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ABSTRACT. We present a comprehensive theory of boundedness properties for Pol-
ish groups developed with a main focus on Roelcke precompactness (precompactness
of the lower uniformity) and Property (OB) (boundedness of all isometric actions on
separable metric spaces). In particular, these properties are characterised by the or-
bit structure of isometric or continuous affine representations on separable Banach
spaces.

We further study local versions of boundedness properties and the microscopic
structure of Polish groups and show how the latter relates to the local dynamics of
isometric and affine actions.
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1. GLOBAL BOUNDEDNESS PROPERTIES IN POLISH GROUPS

We will be presenting and investigating a number of boundedness properties in
Polish groups, that is, separable, completely metrisable groups, all in some way cap-
turing a different aspect of compactness, but without actually being equivalent with
compactness. The main cue for our study comes from the following result, which
reformulates compactness of Polish groups.

Theorem 1.1. The following are equivalent for a Polish group G.

(1) G is compact,
(2) for any open V 3 1 there is a finite set F ⊆G such that G = FV ,
(3) for any open V 3 1 there is a finite set F ⊆G such that G = FV F,
(4) whenever G acts continuously and by affine isometries on a Banach space X ,

G fixes a point of X .

The implication from (1) to (4) follows, for example, from the Ryll-Nardzewski
fixed point theorem and the equivalence of (1) and (2) are probably part of the folk-
lore. On the other hand, the implication from (3) to (1) was shown independently by
S. Solecki [22] and V. Uspenskiı̆ [29], while the implication from (4) to (1) is due to L.
Nguyen Van Thé and V. Pestov [19].

The groups classically studied in representation theory and harmonic analysis are
of course the locally compact (second countable), but many other groups of transfor-
mations appearing in analysis and elsewhere fail to be locally compact, e.g., home-
omorphism groups of compact metric spaces, diffeomorphism groups of manifolds,
isometry groups of separable complete metric spaces, including Banach spaces, and
automorphism groups of countable first order structures. While the class of Polish
groups is large enough to encompass all of these, it is nevertheless fairly well be-
haved and allows for rather strong tools, notably Baire category methods, though
not in general Haar measure. As it is also reasonably robust, i.e., satisfies strong
closure properties, it has received considerable attention for the last twenty years,
particularly in connection with the descriptive set theory of continuous actions on
Polish spaces [5].

The goal of the present paper is to study a variety of global boundedness proper-
ties of Polish groups. While this has been done for general topological groups in the
context of uniform topological spaces, e.g., by J. Hejcman [13], one of the most im-
portant boundedness properties, namely, Roelcke precompactness has not received
much attention until recently (see, e.g., [26, 27, 28, 29, 25, 11]). Moreover, another of
these, namely, property (OB) (see [21]) is not naturally a property of uniform spaces,
but nevertheless has a number of equivalent reformulations, which makes it central
to our study here.

The general boundedness properties at stake are, on the one hand, precompact-
ness and boundedness of the four natural uniformities on a topological group, namely,
the two-sided, left, right and Roelcke uniformities. On the other hand, we have
boundedness properties defined in terms of actions on various spaces, e.g., (reflexive)
Banach spaces, Hilbert space or complete metric spaces.
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FIGURE 1. Implications between various boundedness properties

Though we shall postpone the exact definitions till later in the paper, most of
these can be simply given as in conditions (2) and (3) of Theorem 1.1. For this and to
facilitate the process of keeping track of the different notions of global boundedness
of Polish groups, we include a diagram, Figure 1, which indicates how to recover a
Polish group G from any open set V 3 1 using a finite set F ⊆G and a natural number
k (both depending on V ).

Referring to Figure 1 for the definition of property (OB), our first result charac-
terises this in terms of affine and linear actions on Banach spaces.

Theorem 1.2. The following conditions are equivalent for a Polish group G.
(1) G has property (OB),
(2) whenever G acts continuously by affine isometries on a separable Banach

space, every orbit is bounded,
(3) any continuous linear representation π : G → GL(X ) on a separable Banach

space is bounded, i.e., supg∈G‖π(g)‖ <∞.

Examples of Polish groups with property (OB) include many transformation groups
of highly homogeneous mathematical models, e.g., homeomorphism groups of spheres
Homeo(Sn) and of the Hilbert cube Homeo([0,1]N) [21].

The second global boundedness property of our study is Roelcke precompactness
(cf. Figure 1), which recently turned out to be of central importance in T. Tsankov’s
classification of unitary representations of oligomorphic permutation groups [25].
Again, the class of Roelcke precompact Polish groups is surprisingly large despite of
being even more restrictive than those with property (OB). As shown in Proposition
1.22 extending work of [21, 25], the Roelcke precompact Polish groups are exactly
those that can realised as approximately oligomorhic groups of isometries. This cri-
terion immediately gives us the following range of examples, Aut([0,1],λ) (see [11]
for an independent proof), the unitary group of separable Hilbert space U (`2), and,
less obviously, Isom(U1) [21], where U1 denotes the so called Urysohn metric space
of diameter 1.

As noted by S. Dierolf and W. Roelcke [20], Homeo([0,1]) is Roelcke precompact
and the same holds for many homeomorphism groups of zero-dimensional compact
metric spaces [27]. Motivated by this, Uspenskiı̆ [27] asked whether also the home-
omorphism group of the Hilbert cube Homeo([0,1]N) is Roelcke precompact.
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Theorem 1.3 (joint with M. Culler). Suppose M is a compact manifold of dimension
`Ê 2 or is the Hilbert cube [0,1]N. Then Homeo(M) is not Roelcke precompact.

While property (FH), that is, the requirement that every continuous affine iso-
metric action on a Hilbert space has a fixed point, delineates a non-trivial subclass
of locally compact groups, by a result of U. Haagerup and A. Przybyszewska [12],
if one instead considers affine isometric actions on reflexive spaces, one obtains in-
stead simply the class of compact groups. We shall show that the same holds when,
rather than changing the space on which the group acts, one considers just continu-
ous affine actions.

Theorem 1.4. Any non-compact locally compact second countable group acts contin-
uously by affine transformations on a separable Hilbert space such that all orbits are
unbounded.

As a corollary, we also obtain information for more general Polish groups.

Corollary 1.5. Suppose G is a Polish group and V ÉG is an open subgroup of infinite
index with G = CommG(V ). Then G admits a continuous affine representation on a
separable Hilbert space for which every orbit is unbounded.

A second part of our study deals with local versions of these boundedness prop-
erties. More exactly, Solecki [23] asked whether the class of locally compact groups
could be characterised among the Polish groups as those for which there is a neigh-
bourhood of the identity U 3 1 such that any other neighbourhood V 3 1 covers U by a
finite number of two-sided translates (he also included a certain additional technical
condition of having a free subgroup at 1 that we shall come back to). While positive
results were obtained by M. Malicki in [15], we shall show that this is not so by pre-
senting a non-locally compact Polish group with a free subgroup at 1 satisfying the
above mentioned covering property for some neighbourhood U 3 1.

Theorem 1.6. There is a non-locally compact, Weil complete Polish group, having
a free subgroup at 1 and an open subgroup U whose conjugates f U f −1 provide a
neighbourhood basis at 1.

The third and final part of our study deals with the consequences at the micro-
scopic level of the previously mentioned global boundedness properties. By this we
understand not only what happens in a single neighbourhood of the identity, but
rather what happens as one decreases the neighbourhood to 1. As it turns out, the
stronger global boundedness properties, namely, Roelcke precompactness and being
oligomorphic prevent further covering properties at the microscopic level. Moreover,
this can in turn be utilised in the construction of affine isometric action with non-
trivial local dynamics.

We recall that S∞ is the Polish group consisting of all permutations of the infinite
discrete set N equipped with the topology of pointwise convergence. Also, a closed
subgroup G É S∞ is said to be oligomorphic if, for every n Ê 1, G induces only finitely
many distinct orbits on Nn. By a classical theorem of model theory, up to isomor-
phism these are exactly the automorphism groups of countable ℵ0-categorical struc-
tures, e.g., S∞, Aut(Q,<) and the homeomorhism group of Cantor space Homeo(2N)
among many other.
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Theorem 1.7. Let G be an oligomorphic closed subgroup of S∞. Then there is a
neighbourhood basis at 1, V0 ⊇V1 ⊇V2 ⊇ . . . 3 1, such that

G 6=⋃
n

FnVnEn

for all finite subsets Fn,En ⊆G.
It follows that G admits a continuous affine isometric action on a separable Banach

space X such that for some εn > 0 and all sequences of compact subsets Cn ⊆ X there
is a g ∈G satisfying

dist(gCn,Cn)> εn

for all n ∈N.

Theorem 1.8. Suppose G is a non-compact, Roelcke precompact Polish group. Then
there is a neighbourhood basis at 1, V0 ⊇ V1 ⊇ . . . 3 1, such that for any hn ∈ G and
finite Fn ⊆G,

G 6=⋃
n

FnVnhn.

We should also mention that though we mainly consider Polish groups, many of
our results are valid with only trivial modifications for arbitrary topological groups.
However, to avoid complications and to get the cleanest statements possible, we have
opted for this more restrictive setting, which nevertheless already includes most of
the groups appearing in analysis and geometry.

The paper is organised as follows: In Sections 1.1, 1.2 and 1.3 we present some
background material on uniformities on topological groups and general constructions
of affine and linear representations on Banach spaces. Almost all of the material
there is well-known, but sets the stage for several of the constructions used later
on. Sections 1.4–1.11 contains the core study of the various boundedness properties
and their consequences. In Sections 2.1 and 2.2, we answer Solecki’s question on the
possible characterisation of locally compact Polish groups. And finally, in Sections
3.1–3.5 we study the covering properties of neighbourhood bases in Polish groups,
which leads to constructions of affine isometric actions with interesting local dynam-
ics.

1.1. Uniformities and compatible metrics. Recall that a uniform space is a tuple
(X ,E ), where X is a set and E is a collection of subsets of X ×X , called entourages of
the diagonal ∆= {(x, x) ∈ X × X

∣∣ x ∈ X }, satisfying
(1) ∆⊆V for any V ∈ E ,
(2) E is closed under supersets, i.e., V ⊆U and V ∈ E implies U ∈ E ,
(3) V ∈ E implies that also V−1 = {(y, x) ∈ X × X

∣∣ (x, y) ∈V } ∈ E ,
(4) E is closed under finite intersections, i.e., V ,U ∈ E implies that V ∩U ∈ E ,
(5) for any V ∈ E there is U ∈ E such that

U2 =U ◦U = {(x, y) ∈ X × X
∣∣ ∃z ∈ X (x, z) ∈U & (z, y) ∈U}⊆V .

The basic example of a uniform space is the case when (X ,d) is a metric space (or
just pseudometric) and we let B on X denote the family of sets

Vε = {(x, y) ∈ X × X
∣∣ d(x, y)< ε},

for ε > 0. Closing B under supersets, one obtains a uniformity E on X , and we say
that B = {Vε}ε>0 forms a fundamental system for E , meaning that any entourage
contains a subset belonging to B.
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Conversely, if (X ,E ) is a uniform space, then E generates a unique topology on X
by declaring the vertical sections of entourages at x, i.e., V [x]= {y ∈ X

∣∣ (x, y) ∈V }, to
form a neighbourhood basis at x ∈ X .

A net (xi) in X is said to be E -Cauchy provided that for any V ∈ E we have (xi, x j) ∈
V for all sufficiently large i, j. And (xi) converges to x if, for any V ∈ E , we have
(xi, x) ∈ V for all sufficiently large i. Thus, (X ,E ) is complete if any E -Cauchy net
converges in X .

