh(z). Therefore, applying Mycielski's Theorem to the meagre set F, we get a continuous function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ such that for distinct $x, y \in 2^{\mathbb{N}}$, $(f(x), f(y)) \notin F$, i.e., $\neg h \circ f(x)Eh \circ f(y)$. Letting $\phi = h \circ f$, we have the result. \Box

Lemma 8. Suppose E is an analytic equivalence relation on a Polish space X. Then there is a decreasing sequence $(E_{\xi})_{\xi < \omega_1}$ of Borel equivalence relations on X whose intersection is E.

Proof. We claim that if $C \subseteq X^2$ is an analytic set disjoint from E, there is a Borel equivalence relation F separating E from C. To see this, define the following property Φ of pairs of subsets of X^2

$$\Phi(A,B) \Leftrightarrow \forall x, y, z \ ((x,y) \notin A \lor (y,z) \notin A \lor (x,z) \notin B)$$

$$\& \ \forall x, y \ ((x,y) \notin A \lor (y,x) \notin B)$$

$$\& \ \forall x \ (x,x) \notin B$$

$$\& \ \forall x, y \ ((x,y) \notin A \lor (x,y) \notin C).$$

Clearly, Φ is Π_1^1 on Σ_1^1 , hereditary, and continuous upward in the second variable. Moreover, $\Phi(E, \sim E)$, so by the Second Reflection Theorem there is a Borel set $F \supseteq E$ such that $\Phi(F, \sim F)$. By definition of Φ , F is then a Borel equivalence relation disjoint from C.

Now, by the Lusin–Sierpiński Theorem, there is a decreasing sequence $(H_{\xi})_{\xi < \omega_1}$ of Borel sets with intersection E. Using the above claim, we can, by transfinite induction, choose a sequence $(F_{\xi})_{\xi < \omega_1}$ of Borel equivalence relations containing E such that each F_{ξ} separates E from $\sim (H_{\xi} \cap \bigcap_{\zeta < \xi} F_{\zeta})$. It follows that the sequence $(F_{\xi})_{\xi < \omega_1}$ is decreasing and, by choice of H_{ξ} , that it has intersection E. \Box

Theorem 9 (The Burgess Dichotomy). Let E be an analytic equivalence relation on a Polish space X. Then one of the following holds

- E has at most \aleph_1 classes,
- there is a continuous injection $\phi: 2^{\mathbb{N}} \to X$ such that for distinct $x, y \in 2^{\mathbb{N}}$, $\neg \phi(x) E \phi(y)$.

Proof. Using Lemma 8, we can find a decreasing sequence $(E_{\xi})_{\xi < om_1}$ of Borel equivalence relations whose intersection is E. Note that if for any ξ there is a continuous injection $\phi: 2^{\mathbb{N}} \to X$ such that for distinct $x, y \in 2^{\mathbb{N}}, \neg \phi(x) E_{\xi} \phi(y)$, then the same holds for E. So suppose not. Then by Silver's Dichotomy, Theorem 7, each E_{ξ} has at most countably many classes $B_{\xi,n}, n \in \mathbb{N}$. Let $\{A_{\xi}\}_{\xi < \omega_1} = \{B_{\xi,n}\}_{\xi < \omega_1, n \in \mathbb{N}}$.

Suppose now that E has at least \aleph_2 classes. We say that $C \subseteq X$ is *large* if it intersects at least \aleph_2 classes of E. Note that if C is large, then for some ξ , both $C \cap A_{\xi}$ and $C \setminus A_{\xi}$ are large. For if not, we let for every $\xi < \omega_1$,

$$C_{\xi} = \begin{cases} C \cap A_{\xi}, & \text{if } C \cap A_{\xi} \text{ is not large;} \\ C \setminus A_{\xi}, & \text{otherwise.} \end{cases}$$

Then $\bigcup_{\xi < \omega_1} C_{\xi}$ will intersect at most \aleph_1 *E*-classes and so

$$C \setminus \bigcup_{\xi < \omega_1} C_{\xi} = \bigcap_{\xi < \omega_1} C \setminus C_{\xi}$$

will be large. But for all $x, y \in \bigcap_{\xi < \omega_1} C \setminus C_{\xi}$ and all $\xi < \omega_1$, we have $x \in A_{\xi}$ if and only if $y \in A_{\xi}$ and hence xEy, contradicting the largeness of C.

Now let $\mathcal{U}_0 = \{U_n\}_{n \in \mathbb{N}}$ be a countable basis for the topology on X. We define inductively countable families \mathcal{U}_n and \mathcal{A}_n of Borel subsets of X such that

- $\mathcal{U}_0 \subseteq \mathcal{A}_0 \subseteq \mathcal{U}_1 \subseteq \mathcal{A}_1 \subseteq \ldots,$
- each \mathcal{U}_n is the basis for a Polish topology on X,
- each \mathcal{A}_n is a Boolean algebra of subsets of X,
- if $C \in \mathcal{U}_n$ is large, then there is some $A_{\xi} \in \mathcal{A}_n$, such that both $C \cap A_{\xi}$ and $C \setminus A_{\xi}$ are large.

It follows that $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \mathcal{A}_n$ is a Boolean algebra whose elements form the basis for a Polish topology on X and such that whenever $C \in \mathcal{A}$ is large there is another $A_{\xi} \in \mathcal{A}$ such that both $C \cap A_{\xi}$ and $C \setminus A_{\xi}$ are large. Let $d \leq 1$ be a complete metric on X compatible with the topology induced by \mathcal{A} . Now, using that if $\bigcup_{n \in \mathbb{N}} C_n$ is large, then some C_n is large, we can build a Cantor scheme $(C_s)_{s \in 2^{<\mathbb{N}}}$ of elements of \mathcal{A} such that $C_{\emptyset} = X$, diam $(C_s) \leq \frac{1}{|s|+1}$, each C_s is large and for every s there is some $\xi < \omega_1$ such that $C_{s0} \subseteq A_{\xi}$, while $C_{s1} \subseteq \sim A_{\xi}$. It follows that if $\phi: 2^{\mathbb{N}} \to X$ is defined by $\{\phi(x)\} = \bigcap_{n \in \mathbb{N}} C_{x|_n}$, then for distinct $x, y \in 2^{\mathbb{N}}$ we have $\neg \phi(x) E \phi(y)$.

Now as the isomorphism relation between the countable models of an $L_{\omega_1\omega}$ -sentence is an analytic equivalence relation, we have the following corollary, initially proved by analysing the space of complete types.

CHRISTIAN ROSENDAL

Corollary 10 (Morley's Theorem). Suppose L is a countable language and σ is a $L_{\omega_1\omega}$ sentence. Then there are either a continuum of non-isomorphic countable models of σ or at most \aleph_1 non-isomorphic models of σ .