
THE DICHOTOMY THEOREMS

CHRISTIAN ROSENDAL

1. The G0 dichotomy

A digraph (or directed graph) on a set X is a subset G ⊆ X2 \ ∆. Given a
digraph G on a set X and a subset A ⊆ X, we say that A is G-discrete if for all
x, y ∈ A we have (x, y) /∈ G.

Now let sn ∈ 2n be chosen for every n ∈ N such that ∀s ∈ 2<N ∃n s v sn. Then
we can define a digraph G0 on 2N by

G0 = {(sn0x, sn1x) ∈ 2N × 2N ∣∣ n ∈ N & x ∈ 2N}.

Lemma 1. If B ⊆ 2N has the Baire property and is non-meagre, then B is not
G0-discrete.

Proof. By assumption on B, we can find some s ∈ 2<N such that B is comeagre in
Ns. Also, by choice of (sn), we can find some n such that s v sn, whereby B is
comeagre in Nsn

. By the characterisation of comeagre subsets of 2N, we see that
for some x ∈ 2N, we have sn0x, sn1x ∈ B, showing that B is not G0-discrete. �

Suppose G and H are digraphs on sets X and Y respectively. A homomorphism
from G to H is a function h : X → Y such that for all x, y ∈ X,

(x, y) ∈ G⇒ (h(x), h(y)) ∈ H.
Also, if Z is any set, a Z-colouring of a digraph G on X is a homomorphism from
G to the digraph 6= on Z, i.e., a function h : X → Z such that for all x, y ∈ X,

(x, y) ∈ G⇒ h(x) 6= h(y).

Proposition 2. There is no Baire measurable N-colouring of G0.

Proof. Note that if h : 2N → N is a Baire measurable function, then for some n ∈ N,
B = h−1(n) is non-meagre with the Baire property and hence not G0-discrete. So
h cannot be a homomorphism from G0 to 6= on N. �

Theorem 3 (The G0 dichotomy). Suppose G is an analytic digraph on a Polish
space X. Then exactly one of the following holds:

- there is a continuous homomorphism from G0 to G,
- there is a Borel N-colouring of G.

Proof. If X is countable, the result is trivial. So if not, let f : NN → P be a
continuous bijection onto the perfect kernel P of X. By replacing G with (f ×
f)−1[G], there is no loss of generality in assuming that X = NN.

So suppose F ⊆ NN × NN × NN is a closed set such that

(x, y) ∈ G⇔ ∃z (x, y, z) ∈ F.
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In order to produce a continuous homomorphism h from G0 to G it suffices to find
monotone Lipschitz functions u, vm : 2<N → N<N, m ∈ N, such that for all m < k
and t ∈ 2k−m−1, (

Nu(sm0t) ×Nu(sm1t) ×Nvm(t)

)
∩ F 6= ∅.

In this case, we can define h, ṽm : 2N → NN by h(w) =
⋃
n u(w|n) and ṽm(w) =⋃

n v
m(w|n). For then if m ∈ N and w ∈ 2N are given, there are xk, yk, zk ∈ NN

such that xk → h(sm0w), yk → h(sm1w) and zk → ṽm(w) such that for all k,
(xk, yk, zk). So, as F is closed, also

(h(sm0w), h(sm1w), ṽm(w)) ∈ F,
whence (h(sm0w), h(sm1w)) ∈ G, showing that h is a homomorphism from G0 to
G.

An n-approximation is a pair (u, v) of functions u : 2n → Nn and v : 2<n → Nn.
Also, if (u, v) is an n-approximation and (u′, v′) is an n+ 1-approximation, we say
that (u′, v′) extends (u, v) if u(s) v u′(si) and v(t) v v′(ti) for all s ∈ 2n, t ∈ 2<n

and i = 0, 1.
Suppose A ⊆ X and (u, v) is an n-approximation. We define the set of A-

realisations, R(A, u, v), to be the set of pairs of tuples (xs)s∈2n ∈
∏
s∈2n

(
A∩Nu(s)

)
and (zt)t∈2<n ∈

∏
t∈2<n Nv(t) such that

(xsm0t, xsm1t, zt) ∈ F
for all s ∈ 2n, m ∈ N and t ∈ 2n−m−1. So if (u0, v0) is the unique 0-approximation
(i.e., u(∅) = ∅ and v is the function with empty domain), we have R(A, u0, v0) =
{x∅

∣∣ x∅ ∈ A} = A. If (u, v) has no A-realised extension, we say that (u, v) is
A-terminal.