Similarly, (X ,E ) is precompact if for any V ∈ E there is a finite set F ⊆ X such that

X =V [F]= {y ∈ X
∣∣ ∃x ∈ F (x, y) ∈V }.

That is, X is a union of finitely many vertical sections V [x] of V .
An écart or pseudometric on a set X is a symmetric function d : X × X → RÊ0

satisfying the triangle inequality, d(x, y) É d(x, z)+ d(z, y), and such that d(x, x) =
0. The Birkhoff-Kakutani theorem states that if ∆ ⊆ Un ⊆ X × X is a decreasing
sequence of symmetric sets satisfying

Un+1 ◦Un+1 ◦Un+1 ⊆Un

and we define δ,d : X × X →RÊ0 by

δ(x, y)= inf {2−n ∣∣ (x, y) ∈Un}

and

d(x, y)= inf
{ n∑

i=1
δ(xi−1, xi)

∣∣ x0 = x, xn = y
}
,

then d is an écart on X with
1
2
δ(x, y)É d(x, y)É δ(x, y).

In other words, if the Vε are defined as above, then V2−(n+1) ⊆Un ⊆ V2−n and thus the
two families {Un}n∈N and {Vε}ε>0 are fundamental systems for the same uniformity
on X . In particular, this shows that any uniformity with a countable fundamental
system can be induced by an écart on X .

Now, if G is a topological group, it naturally comes with four uniformities, namely,
the two-sided, left, right and Roelcke uniformities denoted respectively E ts,E l ,Er and
ER . These are the uniformities with fundamental systems given by respectively

(1) Ets
W = {(x, y) ∈G×G

∣∣ x−1 y ∈W & xy−1 ∈W},
(2) El

W = {(x, y) ∈G×G
∣∣ x−1 y ∈W},

(3) Er
W = {(x, y) ∈G×G

∣∣ xy−1 ∈W},
(4) ER

W = {(x, y) ∈G×G
∣∣ y ∈WxW},

where W varies over symmetric neighbourhoods of 1 in G. Since clearly, Ets
W ⊆ El

W ⊆
ER

W and Ets
W ⊆ Er

W ⊆ ER
W , we see that E ts is finer that both E l and Er, while ER

is coarser than all of them. In fact, in the lattice of uniformities on G, one has
E ts = E l ∨Er and ER = E l ∧Er.

Though these uniformities are in general distinct, they all generate the original
topology on G. This can be seen by noting first that for any symmetric open W 3 1
and x ∈ G, one has E ts

W [x] = xW ∩Wx, which is a neighbourhood of x in G, and thus
the topology generated by E ts is coarser than the topology on G. Secondly, if U is
an open neighbourhood of x in G, then there is a symmetric open W 3 1 such that
ER

W [x] = WxW ⊆ U , whence the Roelcke uniformity generates a topology as fine as
the topology on G.
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Note also that if G is first countable, then each of the above uniformities have
countable fundamental systems and thus are induced by écarts dts,dl ,dr and dR .
It follows that each of these induce the topology on G and hence in fact must be
metrics on G. Moreover, since the sets El

W are invariant under multiplication on
the left, the uniformity E l has a countable fundamental system of left-invariant sets,
implying that the metric dl can be made left-invariant. Similarly, dr can be made
right-invariant and, in fact, one can set dr(g,h)= dl(g−1,h−1). Moreover, since E ts =
E l ∨Er, one sees that dl +dr is a compatible metric for the uniformity E ts and thus
one can choose dts = dl +dr.

A topological group is said to be Raikov complete if it is complete with respect
to the two-sided uniformity and Weil complete if complete with respect to the left
uniformity. This is equivalent to the completeness of the metrics dts and dl respec-
tively. Polish groups are always Raikov complete. On the other hand, Weil complete
Polish groups are by the above exactly those that admit a compatible, complete, left-
invariant metric, something that fails in general.

A function ϕ : X → R defined on a uniform space (X ,E ) is uniformly continuous if
for any ε> 0 there is some V ∈ E such that

(x, y) ∈V ⇒|ϕ(x)−ϕ(y)| < ε.
The following lemma is well-known (see, e.g., Theorem 1.14 [13] and Theorem 2.4

[1]), but we include the simple proof for completeness.

Lemma 1.9. Let (X ,E ) be a uniform space. Then any uniformly continuous function
ϕ : X → R is bounded if and only if for any V ∈ E there is a finite set F ⊆ X and an n
such that X =V n[F].

Proof. Suppose first that for any V ∈ E there is a finite set such that X = V n[F]
and that ϕ : X → R is uniformly continuous. Fix V ∈ E such that |ϕ(x)−ϕ(y)| < 1
whenever (x, y) ∈ V and pick a corresponding finite set F ⊆ X . Then for any z ∈ X
there are y0, . . . , yn such that (yi, yi+1) ∈V and y0 ∈ F, yn = z, whence

|ϕ(y0)−ϕ(z)| = |ϕ(y0)−ϕ(yn)|
É |ϕ(y0)−ϕ(y1)|+ |ϕ(y1)−ϕ(y2)|+ . . .+|ϕ(yn−1)−ϕ(yn)|
< n.

Since F is finite, it follows that ϕ is bounded.
Suppose conversely that V ∈ E is a symmetric set such that for all n Ê 1 and finite

F ⊆ X , X 6= V n[F]. Assume first that there is some x ∈ X such that V n[x] ( V n+1[x]
for all n Ê 1 and extend (V 3n)nÊ1 to a bi-infinite sequence (Un)n∈Z of symmetric sets
in E such that U3

n ⊆Un+1 for all n ∈Z. Defining δ,d : X × X →RÊ0 by

δ(x, y)= inf {2n ∣∣ (x, y) ∈Un}

and

d(x, y)= inf
{ n∑

i=1
δ(xi−1, xi)

∣∣ x0 = x, xn = y
}
,

as in the Birkhoff-Kakutani theorem, we get that 1
2δÉ d É δ. Moreover, ϕ(y)= d(x, y)

defines a uniformly continuous function on X . To see that ϕ is unbounded, for any n
it suffices to pick some y ∉ V 3n[x] =Un[x], i.e., (x, y) ∉Un and thus ϕ(y) Ê 1

2δ(x, y) >
2n.

Suppose, on the other hand, that for any x ∈ X there is some nx such that V nx [x]=
V nx+1[x]. Then, by the symmetry of V , for any x, y either V nx [x]=V ny [y] or V nx [x]∩



8 CHRISTIAN ROSENDAL

V ny [y] = ;. Picking inductively x1, x2, . . . such that xk+1 ∉ V nx1 [x1]∪ . . .∪V nxk [xk],
the V nxk [xk] are all disjoint and we can therefore let ϕ be constantly equal to k on
V nxk [xk] and 0 on X \

⋃
kÊ1 V nxk [xk]. Then ϕ is unbounded but uniformly continuous.

�

1.2. Constructions of linear and affine actions on Banach spaces. Fix a non-
empty set X and let c00(X ) denote the vector space of finitely supported functions
ξ : X →R. The subspace M(X )⊆ c00(X ) consists of all m ∈ c00(X ) for which∑

x∈X
m(x)= 0.

Alternatively, M(X ) is the hyperplane in c00(X ) given as the kernel of the functional
m 7→ ∑

x∈X m(x). The elements of M(X ) are called molecules and basic among these
are the atoms, i.e., the molecules of the form

mx,y = δx −δy,

where x, y ∈ X and δx is the Dirac measure at x. As can easily be seen by induction
on the cardinality of its support, any molecule m can be written as a finite linear
combination of atoms, i.e.,

m =
n∑

i=1
aimxi ,yi ,

for some xi, yi ∈ X and ai ∈R.
Also, if G is a group acting on X , one obtains an action of G on M(X ) by linear

automorphisms, i.e., a linear representation π : G →GL(M(X )), by setting

π(g)m = m(g−1 · ),
whence

π(g)
( n∑

i=1
aimxi ,yi

)= n∑
i=1

aimgxi ,gyi

for any molecule m =∑n
i=1 aimxi ,yi ∈M(X ) and g ∈G.

Suppose now Z is an R-vector space and consider the group Aff(Z) of affine auto-
morphisms of Z. This splits as a semidirect product

Aff(Z)=GL(Z)nZ,

that is, Aff(Z) is isomorphic to the Cartesian product GL(Z)× Z with the group
multiplication

(T, x)∗ (S, y)= (TS, x+T y).

Equivalently, the action of (T, x) on Z is given by (T, x)(z) = Tz + x. Therefore, if
ρ : G →Aff(Z) is a homomorphism from a group G, it decomposes as ρ =π×b, where
π : G →GL(Z) is a homomorphism and b : G → Z satisfies the cocycle relation

b(gh)= b(g)+π(g)
(
b(h)

)
.

In this case, we say that b is a cocycle associated to π and note that the affine action
of G on Z corresponding to ρ has a fixed point on Z if and only if b is a coboundary,
i.e., if there is some x ∈ Z such that b(g)= x−π(g)x.

Returning to our space of molecules, suppose G acts on the set X and let π : G →
GL(M(X )) denote the linear representation of G given by π(g)m = m(g−1 · ). Now, for
any point e ∈ X , we let φe : X →M(X ) be the injection defined by

φe(x)= mx,e
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and construct a cocycle be : G →M(X ) associated to π by setting

be(g)= mge,e.

To verify the cocycle relation, note that for g,h ∈G

be(gh)= mghe,e = mge,e +mghe,ge = be(g)+π(g)
(
be(h)

)
.

We let ρe : G →Aff(M(X )) denote the corresponding affine representation ρe =π×be
of G on M(X ).

With these choices, it is easy to check that for any g ∈ G the following diagram
commutes.

X
g−−−−−→ X

φe

y yφe

M(X ) −−−−−→
ρe(g)

M(X )

Indeed, for any x ∈ X ,(
ρe(g)◦φe

)
(x)= ρe(g)(mx,e)=π(g)(mx,e)+be(g)= mgx,ge +mge,e = mgx,e =

(
φe ◦ g

)
(x).

Now, if ψ is a non-negative kernel on X , that is, a function ψ : X × X → RÊ0, one
can define a pseudonorm on M(X ), by the formula

‖m‖ψ = inf
( n∑

i=1
|ai|ψ(xi, yi)

∣∣∣ m =
n∑

i=1
aimxi ,yi

)
.

Thus, if ψ is G-invariant, one sees that π : G →GL(M(X )) corresponds to an action
by linear isometries on (M(X ),‖·‖ψ) and so the action extends to an isometric action
on the completion of M(X ) with respect to ‖·‖ψ. On the other hand, if ψ is no longer
G-invariant, but instead satisfies

ψ(gx, gy)É Kgψ(x, y)

for all x, y ∈ X and some constant Kg depending only on g ∈ G, then every operator
π(g) is bounded, ‖π(g)‖ψ É Kg, and so again the action of G extends to an action by
bounded automorphisms on the completion of (M(X ),‖·‖ψ).

A special case of this construction is when ψ is a metric d on X , in which case
we denote the resulting Arens-Eells norm by ‖·‖Æ instead of ‖·‖ψ. An easy exercise
using the triangle inequality shows that in the computation of the norm by

‖m‖Æ = inf
( n∑

i=1
|ai|d(xi, yi)

∣∣ m =
n∑

i=1
aimxi ,yi

)
,

the infimum is attained at some presentation m = ∑n
i=1 aimxi ,yi where xi and yi all

belong to the support of m. Moreover, as is well-known (see, e.g., [30]), the norm is
equivalently computed by

‖m‖Æ = sup
( ∑

x∈X
m(x) f (x)

∣∣ f : X →R is 1-Lipschitz
)
,

and so, in particular, ‖mx,y‖Æ = d(x, y) for any x, y ∈ X .
We denote the completion of M(X ) with respect to ‖·‖Æ by Æ(X ), which we call

the Arens-Eells space of (X ,d). It is not difficult to verify that the set of molecules
that are rational linear combinations of atoms with support in a dense subset of X is
dense in Æ(X ) and thus, provided X is separable, Æ(X ) is a separable Banach space.
A fuller account of the Arens-Eells space can be found in the book by N. Weaver [30].
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Now, recall that by the Mazur–Ulam Theorem, any surjective isometry between
two Banach spaces is affine and hence, in particular, the group of all isometries of
a Banach space Z coincides with the group of all affine isometries of Z. To avoid
confusion, we shall denote the latter by IsomAff(Z) and let IsomLin(Z) be the sub-
group consisting of all linear isometries of Z. By the preceding discussion, we have
IsomAff(Z)= IsomLin(Z)nZ.

1.3. Topologies on transformation groups. Recall that if X is a Banach space
and B(X ) the algebra of bounded linear operators on X , the strong operator topology
(SOT) on B(X ) is just the topology of pointwise convergence on X , that is, if Ti,T ∈
B(X ), we have

Ti −→
SOT

T ⇐⇒ ‖Tix−Tx‖→ 0 for all x ∈ X .

In general, the operation of composition of operators is not strongly (i.e., SOT) con-
tinuous, but if one restricts it to a norm bounded subset of B(X ) it will be.

Similarly, if we restrict to a norm bounded subset of GL(X )⊆B(X ), then inversion
T 7→ T−1 is also strongly continuous and so, in particular, IsomLin(X ) ⊆ GL(X ) is a
topological group with respect to the strong operator topology. In fact, provided X is
separable, IsomLin(X ) is a Polish group in the strong operator topology.

Recall that an action G æ X of a topological group G on a topological space X is
continuous if it is jointly continuous as a map from G×X to X . Now, as can easily be
checked by hand, if G acts by isometries on a metric space X , then joint continuity of
G×X → X is equivalent to the map g ∈G 7→ gx ∈ X being continuous for every x ∈ X .

Thus, an action of a topological group G by linear isometries on a Banach space
X is continuous if and only if the corresponding representation π : G → IsomLin(X )
is strongly continuous, i.e., if it is continuous with respect to the strong operator
topology on IsomLin(X ).

Since GL(X ) is not in general a topological group in the strong operator topol-
ogy, one has to be a bit more careful when dealing with not necessarily isometric
representations.

Assume first that π : G →GL(X ) is a representation of a Polish group by bounded
automorphisms of a Banach space X such that the corresponding action G æ X is
continuous. We claim that ‖π(g)‖ is bounded in a neighbourhood U of the identity
1 in G. For if not, we could find gn → 1 such that ‖π(gn)‖ > n2 and so for some
xn ∈ X , ‖xn‖ = 1, we have ‖π(gn)xn‖ > n2. But then zn = xn

n → 0, while ‖π(gn)zn‖ > n,
contracting that π(gn)zn →π(1)0= 0 by continuity of the action. Moreover, π is easily
seen to be strongly continuous.

Conversely, assume that π : G → GL(X ) is a strongly continuous representation
such that ‖π(g)‖ is bounded by a constant K in some neighbourhood U 3 1. Then, by
strong continuity of π, if ε> 0, x ∈ X and g ∈G are given, we can find a neighbourhood
V 3 1 such that ‖π(vg)x−π(g)x‖ < ε/2 for v ∈ V . It follows that if ‖y− x‖ < ε

2K‖π(g)‖
and v ∈V ∩U , then

‖π(vg)y−π(g)x‖ É ‖π(vg)y−π(vg)x‖+‖π(vg)x−π(g)x‖
É ‖π(v)‖‖π(g)‖‖y− x‖+ε/2
É ε,

showing that the action is continuous.
Therefore, a representation π : G → GL(X ) corresponds to a continuous action

G æ X if and only if (i) π is strongly continuous and (ii) ‖π(g)‖ is bounded in a



GLOBAL AND LOCAL BOUNDEDNESS OF POLISH GROUPS 11

neighbourhood of 1 ∈ G. For simplicity, we shall simply designate this by continuity
of the representation π.

Similarly, a representation ρ : G →Aff(X ) by continuous affine transformations of
X corresponds to a continuous action of G on X if and only if both the corresponding
linear representation π : G →GL(X ) and the cocycle b : G → X are continuous.

1.4. Property (OB). Our first boundedness property is among the weakest of those
studied. It originated in [21] as a topological analogue of a purely algebraic property
initially investigated by G. M. Bergman [9].

Definition 1.10. A topological group G is said to have property (OB) if whenever G
acts continuously by isometries on a metric space, every orbit is bounded.

Since continuity of an isometric action of G is equivalent to continuity of the maps
g 7→ gx for all x ∈ X , property (OB) for G can be reformulated as follows: Whenever
G acts by isometries on a metric space (X ,d), such that for every x ∈ X the map
g 7→ gx is continuous, every orbit is bounded. Note also that, for an isometric action,
every orbit is bounded if and only if some orbit is bounded. Moreover, if G is a
separable topological group acting continuously on a metric space, then every orbit
is separable. So, for a separable topological group G, property (OB) can be detected
by its continuous isometric actions on separable metric spaces.

We recall some of the equivalent characterisations of property (OB) for Polish
groups, a few of which were shown in [21].

Theorem 1.11. Let G be a Polish group. Then the following conditions are equiva-
lent.

(1) G has property (OB),
(2) whenever G acts continuously by affine isometries on a separable Banach

space, every orbit is bounded,
(3) any continuous linear representation π : G → GL(X ) on a separable Banach

space is bounded, i.e., supg∈G‖π(g)‖ <∞,
(4) whenever W0 ⊆ W1 ⊆ W2 ⊆ . . . ⊆ G is an exhaustive sequence of open subsets,

then G =Wk
n for some n,k Ê 1,

(5) for any open symmetric V 6= ; there is a finite set F ⊆G and some k Ê 1 such
that G = (FV )k,

(6) (i) G is not the union of a chain of proper open subgroups, and
(ii) if V is a symmetric open generating set for G, then G =V k for some k Ê 1.

(7) any compatible left-invariant metric on G is bounded,
(8) any continuous left-invariant écart on G is bounded,
(9) any continuous length function ` : G →R+, i.e., satisfying `(1)= 0 and `(xy)É

`(x)+`(y), is bounded.

Proof. All but items (2), (3), (8) and (9) were shown to be equivalent to (OB) in [21].
Now, (8) and (9) easily follow from (4), while (8) implies (7), and left-invariant écarts
d and length-functions ` are in duality via `(g)= d(g,1) and d(g,h)= `(h−1 g), which
thus shows (8)⇔(9). Also, (2) is immediate from (1). And if π : G → GL(X ) is a
continuous linear representation, then ‖π(g)‖ is bounded in a neighbourhood of 1.
So, if (5) holds, then π is bounded, showing (5)⇒(3).

(2)⇒(1): We prove that if G acts continuously and isometrically on a metric space
(X ,d) with unbounded orbits, then G acts continuously and by affine isometries on
the Arens-Eells space Æ(X ) space such that every orbit is unbounded. Since, without
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loss of generality, (X ,d) can be taken separable, this will show the contrapositive of
(2)⇒(1).

As in Section 1.2, let π denote the isometric linear representation of G on Æ(X )
induced by the action π(g)m = m(g−1 · ) on M(X ) and, for any point e ∈ X , construct
a cocycle be : G →Æ(X ) associated to π by setting

be(g)= mge,e.

Define also an isometric embedding φe : X →Æ(X ) by

φe(x)= mx,e.

To verify that φe indeed is an isometry, note that

‖φe(x)−φe(y)‖ = ‖(δx −δe)− (δy −δe)‖ = ‖δx −δy‖ = d(x, y).

As noted in Section 1.2, φe conjugates the G-action on X with ρe and thus, as G has
an unbounded orbit on X , it follows that G has an unbounded orbit on Æ(X ) via the
affine isometric action ρe.

(3)⇒(7): Again we show that contrapositive. So suppose d is an unbounded com-
patible left-invariant metric on G and let σ : G → [1,∞ [ be the function defined by

σ(g)= expd(g,1G)

and note that σ(1G) = 1, σ(g−1) = σ(g) and σ(gh) É σ(g)σ(h). Also, for g ∈ G, let
π(g) ∈GL(M(G)) be the invertible linear operator defined by π(g)m = m(g−1 · ).

Let now ψ : G2 →RÊ0 be the non-negative kernel on G defined by

ψ(g,h)=σ(g)σ(h)d(g,h)

and consider the corresponding pseudonorm

‖m‖ψ = inf
( n∑

i=1
|ai|ψ(pi, qi)

∣∣ m =
n∑

i=1
aimpi ,qi

)
.

Note that for any g,h, f ∈G, one has

ψ(gh, gf )=σ(gh)σ(gf )d(gh, gf )Éσ(g)2σ(h)σ( f )d(h, f )=σ(g)2ψ(h, f ),

and so ‖π(g)‖ψ Éσ(g)2.

Claim 1.12. Suppose m ∈M(G) is a molecule, g ∈G and α> 0. Then, if m(h) = 0 for
all h 6= g with d(g,h)<α, we have

‖m‖ψ Ê |m(g)|αexp
(
d(g,1)−α)

.

To see this, let m = ∑n
i=1 aimpi ,qi be any presentation of m and let A be the set

of i ∈ [1,n] such that either d(g, pi) < α or d(g, qi) < α. Set also m1 = ∑
i∈A aimpi ,qi

and m2 =∑
i∉A aimpi ,qi , whence m2(h)= 0 whenever d(g,h)<α. Since m = m1+m2,

it follows that m1(h) = m(h) = 0 for any h 6= g with d(g,h) < α. Moreover, by the
definition of σ, we see that σ(h) > exp

(
d(g,1)−α)

for any h ∈G with d(g,h) <α and
so for any i ∈ A,

exp
(
d(g,1)−α)<σ(pi)σ(qi).

Now, by the calculus for the Arens-Eells space, there is a presentation m1 =∑k
i=1 bimr i ,si , with r i, si ∈ supp(m1) and r i 6= si, minimising the estimate for the

Arens-Eells norm of m1, in particular, such that
k∑

i=1
|bi|d(r i, si)É

∑
i∈A

|ai|d(pi, qi).
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Letting C be the set of i ∈ [1,k] such that either r i = g or si = g, we see that

|m(g)| = |m1(g)| = ∣∣ ∑
i∈C

bimr i ,si (g)
∣∣É ∑

i∈C
|bi|.

Moreover, for i ∈ C, d(r i, si)Êα and thus

|m(g)|αÉ ∑
i∈C

|bi|d(r i, si)É
∑
i∈A

|ai|d(pi, qi).

It thus follows that

|m(g)|αexp
(
d(g,1)−α)< ∑

i∈A
|ai|σ(pi)σ(qi)d(pi, qi)É

n∑
i=1

|ai|σ(pi)σ(qi)d(pi, qi).

Since the presentation m =∑n
i=1 aimpi ,qi was arbitrary, this shows that

|m(g)|αexp
(
d(g,1)−α)É ‖m‖ψ,

which proves the claim.
Note that then if m is any non-zero molecule, we can choose g 6= 1 in its support

and let 0 < α < 1
2 d(g,1) be such that m(h) = 0 for any h 6= g with d(g,h) < α. Then

‖m‖ψ Ê |m(g)|αexp
(
d(g,1)−α)> 0, which shows that ‖·‖ψ is a norm on M(G).