Lemma 4. Suppose (u, v) is an A-terminal n-approximation, then

D(A, u, v) = {xsn

∣∣ ((xs)s∈2n , (zt)t∈2<n) ∈ R(A, u, v)}
is G-discrete.

Proof. Suppose toward a contradiction that

((x0
s)s∈2n , (z0

t )t∈2<n), ((x1
s)s∈2n , (z1

t )t∈2<n) ∈ R(A, u, v)

satisfy (x0
sn
, x1
sn

) ∈ G. Then for some z∅ ∈ NN, we have

(x0
sn
, x1
sn
, z∅) ∈ F,

and hence, setting xsi = xis and zti = zit for all si ∈ 2n and ti ∈ 2<n+1 \ {∅}, we
get an A-realisation ((xs)s∈2n+1 , (zt)t∈2<n+1) of an extension of (u, v), contradicting
that (u, v) is A-terminal. �

Now define Φ ⊆ P (X) by

Φ(A)⇔ A is G-discrete.

Since G is analytic, Φ is Π1
1 on Σ1

1, and so, by the First Reflection Theorem, any
G-discrete analytic set A is contained in a G-discrete Borel set A′. Using this, we
can define a function D assigning to each Borel set A ⊆ X a Borel subset given by

D(A) = A \
⋃
{D(A, u, v)′

∣∣ (u, v) is A-terminal }.

Note that, as there are only countably many approximations (u, v), the set A\D(A)
is a countable union of G-discrete Borel sets.
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Lemma 5. Suppose (u, v) is an n-approximation all of whose extensions are A-
terminal. Then (u, v) is D(A)-terminal.

Proof. Note that if (u, v) is not D(A)-terminal, there is some extension (u′, v′) of
(u, v) and some realisation ((xs)s∈2n+1 , (zt)t∈2<n+1) ∈ R(D(A), u′, v′) ⊆ R(A, u′, v′).
But since (u′, v′) is A-terminal, we have D(A, u′, v′)∩D(A) = ∅, contradicting that
φ(xsn+1) ∈ D(A, u′, v′) ∩D(A). �

Now define, by transfinite induction, D0(X) = X, Dξ+1(X) = D(Dξ(X)) and
Dλ(X) =

⋂
ξ<λD

ξ(X), whenever λ is a limit ordinal. Then (Dξ(X))ξ<ω1 is a well-
ordered, decreasing sequence of Borel subsets of X, so the sets Tξ of approximations
(u, v) that are Dξ(X)-terminal is an increasing sequence of subsets of the countable
set of all approximations. It follows that for some ξ < ω1, we have Tξ = Tξ+1.

Now if (u, v) /∈ Tξ+1, then (u, v) is not D(Dξ(X))-terminal and hence admits an
extension (u′, v′) that is not Dξ(X)-terminal either, whereby (u′, v′) /∈ Tξ = Tξ+1.
So if (u0, v0) denotes the unique 0-approximation and (u0, v0) /∈ Tξ+1, we can
inductively construct (un, vn) /∈ Tξ+1 extending each other. Setting

u =
⋃
n

un

and for t ∈ 2n

vm(t) = vn+m+1(t),
we have the required monotone Lipschitz functions u, vm : 2<N → N<N to produce
a continuous homomorphism from G0 to G.

Conversely, if (u0, v0) ∈ Tξ+1, then (u0, v0) is Dξ+1(X)-terminal and hence
Dξ+2(X) ⊆ Dξ+1(X) \ D(Dξ+1(X), u0, v0). But, since (u0, v0) is the unique 0-
approximation, we have

D(Dξ+1(X), u0, v0) = R(Dξ+1(X), u0, v0) = Dξ+1(X),

whereby Dξ+2(X) = ∅. It follows that

X =
⋃

ζ<ξ+2

Dζ(X) \Dζ+1(X)

is a countable union of G-discrete Borel sets. We can then define a Borel N-
colouring of G by letting c(x) be a code for the discrete Borel subset of X to which
x belongs. �

2. The Mycielski, Silver and Burgess dichotomies

Theorem 6 (Mycielski’s Independence Theorem). Suppose X is a perfect Polish
space and R ⊆ X2 is a comeagre set. Then there is a continuous injection φ : 2N →
X such that for all distinct x, y ∈ 2N we have (φ(x), φ(y)) ∈ R.