Also, if f ,h ∈ G with d( f ,h) > 1, then ‖m f ,h‖ψ Ê exp
(
d( f ,1)−1

)
. Therefore, if we

let gn ∈G be such that d(1, g−1
n ) −→

n→∞∞ and pick f ,h ∈G with d( f ,h)> 1, then

‖π(gn)m f ,h‖ψ = ‖mgn f ,gnh‖ψ Ê exp
(
d(gn f ,1)−1

)= exp
(
d( f , g−1

n )−1
) −→

n→∞∞,

showing that also ‖π(gn)‖ψ −→
n→∞∞.

Also, as is easy to verify, if D is a countable dense subset of G, the set of molecules
that are rational linear combinations of atoms mg,h with g,h ∈ D is a countable dense

subset of (M(G),‖·‖ψ). So the completion Z =M(G)
‖·‖ψ is a separable Banach space

and π : G → GL(M(G),‖·‖ψ) extends to a continuous action of G by bounded linear
automorphisms on Z with ‖π(g)‖ψ unbounded. �

1.5. Bounded uniformities. For each of the uniformities considered in Section 1.1,
one may consider the class of groups for which they are bounded in the sense of every
real valued uniformly continuous function being bounded, cf. Lemma 1.9. Now, as
can easily be verified, a topological group G is bounded in the left uniformity if and
only if it is bounded in the right uniformity. The first systematic study of such G
appeared in the work of Hejcman [13] (see also [1]).

Definition 1.13. [13] A topological group G is bounded if for any open V 3 1 there is
a finite set F ⊆G and some k Ê 1 such that G = FV k.

Recall that a function ϕ : G → R is left-uniformly continuous if for any ε> 0 there
is an open V 3 1 such that

∀x, y ∈G
(
x−1 y ∈V →|ϕ(x)−ϕ(y)| < ε).

Similarly, ϕ is right-uniformly continuous if the same condition holds with xy−1 ∈ V
in place of x−1 y ∈V .

Note that, if ` : G → R+ is a continuous length function on G, then for any ε > 0
there is a symmetric open neighbourhood V 3 1 so that `(v) < ε for all v ∈ V . There-
fore, if x, y ∈G satisfy x−1 y ∈V , then

`(y)= `(xx−1 y)É `(x)+`(x−1 y)< `(x)+ε.
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As V is symmetric, also y−1x ∈ V , whence `(x) < `(y)+ ε, i.e., |`(x)−`(y)| < ε. This
shows that any continuous length function on G is left-uniformly continuous and a
symmetric argument shows that it is also right-uniformly continuous.

We then have the following reformulation of boundedness.

Proposition 1.14. The following are equivalent for a Polish group G.
(1) G is bounded,
(2) any left-uniformly continuous ϕ : G →R is bounded,
(3) G has property (OB) and any open subgroup has finite index.

Proof. (1)⇒(2): This implication is already contained in Lemma 1.9.
(2)⇒(3): If H ÉG is an open subgroup with infinite index, let x1, x2, . . . be left coset

representatives for H and define ϕ : G →R by ϕ(y)= n for all y ∈ xnH. Then ϕ is left-
uniformly continuous and unbounded. Also, if G fails property (OB), it admits an
unbounded continuous length function ` : G → R+. But then ` is also left-uniformly
continuous.

(3)⇒(1): Suppose that G has property (OB) and that any open subgroup has finite
index. Then whenever V 3 1 is open, the group generated 〈V 〉 =⋃

nÊ1 V n is open and
must have finite index in G. Now, by Proposition 4.3 in [21], also 〈V 〉 has property
(OB) and, in particular, there is some k Ê 1 such that 〈V 〉 = V k. Letting F ⊆ G be a
finite set of left coset representatives for 〈V 〉 in G, we have G = FV k, showing that
G is bounded. �

A function ϕ : G →R is uniformly continuous if for any ε> 0 there is an open V 3 1
such that

∀x, y ∈G (y ∈V xV →|ϕ(x)−ϕ(y)| < ε).
Equivalently, ϕ is uniformly continuous if it simultaneously left and right uniformly
continuous, i.e., uniformly continuous with respect to the Roelcke uniformity.

Definition 1.15. A topological group G is Roelcke bounded if for any open V 3 1
there is a finite set F ⊆G and some k Ê 1 such that G =V kFV k.

As for boundedness, we have the following reformulations of Roelcke bounded-
ness.

Proposition 1.16. The following are equivalent for a Polish group G.
(1) G is Roelcke bounded,
(2) any uniformly continuous ϕ : G →R is bounded,
(3) (a) for any open subgroup H, the double coset space H\G/H is finite, and

(b) any open subgroup has property (OB).

Proof. Again the implication from (1) to (2) follows from Lemma 1.9.
(2)⇒(3): If H ÉG is an open subgroup, then any ϕ : G →R that is constant on each

double coset HxH will be uniformly continuous. So, if the double coset space H\G/H
is infinite, then G supports an unbounded uniformly continuous function.

Also, if H É G is an open subgroup without property (OB), then there is an un-
bounded continuous length function ` : H → R+. Setting `(x) = 0 for all x ∈ G \ H,
` : G →R is easily seen to be uniformly continuous, but unbounded.

(3)⇒(1): Assume that (3) holds and that V 3 1 is an open set. Then the open
subgroup 〈V 〉 has property (OB) and hence for some k Ê 1, 〈V 〉 = V k. Moreover, the
double coset space 〈V〉\G/〈V〉 is finite and G = 〈V 〉F〈V 〉 =V kFV k for some finite set
F ⊆G. �
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Note that if G is a Polish group all of whose open subgroups have finite index, e.g.,
if G is connected, then the three properties of boundedness, Roelcke boundedness
and property (OB) are equivalent.

By Proposition 4.3 of [21], if G is a Polish group with property (OB) and H ÉG is
an open subgroup of finite index, then H also has property (OB). However, it remains
an open problem whether property (OB) actually passes to all open subgroups of
(necessarily) countably index. Note that if this were to be the case, condition (3) in
Proposition 1.16 above would simplify.

Problem 1.17. Suppose G is a Polish group with property (OB) and H É G is an
open subgroup. Does H have property (OB)?

Since a topological group is easily seen to be bounded for the left uniformity if and
only if it is bounded for the right uniformity, the only remaining case is the two-sided
uniformity. Unfortunately, other than Lemma 1.9, we do not have any informative
reformulation of this property for Polish groups. The following definition spells out
the boundedness of the two-sided uniformity in concrete terms.

Definition 1.18. A topological group G is E ts-bounded if it satisfies the following
condition: For any symmetric open V 3 1 there are a finite set F ⊆G and k Ê 1 so that
for any g ∈G there are x0 ∈ F, x1, . . . , xk−1 ∈G and xk = g so that

xi+1 ∈ xiV ∩V xi, i = 0, . . . ,k−1.

Example 1.19. Consider the group G = Homeo+([0,1]) of orientation preserving
homeomorphisms of the unit interval with the topology of uniform convergence. As
noticed by S. Dierolf and W. Roelcke (Example 9.23 [20], see also [27] for an explicit
description of the Roelcke compactification), Homeo+([0,1]) is Roelcke precompact
and we shall now show that it is also E ts-bounded.

The α-truncation of g; G g = graph of g.

G g

G
(
gα

)

y= x−α

y= x+α

�
�
�

�
�

�
��

For all α ∈ [0,1] and g ∈Homeo+([0,1]), define a homeomorhism gα ∈Homeo+([0,1])
by

gα(x)=max
{
min{g(x), x+α}, x−α }
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and note that, for 0ÉαÉβÉ 1, we have (gα)β = (gβ)α = gα. Also g0 = Id and g1 = g.
We claim that

sup
x∈[0,1]

|gα(x)− gβ(x)| É |α−β|

and
sup

x∈[0,1]
|g−1
α (x)− g−1

β (x)| É |α−β|.

To see this suppose that 0 É α É β É 1 and fix x ∈ [0,1]. Then, if gα(x) 6= gβ(x), we
have either gα(x) = x−α > gβ(x) Ê x−β or gα(x) = x−α < gβ(x) É x−β, whereby, in
any case, |gα(x)− gβ(x)| É |α−β|.

Similarly, suppose that g−1
α (x)< g−1

β
(x), whence, as gβ is strictly increasing, also

gβ(g−1
α (x))< gβ(g−1

β (x))= x = gα(g−1
α (x)).

As gβ and gα differ at the point y = g−1
α (x), it follows as before that gα(g−1

α (x)) =
g−1
α (x)−α and hence that

g−1
α (x)−β< g−1

β (x)−βÉ gβ(g−1
β (x))= gα(g−1

α (x))= g−1
α (x)−α,

i.e., |g−1
α (x)− g−1

β
(x)| É |β−α|. Analogously for g−1

α (x)> g−1
β

(x).
Now, if V is any neighbourhood of Id in Homeo+([0,1]), there is some n Ê 1 so that

{h ∈Homeo+([0,1])
∣∣ sup

x∈[0,1]
|h(x)− x| É 1/n}⊆V .

We then see that g k+1
n

∈ (
g k

n
·V )∩ (

V · g k
n

)
for all k = 0, . . . ,n−1. This shows that

Homeo+([0,1]) is E ts-bounded.

1.6. Roelcke precompactness. The notion of Roelcke precompactness originates
in the work of Dierolf and Roelcke [20] on uniformities on groups and has recently
been developed primarily by Uspenskiı̆ [26, 27, 28, 29] and, in the work of Tsankov
[25], found some very interesting applications in the classification of unitary repre-
sentations of non-Archimedean Polish groups. Tsankov was also able to essentially
characterise ℵ0-categoricity of a countable model theoretical structure in terms of
Roelcke precompactness of its automorphism group, thus refining the classical the-
orem of Engeler, Ryll-Nardzewski and Svenonius (see [14]). We present a related
characterisation in Proposition 1.22 below.

Definition 1.20. A topological group G is Roelcke precompact if and only if for any
open V 3 1 there is a finite set F ⊆G such that G =V FV .

Note that, by Theorem 1.1, precompactness with respect to either of the three
other uniformities on a Polish group is simply equivalent to compactness. So Roelcke
precompactness is the only interesting notion.

Suppose G is a group acting by isometries on a metric space (X ,d). For any n Ê 1,
we let G act diagonally on X n, i.e.,

g · (x1, . . . , xn)= (gx1, . . . , gxn),

and equip X n with the supremum metric d∞ defined from d by

d∞
(
(x1, . . . , xn), (y1, . . . , yn)

)= sup
1ÉiÉn

d(xi, yi).
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Definition 1.21. An isometric action α : G æ X by a group G on a metric space (X ,d)
is said to be approximately oligomorphic if for any n Ê 1 and ε> 0 there is a finite set
A ⊆ X n such that

G · A = {g · x ∣∣ g ∈G & x ∈ A}

is ε-dense in (X n,d∞).

Proposition 1.22. The following are equivalent for a Polish group G.
(1) G is Roelcke precompact,
(2) for every n Ê 1 and open V 3 1 there is a finite set F ⊆G such that

G× . . .×G︸ ︷︷ ︸
n times

=V · (FV × . . .×FV︸ ︷︷ ︸
n times

)

(3) for any continuous isometric action α : G æ X on a metric space (X ,d) induc-
ing a dense orbit, any open U 3 1, ε> 0 and n Ê 1, there is a finite set A ⊆ X n

such that U · A is ε-dense in (X n,d∞),
(4) G is topologically isomorphic to a closed subgroup H É Isom(X ,d), where

(X ,d) is a separable complete metric space, Isom(X ,d) is equipped with the
topology of pointwise convergence and the action of H on X is approximately
oligomorphic and induces a dense orbit.

The implication from (1) to (3) was essentially noted in [25].

Proof. (1)⇒(2): The proof is by induction on n Ê 1, the case n = 1 corresponding
directly to Roelcke precompactness.

Now suppose the result holds for n and fix V 3 1 symmetric open. Choose a sym-
metric open set W 3 1 such that W2 ⊆ V and find by the induction hypothesis some
finite set D ⊆G such that

G× . . .×G︸ ︷︷ ︸
n times

=W · (DW × . . .×DW︸ ︷︷ ︸
n times

).

Set now U = V ∩⋂
d∈D dWd−1 and pick a finite set E ⊆ G such that G = UEU . We

claim that for F = D∪E, we have

G× . . .×G︸ ︷︷ ︸
n+1 times

=V · (FV × . . .×FV︸ ︷︷ ︸
n+1 times

).

To see this, suppose x1, . . . , xn, y ∈ G are given. By choice of D, there are w ∈ W and
d1, . . . ,dn ∈ D such that xi ∈ wdiW for all i = 1, . . . ,n. Now find some u ∈U such that
w−1 y ∈ uEU , whence y ∈ wuEV . Since u−1 ∈ U ⊆ dWd−1 for every d ∈ D, we have
d−1

i u−1di ∈W for every i and so

xi ∈ wdiW = wdi ·d−1
i udi ·d−1

i u−1di ·W ⊆ wudiW2 ⊆ wudiV .

Thus,

(x1, . . . , xn, y) ∈ wu(DV × . . .×DV︸ ︷︷ ︸
n times

×EV )⊆V · (DV × . . .×DV︸ ︷︷ ︸
n times

×EV ),

which settles the claim and thus the induction step.
(2)⇒(3): Suppose U 3 1 is open, n Ê 1, ε> 0 and fix any x ∈ X . Let also V =U∩{g ∈

G
∣∣ d(gx, x)< ε/2}. Pick a finite set F ⊆G such that

G× . . .×G︸ ︷︷ ︸
n times

=V · (FV × . . .×FV︸ ︷︷ ︸
n times

)
.
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and set A = {( f1x, . . . , fnx)
∣∣ f i ∈ F} ⊆ X n. Then if (y1, . . . , yn) ∈ X n, we can find g i ∈ G

such that d(yi, g ix) < ε/2 for all i. Also, there are w,vi ∈ V such that g i = wf ivi,
whence

d(yi,wf ix)É d(yi, g ix)+d(g ix,wf ix)

É ε/2+d(wf ivix,wf ix)

= ε/2+d(vix, x)

< ε/2+ε/2.

In particular, V · A and hence also U · A is ε-dense in X n.
(3)⇒(4): Let d be a compatible left-invariant metric on G and let X be the com-

pletion of G with respect to d. Since the left-shift action of G on itself is transitive,
this action extends to a continuous action by isometries on (X ,d) with a dense or-
bit. Moreover, we can see G as a closed subgroup of Isom(X ,d), when the latter is
equipped with the pointwise convergence topology. By (3), the action of G on X is
approximately oligomorphic.

The implication (4)⇒(1) is implicit in the proof of Theorem 5.2 in [21]. �

We now turn to the special case of homeomorphism groups of compact metric
spaces and shall return to the microscopic properties of Roelcke precompact Polish
groups later in Section 3.

1.7. The Roelcke uniformity on homeomorphism groups. Fix a compact metris-
able space M with a compatible metric d and let Homeo(M) denote the homeomor-
phism group of M equipped with the topology of uniform convergence. Define a
compatible metric ∂ on M×M by

∂
(
(x, y), (z,u)

)=max
{
d(x, z),d(y,u)

}
and let ∂H denote the corresponding Hausdorff metric on the hyperspace K (M×M)
of non-empty compact subsets of M×M, i.e.,

∂H(K ,L)=min
{
sup
p∈K

∂(p,L),sup
p∈L

∂(p,K)
}
.

We can then define the following metrics on Homeo(M),

d∞(g,h)= sup
x∈M

d(g(x),h(x)),

dH(g,h)= ∂H(G g,G h),

and
ρ(g,h)= inf

(
sup
p∈G g

∂(p,θ(p))
∣∣ θ : G g →G h is a homeomorphism

)
where G g denotes the graph of the homeomorphism g. Note that if θ : G g →G h is a
homeomorphism and proj1 : M×M → M denotes the projection onto the first coordi-
nate, then σ(x) = proj1[θ(x, g(x))] defines a homeomorphism of M so that θ(x, g(x)) =
(σ(x),hσ(x)). Conversely, for any σ ∈Homeo(M), the formula θ(x, g(x))= (σ(x),hσ(x))
defines a homeomorphism of G g with G h. It follows that ρ can equivalently be ex-
pressed by

ρ(g,h)= inf
(
max{d∞(σ,Id),d∞(g,hσ)}

∣∣σ ∈Homeo(M)
)
.

As is easy verify directly from the definitions, we have

d∞ Ê ρ Ê dH
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and thus the induced uniformities get weaker from left to right.

Lemma 1.23. The three metrics d∞, ρ and dH each induce the topology of uniform
convergence on Homeo(M).

Proof. This is clear for d∞, so we need only show that d∞ and dH induce the same
topology, whence this also coincides with that of ρ. Thus, suppose g ∈Homeo(M) and
ε> 0 are given and let δg denote the modulus of uniform continuity of g on M.

Suppose that dH(g,h) < min{ε,δg(ε)} and let x ∈ M be given. Then there is y ∈ M
so that d(x, y)< δg(ε) and d(h(x), g(y))< ε, whereby

d(h(x), g(x))É d(h(x), g(y))+d(g(y), g(x))< ε+ε= 2ε.

Since x ∈ M is arbitrary, we see that d∞(g,h)É 2ε and the lemma follows. �

For ε> 0, we also let

Vε = {g ∈Homeo(M)
∣∣ d∞(g,Id)< ε}

and note that, by the right-invariance of d∞, we have Vε =V−1
ε , whereby the sets

{(g,h) ∈Homeo(M)2
∣∣ h ∈VεgVε}

are symmetric entourages generating the Roelcke uniformity on Homeo(M). Our
first task is to identify a compatible metric for the Roelcke uniformity, which will
also provide us with a better understanding of the various compatible uniformities
on Homeo(M).

Lemma 1.24. For g,h ∈Homeo(M) and ε> 0, we have

h ∈VεgVε ⇐⇒ ρ(g,h)< ε.
It follows that, if G is an open subgroup of Homeo(M), then ρ is a compatible metric
for the Roelcke uniformity on G.

Proof. Suppose first that h ∈ VεgVε and find σ, f ∈ Vε so that h = f gσ−1. Then
d∞(σ,Id)< ε and, as hσ= f g and d∞ is right-invariant, also

d∞(g,hσ)= d∞(g, f g)= d∞(Id, f )< ε.
So ρ(g,h)< ε.

Conversely, suppose that σ ∈Homeo(M) is such that d∞(σ,Id)< ε and d∞(g,hσ)<
ε. Then d∞(hσg−1,Id)= d∞(hσ, g)< ε, whereby h = hσg−1 · g ·σ−1 ∈VεgVε.

For the last comment, just note that if G is open in Homeo(M), then the Roelcke
uniformity on G is simply induced by the Roelcke uniformity on Homeo(M). In par-
ticular, this applies to the group G of orientation preserving homeomorphisms of a
manifold M. �

Example 1.25 (Dehn twists). The following example, which is joint work with Marc
Culler, will show that, if M is a compact manifold of dimension Ê 2 or is the Hilbert
cube [0,1]N, then Homeo(M) is not Roelcke precompact. This is in contrast with the
case of M = [0,1], as shown by V. Uspenskiı̆ [27], and, in the case of M = [0,1]N,
answers a question of Uspenskiı̆ from the same paper.

Let 0< r < R < 2r and let A denote the annulus in the complex plane given by

A = {x ∈C ∣∣ r É |x| É R}.
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For every integer n ∈Z, we define a Dehn twist of order n, i.e., a homeomorphism τn
of C, that is the identity outside of A and that rotates every circle

Cλ = {x ∈C ∣∣ |x| = (1−λ)r+λR},

for λ ∈ [0,1], by an angle of λn ·2π. Thus, C0 and C1 are respectively the inner and
outer boundaries of A that are pointwise fixed by τn. In other words, for λ ∈ [0,1],
we have

τn
(
[(1−λ)r+λR]ei2πt)= [(1−λ)r+λR]ei2π(t+λn).

Lemma 1.26. Fix n,m in Z and let p1 be the continuous path in C given by p1(λ) =
[(1−λ)r+λR]ei0, λ ∈ [0,1]. Suppose that p2 is another continuous path in C so that

d
(
p1(λ), p2(λ)

)< R− r
2

and d
(
τn ◦ p1(λ),τm ◦ p2(λ)

)< R− r
2

for all λ ∈ [0,1]. Then n = m.

Proof. Suppose towards a contradiction that n 6= m and, by symmetry, assume that
n does not lie in the interval between 0 and m. Let also ω(p) denote the winding
number of a path p around the origin 0 ∈C.

We note that since d
(
τn ◦ p1(λ),τm ◦ p2(λ)

) < R−r
2 < r

2 and τn ◦ p1(λ) ∈ A for all
λ ∈ [0,1], the formula pγ = γ(τn ◦ p1)+ (1−γ)(τm ◦ p2) defines a homotopy of τm ◦ p2
to τn ◦ p1 avoiding the disk {x ∈ C ∣∣ |x| < r

2 }. Noting also that pγ(0) and pγ(1) lie in
the sector S = {x ∈ C ∣∣ − π

4 É arg x É π
4 } for all γ ∈ [0,1], it follows that ω(τm ◦ p2) ∈

[ω(τn ◦ p1)− 1
8 ,ω(τn ◦ p1)+ 1

8 ]= [n− 1
8 ,n+ 1

8 ].
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Write now p2(0)=α0ei2πt0 , p2(1)=α1ei2πt1 with αi Ê 0, ti ∈ [− 1
8 , 1

8 ] and let q1(λ)=
α1ei2π[λt0+(1−λ)t1] and q2(λ)= [λα0+(1−λ)α1]ei2πt0 . Then the concatenation p2�q1�q2
is a closed path lying in an open disk D not containing the origin and thus τm ◦ (p2 �
q1 � q2) is a closed path lying in a simply connected region not containing the origin
either. It follows that ω

(
τm ◦ (p2 � q1 � q2)

)= 0, whereby

ω(τm ◦ p2)=ω(τm ◦ q̆1)+ω(τm ◦ q̆2)=ω(q̆1)+ω(τm ◦ q̆2)= t1 − t0 +ω(τm ◦ q̆2),

where q̆i denotes the reversed path of qi. Since necessarily α0 < α1, it is easy to
see that ω(τm ◦ q̆2) lies in the interval from 0 to m. As n does not lie in the interval
between 0 and m, t1−t0 ∈ [− 1

4 , 1
4 ] and ω(τm◦p2) ∈ [n− 1

8 ,n+ 1
8 ], a contradiction follows.

�

Theorem 1.27 (joint with M. Culler). Suppose M is a compact manifold of dimension
`Ê 2 or is the Hilbert cube [0,1]N. Then Homeo(M) is not Roelcke precompact.