Proof. Let d ≤ 1 be a compatible complete metric on X and choose a decreasing
sequence of dense open subsets Un ⊆ X2 such that

⋂
n∈N Un ⊆ R. We construct

a Cantor scheme (Cs)s∈2<N of non-empty open subsets of X by induction on the
length of s such that for all distinct s, t ∈ 2n and i = 0, 1, we have

Csi ⊆ Cs, diam(Cs) ≤
1

|s|+ 1
, and Cs × Ct ⊆ Un−1.

To see how this is done, suppose that Cs has been defined for all s ∈ 2n. Since X is
perfect, we can find disjoint, non-empty open subsets Ds0 and Ds1 of Cs for every
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s ∈ 2n. Now, as Un is dense, Un ∩ (Dt×Dt′) 6= ∅ for all distinct t, t′ ∈ 2n+1 and so
we can inductively shrink the Dt to open subsets Ct such that whenever t, t′ ∈ 2n+1

are distinct, we have Ct × Ct′ ⊆ Un. By further shrinking the Csi if necessary, we
can ensure that Csi ⊆ Cs and diam(Cs) ≤ 1

|s|+1 . Now letting φ : 2N → X be defined
by {φ(x)} =

⋂
n∈N Cx|n , we see that φ is continuous. Also, if x, y ∈ 2N are distinct,

then for all but finitely many n we have (φ(x), φ(y)) ∈ Cx|n × Cy|n ⊆ Un−1, so,
since the Un are decreasing, we have (x, y) ∈

⋂
n∈N Un ⊆ R. �

Theorem 7 (The Silver Dichotomy). Suppose E is a conalytic equivalence relation
on a Polish space X. Then exactly one of the following holds

- E has at most countably many classes,
- there is a continuous injection φ : 2N → X such that for distinct x, y ∈ 2N,
¬φ(x)Eφ(y).

Proof. We define an analytic digraph G on X by setting G = X2 \ E. Notice first
that if c : X → N is a Borel N-colouring of G, then for all x, y ∈ X,

¬xEy ⇒ (x, y) ∈ G⇒ c(x) 6= c(y).

So for any n ∈ N, c−1(n) is contained in a single equivalence class of E. Moreover, as
X =

⋃
n∈N c

−1(n), this shows that X is covered by countably many E-equivalence
classes.

So suppose instead that there is no Borel N-colouring of G. Then by Theo-
rem 3 there is a continuous homomorphism h : 2N → X from G0 to G. Now let
F = {(x, y) ∈ 2N × 2N

∣∣ h(x)Eh(y)}. Then F is meagre. For otherwise, by the
Kuratowski–Ulam Theorem, there is some x ∈ 2N such that Fx is non-meagre
and hence, by Lemma 1, there are y, z ∈ Fx such that (y, z) ∈ G0. As h is
a homomorphism it follows that (h(y), h(z)) ∈ G = X2 \ E, which contradicts
that h(y)Eh(x)Eh(z). Therefore, applying Mycielski’s Theorem to the meagre set
F , we get a continuous function f : 2N → 2N such that for distinct x, y ∈ 2N,
(f(x), f(y)) /∈ F , i.e., ¬h◦f(x)Eh◦f(y). Letting φ = h◦f , we have the result. �

Lemma 8. Suppose E is an analytic equivalence relation on a Polish space X.
Then there is a decreasing sequence (Eξ)ξ<ω1 of Borel equivalence relations on X
whose intersection is E.

Proof. We claim that if C ⊆ X2 is an analytic set disjoint from E, there is a
Borel equivalence relation F separating E from C. To see this, define the following
property Φ of pairs of subsets of X2

Φ(A,B)⇔ ∀x, y, z
(
(x, y) /∈ A ∨ (y, z) /∈ A ∨ (x, z) /∈ B

)
& ∀x, y

(
(x, y) /∈ A ∨ (y, x) /∈ B

)
& ∀x (x, x) /∈ B
& ∀x, y

(
(x, y) /∈ A ∨ (x, y) /∈ C

)
.