Proof. Suppose that M is a compact manifold of dimension ` Ê 2 with compatible
metric d and pick an open subset U ⊆ M homeomorphic to R` via some φ : U → R`.
Note that, if g : R`→R` is a homeomorphism so that g ≡ Id outside a compact subset
K ⊆R`, then the following defines a homeomorphism of M,

ĝ =
{
φ−1 gφ, on U ,
Id, on M \U .

Fix some 0 < r < R < 2r and, for t ∈ [0,1] and n ∈ Z, let τt
n be the Dehn twist of C

supported on the annulus At = {x ∈C ∣∣ tr É |x| É tR}. As is easy to check, the mapping

(x, t) ∈C× [0,1] 7→ τt
n(x) ∈C

is continuous, so {τt
n}t∈[0,1] defines an isotopy between the homeomorphisms τ0

n = Id
and τ1

n, where the latter is simply the Dehn twist τn on the annulus A = {x ∈ C ∣∣ r É
|x| É R}. Let also t : R`−2 → [0,1] be a continuous bump function so that

t(y)=
{

1, for y ∈ BR ,
0, for y ∈R`−2 \ B2R ,

where Bs denotes the closed ball in R`−2 of radius s.
Identifying C with R2, we can define a continuous function gn on R` =C×R`−2 by

letting
gn(x, y)= (

τ
t(y)
n (x), y

)
.

Note that since gn restricts to a permutation of every section C× {y}, gn is a con-
tinuous permutation of R` and, letting DR denote the closed disk in C of radius R,
we see that gn ≡ Id outside the compact set K = DR ×B2R . It follows that gn is a
homeomorphism of R` and also that ĝn ∈Homeo(M) is well-defined.

Let dR`−2 , dR` and dC denote the standard euclidean metrics on R`−2, R` =C×R`−2

and C respectively. Since K is compact, there is ε > 0 so that, if f ∈ Homeo(M)
satisfies d∞( f ,Id)< ε, then f (φ−1(K))⊆U and

(1) sup
x∈K

dR` (x,φ fφ−1(x))< R− r
2

.

For such f , note that, as gn(K) = K and f (φ−1(K)) ⊆ U , the following holds for all
x ∈ K

(2) φ ĝm f ĝ−1
n φ−1(x)=φ ĝm fφ−1 g−1

n (x)= gmφ fφ−1 g−1
n (x).
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Let n,m ∈ Z be given and suppose that ρ( ĝn, ĝm) < ε, as witnessed by some σ ∈
Homeo(M) satisfying d∞(σ,Id) < ε and d∞(Id, ĝmσ ĝ−1

n ) = d∞( ĝn, ĝmσ) < ε. Then,
applying first equation (2) to f = σ and subsequently inequality (1) to f = ĝmσ ĝ−1

n ,
we have

sup
y∈K

dR`
(
gn(y), gmφσφ

−1(y)
)= sup

x∈K
dR`

(
x, gmφσφ

−1 g−1
n (x)

)
= sup

x∈K
dR`

(
x,φ ĝmσ ĝ−1

n φ−1(x)
)

< R− r
2

.

(3)

Let now p1 be the path in A ⊆ C defined in Lemma 1.26 and let q be the path in
K defined by q(λ)= (p1(λ),0R`−2 ). Then, by inequality (1) applied to f =σ, we have

dR`−2
(
0R`−2 ,projR`−2 [φσφ−1q(λ)]

)= dR`−2
(
projR`−2 [q(λ)],projR`−2 [φσφ−1q(λ)]

)
É dR`

(
q(λ),φσφ−1q(λ)

)
< R− r

2
,

whence projR`−2 [φσφ−1q(λ)] ∈ BR and thus also t
(
projR`−2 [φσφ−1q(λ)]

) = 1 for all λ.
It follows that

gmφσφ
−1q(λ)= (

τm
(
projC[φσφ−1q(λ)]

)
,projR`−2 [φσφ−1q(λ)]

)
,

and so, if p2 in C is defined by p2(λ)= projC[φσφ−1q(λ)], we obtain

(4) τm p2(λ)= projC
[
gmφσφ

−1q(λ)
]
.

Finally, by applying inequality (1) to f =σ, we have

(5) dC(p1(λ), p2(λ))É dR`
(
q(λ),φσφ−1q(λ)

)< R− r
2

and, by equality (4) and inequality (3),

(6) dC
(
τn p1(λ),τm p2(λ)

)É dR`
(
gnq(λ), gmφσφ

−1q(λ)
)< R− r

2
.

By inequalities (5) and (6), p1 and p2 satify the hypotheses of Lemma 1.26, whereby
n = m.

It follows that { ĝn}n∈Z is an infinite ε-separated family with respect to the metric
ρ and thus, since the latter metrises the Roelcke uniformity, Homeo(M) fails to be
Roelcke precompact.

One may reproduce the same argument for the Hilbert cube, but, in this case,
it is easier to identify [0,1]2 with the closed disk DR ⊆ C and then define gn ∈
Homeo([0,1]N)=Homeo(DR × [0,1]N) by

gn = τn × Id[0,1]N .

Considering a path q(λ) defined similarly to the one above, one may now show that
the gn form a uniformly separated subset of Homeo([0,1]N) with respect to the Roel-
cke uniformity. �

Problem 1.28. As was shown in [21], both Homeo([0,1]N) and Homeo(S`), ` Ê 1,
have property (OB). Moreover, since Homeo(S`) has a connected open subgroup of
finite index, it is actually bounded. Though, as we have seen, Homeo(S`) is not
Roelcke precompact for `Ê 2, we do not know whether it has property (OBk) for any
k Ê 1 nor whether it is E ts-bounded (cf. Example 1.19).
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1.8. Fixed point properties. We shall now briefly consider the connection between
the aforementioned boundedness properties and fixed point properties for affine ac-
tions on Banach spaces.

Definition 1.29. A Polish group G has property (ACR) if any affine continuous action
of G on a separable reflexive Banach space has a fixed point.

Proposition 1.30. Any Polish group with property (OB) has property (ACR).

Proof. Assume G has property (OB) and that ρ : G → Aff(X ) is a continuous affine
representation on a separable reflexive Banach space X with linear part π : G →
GL(X ) and associated cocycle b : G → X . Since G has property (OB), the linear part
π is bounded, i.e., supg∈G‖π(g)‖ <∞, and we can therefore define a new equivalent
norm ||| · ||| on X by

|||x||| = sup
g∈G

‖π(g)x‖,

i.e., inducing the original topology on X . By construction, ||| · ||| is π(G)-invariant and
thus ρ is an affine isometric representation of G on (X , |||·|||). By property (OB), every
orbit ρ(G)x ⊆ X is bounded and so, e.g., the closed convex hull C = conv(ρ(G)0) of the
ρ(G)-orbit of 0 ∈ X is a bounded closed convex set invariant under the affine action
of G. As X is reflexive, C is weakly compact, and thus G acts by affine isometries
on the weakly compact convex set C with respect to the norm ||| · |||. It follows by the
Ryll-Nardzewski fixed point theorem (Thm 12.22 [10]) that G has a fixed point on
X . �

Recall that a topological group G is said to have property (FH) if every continu-
ous affine isometric action on a Hilbert space has a fixed point, or, equivalently, has
bounded orbits (see [6]). So clearly property (ACR) is stronger than (FH). Similarly,
fixed point properties for affine isometric actions on a Banach space X have been
studied for a variety of other classes of Banach spaces such as Lp and uniformly
convex spaces [2, 8]. It is worth noting that (ACR) characterises the compact groups
within the class of locally compact Polish groups. Namely, N. Brown and E. Guent-
ner [7] have shown that any countable infinite group admit a proper (and thus fixed
point free) affine isometric action on a separable reflexive Banach space and this was
extended by Haagerup and Przybyszewska [12] to all locally compact, non-compact
Polish groups. Also, as will be seen in Theorem 1.47, any non-compact locally com-
pact Polish group G admits a continuous affine (not necessarily isometric) action on
a separable Hilbert space with unbounded orbits.

A word of caution is also in its place with regards to continuous affine actions.
While for an isometric action, either all orbits are bounded or no orbit is bounded,
this is certainly not so for a general affine action on a Banach space. E.g., one can
have a fixed point and still have unbounded orbits.

Example 1.31. There are examples of Polish groups that admit no non-trivial con-
tinuous representations in GL(H ) or even in GL(X ), where X is any separable re-
flexive Banach space. For example, note that the group of increasing homeomor-
phisms of [0,1] with the topology of uniform convergence, G = Homeo+([0,1]), has
property (OB) (one way to see this is to note that the oligomorphic and hence Roelcke
precompact group Aut(Q,<) maps onto a dense subgroup of Homeo+([0,1])). There-
fore, any continuous representation π : G →GL(X ) must be bounded, whence

|||x||| = sup
g∈G

‖π(g)x‖
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is an equivalent G-invariant norm on X . Though the norm may change, X is of
course still reflexive under the new norm and so π can be seen as a strongly contin-
uous linear isometric representation of G on a reflexive Banach space. However, as
shown by M. Megrelishvili [16], any such representation is trivial, and so π(g) = Id
for any g ∈G.

Though we have no example to this effect, the preceding example does seem to
indicate that the class of reflexive spaces is too small to provide a characterisation of
property (OB) and thus the implication (OB)⇒(ACR) should not reverse in general.

1.9. Property (OBk) and SIN groups. We shall now consider a strengthening of
property (OB) along with the class of Polish SIN groups.

Definition 1.32. Let k Ê 1. A Polish group G is said to have property (OBk) if when-
ever

W0 ⊆W1 ⊆W2 ⊆ . . .⊆G

is a exhaustive sequence of open subsets, then G =Wk
n for some n Ê 1.

Again, property (OBk) has the following reformulation

• For any open symmetric V 6= ; there is a finite set F ⊆G such that G = (FV )k.

Recall that a topological group is called a SIN group (for small invariant neigh-
bourhoods) if it has a neighbourhood basis at the identity consisting of conjugacy
invariant sets, or, equivalently, if the left and right uniformities coincide (whereby
they also agree with both the two-sided and the Roelcke uniformities). For Polish
groups, by a result of V. Klee, this is equivalent to having a compatible invariant
metric, which necessarily is complete. Now, if V ⊆G is a conjugacy invariant neigh-
bourhood of 1, then FV = V F for any set F ⊆ G, so we have the following set of
equivalences.

Proposition 1.33. Let G be a Polish SIN group. Then the following conditions are
equivalent.

(1) G is compact,
(2) G is Roelcke precompact,
(3) G has property (OBk) for some k Ê 1.

Also, the following conditions are equivalent.

(1) G is E ts-bounded,
(2) G is bounded,
(3) G is Roelcke bounded,
(4) G has property (OB).

Proof. The only non-trivial fact is that property (OBk) implies compactness. So as-
sume that G is a Polish SIN group with property (OBk) and let a neighbourhood
V 3 1 be given. Since G is SIN, pick a conjugacy invariant neighbourhood W 3 1 so
that Wk ⊆ V . Let also F ⊆ G be a finite set so that G = (WF)k. As W is conjugacy
invariant, one has WF = FW and thus G = (FW)k = FkWk ⊆ FkV . By Theorem 1.1,
this shows that G is compact. �

Example 1.34. Let E be the orbit equivalence relation induced by a measure pre-
serving ergodic automorphism of [0,1] and let [E] denote the corresponding full
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group, i.e., the group of measure-preserving automorphisms T : [0,1] → [0,1] such
that xET(x) for almost all x ∈ [0,1], equipped with the invariant metric

d(T,S)=λ(
{x ∈ [0,1]

∣∣ T(x) 6= S(x)}
)
.

Then [E] is a non-compact, Polish SIN group and, as shown in [17], E has property
(OB). Thus, [E] cannot have property (OBk) for any k Ê 1.

Example 1.35. For another example, consider the separable commutative unital
C∗-algebra

(
C(2N,C),‖·‖∞

)
and its unitary subgroup U

(
C(2N,C)

) = C(2N,T) consist-
ing of all continuous maps from Cantor space 2N to the circle group T. So C(2N,T) is
an Abelian Polish group. Moreover, we claim that, for any neighbourhood V of the
identity in C(2N,T), there is a k such that any element g ∈ C(2N,T) can be written as
g = f k for some f ∈V .

To see this, find some k > 1 such that any continuous

f : 2N→U = {e2πiα ∈T ∣∣ −1/k <α< 1/k }

belongs to V . Fix g ∈ C(2N,T) and note that

A = {x ∈ 2N
∣∣ g(x) ∉U}

and
B = {x ∈ 2N

∣∣ g(x)= 1}
are disjoint closed subsets of 2N and can therefore be separated by a clopen set C ⊆
2N, i.e., A ⊆ C and C∩B =;. Then, for any x ∈ C, writing g(x) = e2πiα for 0 < α< 1,
we set

f (x)= e
2πiα

k

Also, if x ∉ C, write g(x)= e2πiα for some −1/k <α< 1/k and set

f (x)= e
2πiα

k .

Thus, f k(x)= g(x) for all x ∈ C and, since C is clopen, f is easily seen to be continuous.
Moreover, since f only takes values in U , we see that f ∈V , which proves the claim.

In particular, this implies that C(2N,T) is a bounded group. On the other hand,
C(2N,T) is not compact, since, e.g., the functions hn ∈ C(2N,T) defined by hn(x)= 1 if
the nth coordinate of x is 1 and −1 otherwise, form a 2-discrete set.

1.10. Non-Archimedean Polish groups. Of special interest in logic are the auto-
morphism groups of countable first order structures, that is, the closed subgroups
of the group of all permutations of the natural numbers, S∞. Recall that the topol-
ogy on S∞ is the topology of pointwise convergence on N viewed as a discrete space.
Thus, a neighbourhood basis at the identity in S∞ consists of the pointwise stabilis-
ers (or isotropy subgroups) of finite subsets of N, which are thus open subgroups of
S∞. Conversely, as is well known and easy to see, the property of having a neigh-
bourhood basis at 1 consisting of open subgroups isomorphically characterises the
closed subgroups of S∞ within the class of Polish groups.

Definition 1.36. A Polish group G is non-Archimedean if it has a neighbourhood
basis at 1 consisting of open subgroups. Equivalently, G is non-Archimedean if it is
isomorphic to a closed subgroup of S∞.

Proposition 1.37. Let G be a non-Archimedean Polish group. Then
(1) G is Roelcke precompact if and only if it is Roelcke bounded,
(2) G is bounded if and only if it is compact.
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Proof. Note that, for a closed subgroup G of S∞, in the definition of Roelcke pre-
compactness it suffices to quantify over open subgroups V ÉG. So G is Roelcke pre-
compact if and only if for any open subgroup V É G, the double coset space V\G/V
is finite, which is implied by Roelcke boundedness. As also Roelcke precompactness
implies Roelcke boundedness, (1) follows.

For (2), it suffices to notice that if G is not compact, then it has an open subgroup
of infinite index and thus G cannot be bounded. �

Example 1.38. By Theorem 5.8 of [21], the isometry group of the rational Urysohn
metric space QU1 of diameter 1 has property (OB) even as a discrete group and thus
also as a Polish group. However, since it acts continuously and transitively on the
discrete set QU1, but not oligomorphically, the group cannot be Roelcke precompact.

Example 1.39. Note that if G is a non-Archimedean Polish group, then G is SIN if
and only if G has a neighbourhood basis at the identity consisting of normal open
subgroups. For this, it suffices to note that if U is a conjugacy invariant neighbour-
hood of 1, then 〈U〉 is a conjugacy invariant open subgroup of G, i.e., 〈U〉 is normal
in G. In this case, we can find a decreasing series

G ÊV0 ÊV1 ÊV2 Ê . . .

of normal open subgroups of G forming a neighbourhood basis at 1, and, moreover,
this characterises the class of Polish, non-Archimedean, SIN groups. Note also that
such a G is compact if and only if all the quotients G/Vn are finite. Moreover, as any
countably infinite group admits a continuous affine action on a separable Hilbert
space without fixed points (cf. Theorem 1.47), we see that G is compact if and only if
it has property (ACR).

Of course, not all non-Archimedean Polish groups have non-trivial countable quo-
tients, but, as we shall see, property (OB) can still be detected by actions on countable
graphs. While it is possible to show this in one go, to gain further information, we
split the proof into two cases along conditions 6 (i) and 6 (ii) of Theorem 1.11.

First note that if G is a union of a chain G0 < G1 < . . . < G of proper open sub-
groups, then, as is well known, G acts by automorphism on the tree T with vertex
set X = G/G0 ∪G/G1 ∪ . . . and edges {gGn, gGn+1} for g ∈ G and n Ê 0 such that the
orbit of every vertex has infinite diameter.

The other case is analysed as follows.

Lemma 1.40. The following are equivalent for a non-Archimedean Polish group G.
(1) There is a symmetric open generating set U ⊆G such that G 6=Uk for all k Ê 1,
(2) G admits a vertex transitive continuous action on a connected graph of infinite

diameter.

Proof. (1)⇒(2): Pick m such that 1 ∈ Um, whereby Um is a symmetric open neigh-
bourhood of 1 and thus contains an open subgroup V of G. It follows that W =VUmV
is a symmetric generating set for G such that G 6= Wk for all k. Let A ⊆ G be a
countable symmetric subset containing 1 such that W = VWV = AV , whence also
AV = W = W−1 = V A−1 = V A. It follows that Wk = (AV )k = AkV k = AkV for all
k Ê 1.

Now, let Γ be the countable graph with vertex set G/V and edges {gV , gaV } for
all a ∈ A and g ∈ V , and let G act on Γ by left-translation. The action is clearly
continuous and vertex transitive and to see that Γ is connected note that if h ∈ G
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there are a1, . . . ,ak ∈ A with hV = a1 · · ·akV , whereby 1V ,a1V ,a1a2V , . . . ,a1 · · ·akV
is a path from 1V to hV . On the other hand, if hV is a neighbour of gV in Γ, then
there are f ∈ G and a ∈ A such that gV = f V and hV = f aV , whence hV = f aV ⊆
f AV = f V A = gV A = gAV and thus hV = ga′V for some a′ ∈ A. It follows that
the ball of radius k centred at 1V is contained in AkV , showing that Γ has infinite
diameter.

(2)⇒(1): If G acts vertex transitively and continuously on a connected graph Γ

of infinite diameter, let V be the isotropy subgroup of some vertex v, which is open
in G. Let U = {g ∈ G

∣∣ {v, gv} ∈ EΓ} and note that if {hv, f v} is any edge of Γ, then
so is {v,h−1 f v}, whence h−1 f ∈ U . Since Γ is connected, it follows that G = ⋃

k Uk.
Also, by construction U is symmetric and UV = U , whence U is open. Finally, if
h = g1 . . . gk for g i ∈ U , then v, g1v, g1 g2v, . . . , g1 · · · gkv is a path in Γ, so, as Γ has
infinite diameter, we must have G 6=Uk for all k Ê 1. �

Since property (OB) is equivalent to the conjunction of conditions 6 (i) and 6 (ii) of
Theorem 1.11, we have the following.

Lemma 1.41. Let G be a non-Archimedean Polish group without property (OB). Then
either G acts continuously on a tree T such that every orbit has infinite diameter or G
admits a vertex transitive continuous action on a connected graph of infinite diameter.

So non-Archimedean Polish groups without property (OB) verify the conditions of
the following theorem.

Theorem 1.42. Assume a Polish group G acts continuously and by isometries on
a countable discrete metric space (X ,d) with unbounded orbits. Then G admits an
unbounded continuous linear representation π : G → GL(H ) on a separable Hilbert
space.

Proof. Suppose that (X ,d) is a countable discrete metric space on which G acts con-
tinuously by isometries and fix some point p ∈ X . We define a function σ on X by
setting

σ(x)=min(k Ê 2
∣∣ d(x, p)É 2k)

and note that for any g ∈G and x ∈ X

d(gx, p)É d(gx, gp)+d(gp, p)= d(x, p)+d(gp, p),

and so
σ(gx)Émax{σ(gp),σ(x)}+1

and
σ(gx)
σ(x)

Éσ(gp).

Let `2(X ) denote the Hilbert space with orthonormal basis (ex)x∈X . For any g ∈G,
we define a bounded weighted shift Tg of `2(X ) by letting

Tg(ex)= σ(gx)
σ(x)

egx

and extending Tg by linearity to the linear span of the ex and by continuity to all
of `2(X ). Note also that in this case Tg−1 = T−1

g and Tgf = TgT f , so the mapping
g ∈G → Tg ∈GL(`2(X )) is a continuous representation.

Moreover, as

‖Tg‖ Ê σ(gp)
σ(p)
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and σ(gp)
σ(p) → ∞ as d(gp, p) → ∞, we see that the representation π : g 7→ Tg is un-

bounded. �

We have not been able to determine whether properties (OB) and (ACR) coincide
on the class of non-Archimedean Polish groups, but given that property (OB) can
be detected by actions on discrete metric spaces, one may suspect that this is the
case. An even stronger result would be given by a positive answer to the following
problem.

Problem 1.43. Let G be a non-Archimedean Polish group without property (OB).
Does it follow that G admits a continuous affine isometric action on a reflexive Ba-
nach space without fixed points?

As a test case, one might consider the isometry group of the rational Urysohn
metric space, which fails property (OB).

One concrete instance where a non-Achimedean Polish group G fails (OB) is when
G maps to a locally compact group. To analyse this situation, we need the following
concepts. If V and W are subgroups of a common group G, we note that

[W : W ∩V ]= number of distinct left cosets of V contained in WV .

In particular, for any g ∈G,

[V : V ∩V g]= number of distinct left cosets of V g contained in VV g

= number of distinct left cosets of V contained in V gV .

The commensurator of V in G is the subgroup

CommG(V )= {g ∈G
∣∣ [V : V ∩V g]<∞ and [V g : V g ∩V ]= [V : V ∩V g−1

]<∞},

whereby G = CommG(V ) if and only if, for any g ∈ G, V gV is a finite union of left
cosets of V .

As pointed out by Tsankov [25], if G is a Roelcke precompact non-Archimedean
Polish group, then [CommG(V ) : V ] <∞ for any open subgroup V É G. Going in the
opposite direction, we have the following equivalence.

Proposition 1.44. The following are equivalent for a Polish group G.
(1) There is an open subgroup V ÉG of infinite index such that G =CommG(V ),
(2) there is a continuous homomorphism π : G → H into a non-Archimedean Pol-

ish group such that π(G) is non-compact and locally compact.

Proof. (1)⇒(2): Assume that (1) holds and let π : G → Sym(G/V ) denote the contin-
uous homomorphism induced by the left-shift action of G on G/V , where Sym(G/V )
is the Polish group of all permutations of G/V with isotropy subgroups of gV ∈ G/V
declared to be open. To see that π(G) is non-compact, just note that the π(G)-orbit
of 1V ∈ G/V is infinite. For local compactness, let U denote the isotropy subgroup
of 1V in Sym(G/V ). Since U is clopen, it suffices to show that U ∩π(G) is relatively
compact, i.e., that any orbit of π−1(U) = V on G/V is finite. But this follows directly
from the fact that for any gV ∈ G/V , the set V gV is a union of finitely many left
cosets of V .