Clearly, Φ is Π1
1 on Σ1

1, hereditary, and continuous upward in the second variable.
Moreover, Φ(E,∼ E), so by the Second Reflection Theorem there is a Borel set
F ⊇ E such that Φ(F,∼ F ). By definition of Φ, F is then a Borel equivalence
relation disjoint from C.

Now, by the Lusin–Sierpiński Theorem, there is a decreasing sequence (Hξ)ξ<ω1

of Borel sets with intersection E. Using the above claim, we can, by transfinite
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induction, choose a sequence (Fξ)ξ<ω1 of Borel equivalence relations containing E
such that each Fξ separates E from ∼ (Hξ ∩

⋂
ζ<ξ Fζ). It follows that the sequence

(Fξ)ξ<ω1 is decreasing and, by choice of Hξ, that it has intersection E. �

Theorem 9 (The Burgess Dichotomy). Let E be an analytic equivalence relation
on a Polish space X. Then one of the following holds

- E has at most ℵ1 classes,
- there is a continuous injection φ : 2N → X such that for distinct x, y ∈ 2N,
¬φ(x)Eφ(y).

Proof. Using Lemma 8, we can find a decreasing sequence (Eξ)ξ<om1 of Borel equiv-
alence relations whose intersection is E. Note that if for any ξ there is a continuous
injection φ : 2N → X such that for distinct x, y ∈ 2N, ¬φ(x)Eξφ(y), then the same
holds for E. So suppose not. Then by Silver’s Dichotomy, Theorem 7, each Eξ has
at most countably many classes Bξ,n, n ∈ N. Let {Aξ}ξ<ω1 = {Bξ,n}ξ<ω1,n∈N.

Suppose now that E has at least ℵ2 classes. We say that C ⊆ X is large if it
intersects at least ℵ2 classes of E. Note that if C is large, then for some ξ, both
C ∩Aξ and C \Aξ are large. For if not, we let for every ξ < ω1,

Cξ =

{
C ∩Aξ, if C ∩Aξ is not large;
C \Aξ, otherwise.

Then
⋃
ξ<ω1

Cξ will intersect at most ℵ1 E-classes and so

C \
⋃
ξ<ω1

Cξ =
⋂
ξ<ω1

C \ Cξ

will be large. But for all x, y ∈
⋂
ξ<ω1

C \Cξ and all ξ < ω1, we have x ∈ Aξ if and
only if y ∈ Aξ and hence xEy, contradicting the largeness of C.

Now let U0 = {Un}n∈N be a countable basis for the topology on X. We define
inductively countable families Un and An of Borel subsets of X such that

• U0 ⊆ A0 ⊆ U1 ⊆ A1 ⊆ . . .,
• each Un is the basis for a Polish topology on X,
• each An is a Boolean algebra of subsets of X,
• if C ∈ Un is large, then there is some Aξ ∈ An, such that both C ∩Aξ and
C \Aξ are large.

It follows that A =
⋃
n∈NAn is a Boolean algebra whose elements form the basis

for a Polish topology on X and such that whenever C ∈ A is large there is another
Aξ ∈ A such that both C ∩ Aξ and C \ Aξ are large. Let d ≤ 1 be a complete
metric on X compatible with the topology induced by A. Now, using that if⋃
n∈N Cn is large, then some Cn is large, we can build a Cantor scheme (Cs)s∈2<N

of elements of A such that C∅ = X, diam(Cs) ≤ 1
|s|+1 , each Cs is large and for

every s there is some ξ < ω1 such that Cs0 ⊆ Aξ, while Cs1 ⊆∼ Aξ. It follows that
if φ : 2N → X is defined by {φ(x)} =

⋂
n∈N Cx|n , then for distinct x, y ∈ 2N we have

¬φ(x)Eφ(y). �

Now as the isomorphism relation between the countable models of an Lω1ω-
sentence is an analytic equivalence relation, we have the following corollary, initially
proved by analysing the space of complete types.
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Corollary 10 (Morley’s Theorem). Suppose L is a countable language and σ is
a Lω1ω sentence. Then there are either a continuum of non-isomorphic countable
models of σ or at most ℵ1 non-isomorphic models of σ.