(2)⇒(1): Assume that (2) holds. Without loss of generality, we may assume that
H is a closed subgroup of S∞ and thus has a canonical action on N. The non-
compactness of π(G) implies that π(G) induces an infinite orbit π(G) · x ⊆N. On the
other hand, since π(G) is locally compact, there is an open subgroup U É H such that
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U ∩π(G) is compact and thus induces only finite orbits on N. By decreasing U , we
may assume that U is the isotropy subgroup of a finite tuple y ∈Nn. Let V =π−1(U),
which is an open subgroup of G. Moreover, since π(V ) · x ⊆ (

U ∩π(G)
) · x is finite, we

see that V must have infinite index in G. Similarly, if g ∈ G is any element, then
π(V gV ) · y ⊆ (

U ∩π(G)
)
π(g)

(
U ∩π(G)

) · y is finite, so there is a finite set F ⊆ G such
that π(V gV ) · y = π(F) · y. It follows that π(V gV ) ⊆ π(F)U , i.e., V gV ⊆ FV and so
V gV is a union of finitely many left cosets of V . Since this happens for all g ∈G, we
see that G =CommG(V ). �

1.11. Locally compact groups. We shall now turn our attention to the class of lo-
cally compact groups and see that the hierarchy of boundedness properties in Figure
(1) collapses to just compactness and property (FH).

Theorem 1.45. Let G be a compactly generated, locally compact Polish group. Then
G admits an affine continuous representation on a separable Hilbert space H such
that, for all ξ ∈H ,

‖g ·ξ‖ −→
g→∞∞.

Proof. Without loss of generality, G is non-compact. We fix a symmetric compact
neighbourhood V ⊆G of 1 generating G, i.e., such that

V ⊆V 2 ⊆V 3 ⊆ . . .⊆G = ⋃
n∈N

V n.

Moreover, by the non-compactness of G, we have G 6= V n for all n and thus Bn =
V n \V n−1 6= ;. Also, for any m and n,

Bn ·Bm ⊆V n ·V m =V n+m ⊆ B1 ∪ . . .∪Bn+m.

So, if g ∈ Bn, then for any k,

gBm ∩Bk 6= ;⇒ k É m+n.

But, as also g−1 ∈ Bn, we see that

gBm ∩Bk 6= ;⇒ Bm ∩ g−1Bk 6= ;⇒ m É k+n.

In other words, for any g ∈ Bn,

gBm ∩Bk 6= ;⇒ m−n É k É m+n,

and thus, in fact, for any m,n Ê 1,

Bn ·Bm ⊆ Bm−n ∪ . . .∪Bm+n.

Now, since V 2 is compact and int V 6= ;, there is a finite set F ⊆G such that V 2 ⊆ FV ,
whence

λ(Bn)Éλ(V n)Éλ(Fn−1V )É |F|n−1λ(V ),
where λ is left Haar measure on G. Choosing r >max{|F|,λ(V )}, we have λ(Bn)É rn

for all n Ê 1.
Consider now the algebraic direct sum

⊕
nÊ1 L2(Bn,λ) equipped with the inner

product

〈ξ ∣∣ ζ〉 = ∑
nÊ1

r2n
∫

Bn

ξ ·ζ dλ.

So the completion H of
⊕

nÊ1 L2(Bn,λ) with respect to the corresponding norm ‖·‖
consists of all Borel measurable functions ξ : G →R satisfying

‖ξ‖2 = 〈ξ ∣∣ ξ〉 = ∑
nÊ1

r2n
∫

Bn

ξ2 dλ<∞
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and thus, in particular,
∫

Bn
ξ2 dλ −→

n
0. Moreover, if we let ζ be defined by ζ≡ 1

r2n on
Bn, then

‖ζ‖2 = ∑
nÊ1

r2n
∫

Bn

( 1
r2n

)2
dλ

= ∑
nÊ1

r2nλ(Bn)
1

r4n

É ∑
nÊ1

1
rn

<∞.

So ζ ∈H . Also, for any ξ ∈H ,

〈ξ ∣∣ ζ〉 = ∑
nÊ1

r2n
∫

Bn

ξ
1

r2n dλ

= ∑
nÊ1

∫
Bn

ξ dλ

=
∫

G
ξ dλ.

Let H0 denote the orthogonal complement of ζ in H , i.e., H0 = {ξ ∈H
∣∣ ∫

G ξ dλ= 0}.
We now define π : G → GL(H ) to be the left regular representation, i.e., π(g)ξ =

ξ(g−1 · ). To see that this is well-defined, that is, that each π(g) is a bounded operator
on H , note that if g ∈ Bm and ξ ∈H , then

‖π(g)ξ‖2 = ∑
nÊ1

r2n
∫

Bn

ξ(g−1 · )2 dλ

= ∑
nÊ1

r2n
∫

g−1Bn

ξ2 dλ

= ∑
nÊ1

r2n ∑
kÊ1

∫
g−1Bn∩Bk

ξ2 dλ

= ∑
n,kÊ1

r2n
∫

g−1Bn∩Bk

ξ2 dλ

É ∑
n,kÊ1

r2(m+k)
∫

g−1Bn∩Bk

ξ2 dλ

= 22m ∑
n,kÊ1

r2k
∫

g−1Bn∩Bk

ξ2 dλ

= 22m ∑
kÊ1

r2k
∫

Bk

ξ2 dλ

= 22m‖ξ‖2.

Thus, ‖π(g)‖ É 2m for all g ∈ Bm, showing also that ‖π(g)‖ is uniformly bounded for
g in a neighbourhood of 1 ∈G.

Finally, as

〈π(g)ξ
∣∣ ζ〉 = ∫

G
ξ(g−1 · ) dλ=

∫
G
ξ dλ= 〈ξ ∣∣ ζ〉,

we see that H0 is π(G)-invariant.
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Now define a π-cocycle b : G →H0 by b(g)=π(g)χV −χV , where χV is the charac-
teristic function of V ⊆G, and let ρ : G → Aff(H ) be the corresponding affine repre-
sentation, ρ(g)ξ=π(g)ξ+b(g). Thus,

ρ(g)ξ−ξ= ξ(g−1 · )+χV (g−1 · )−ξ−χV

for any g ∈G and ξ ∈H .

Claim 1.46. For all ξ ∈H0 and K , there is a compact set C ⊆G such that

‖ρ(g)ξ−ξ‖ > K

for all g ∈G \ C.

Assume first that ξ≡−1 on V . Then, as ξ ∈H0, we have
∫

G ξdλ= 0 and thus there
must be a Borel set E ⊆G such that λ(E)> δ> 0 and ξ> δ on E. Also, without loss of
generality, we may assume that E ⊆ Bn for some n > 1. Since

∫
Bm

ξ2dλ−→
m

0, we can

find M > n+2 such that for all m > M, we have r2(m−n) δ3

8 > K and the set

Fm = {
h ∈ Bm−n ∪ . . .∪Bm+n

∣∣ |ξ(h)| > δ

2
}

has measure < δ
2 .

Thus, if g ∈ Bm, m > M, we have gE ⊆ Bm−n ∪ . . .∪Bm+n and so gE∩V =;, while
also E∩V =;. Therefore,

‖ρ(g)ξ−ξ‖2 Ê r2(m−n)
∫

Bm−n∪...∪Bm+n

(
ρ(g)ξ−ξ)2dλ

Ê r2(m−n)
∫

gE\Fm

(
ξ(g−1 · )+χV (g−1 · )−ξ−χV

)2dλ

Ê r2(m−n)
∫

gE\Fm

(
ξ(g−1 · )−ξ)2dλ

Ê r2(m−n) δ
3

8
> K .

Setting C = B1 ∪ . . .∪BM =V M , the claim follows.
Assume now instead that ξ 6≡ −1 on V and fix A ⊆V a Borel set of positive measure

λ(A)> ε> 0 such that |ξ+1| > ε on A. As
∫

Bn
ξ2 dλ−→

n
0, there is an N > 2 such that,

for all m > N, the set

Dm =
{
h ∈ Bm−1 ∪Bm ∪Bm+1

∣∣∣ |ξ(h)| > ε

2

}
has measure < ε

2 .
In particular, if g ∈ Bm for some m > N, then gA ⊆ BmB1 ⊆ Bm−1∪Bm∪Bm+1 and

so for any h ∈ gA \ Dm, as gA∩V =;,

|ρ(g)ξ(h)−ξ(h)| = |ξ(g−1h)+χV (g−1h)−ξ(h)−χV (h)| = |ξ(g−1h)+1−ξ(h)−0| Ê ε

2
.
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It follows that for such g,

‖ρ(g)ξ−ξ‖2 Ê r2m−2
∫

Bm−1∪Bm∪Bm+1

(
ρ(g)ξ−ξ)2dλ

Ê r2m−2
∫

gA\Dm

( ε
2

)2dλ

Ê r2m−2 ε
3

8
.

Choosing M > N large enough such that r2M−2 ε3

8 > K , we see that for all g ∉ C = B1∪
. . .∪BM =V M , we have ‖ρ(g)ξ−ξ‖2 > K , proving the claim and thus the theorem. �

Let us also mention that the preceding theorem holds for all locally compact sec-
ond countable (i.e., Polish locally compact) groups. For, in order to extend the argu-
ment above to the non-compactly generated groups, it suffices to produces a covering
V0 ⊆ V1 ⊆ . . . ⊆ G by compact subsets such that Vn ·Vm ⊆ Vn+m, which can be done,
e.g., by Theorem 5.3 of [12]. However, we shall not need this extension as any such
G admits a fixed point free affine isometric action on Hilbert space.

We can now state the following equivalences for locally compact Polish groups.

Theorem 1.47. Let G be a locally compact Polish group and H be a separable
Hilbert space. Then the following are equivalent.

(1) G is compact,
(2) G has property (OB),
(3) G has property (ACR),
(4) any continuous linear representation π : G →GL(H ) is bounded,
(5) any affine continuous action of G on H fixes a point,
(6) any affine continuous action of G on H has a bounded orbit.

Proof. Clearly, (1) implies (2) and, by Proposition 1.30 (2) implies (3). That (3) implies
(5) and that (5) implies (6) is trivial. Moreover, by Theorem 1.11, (2) implies (4). So,
it suffices to show that (4) and (6) each imply (1).

To see that (6) implies (1), note first that if G is not compactly generated, then G
can be written as the union of an increasing chain of proper open subgroups, in which
case it is well-known that G admits a continuous affine isometric representation on
a separable Hilbert space with unbounded orbits (see Corollary 2.4.2 [6]). On the
other hand, if G is compactly generated, it suffices to apply Theorem 1.45.

Finally, to see that (4) implies (1), assume that G is locally compact, non-compact
and let λ be left-Haar measure on G. Since G is σ-compact, we can find an exhaustive
sequence

A0 ⊆ A1 ⊆ A2 ⊆ . . .⊆G
of compact neighbourhoods of the identity. Set Bk = (Ak)k!\(Ak−1)(k−1)!, which is also
relatively compact, and note that for any g ∈ Bk,

gBm ⊆ B0 ∪ . . .∪Bmax{k,m}+1,

whence Bm ∩ g−1Bl =; for all l > max{k,m}+1. Moreover, since A0 has non-empty
interior and every Ak is compact, it is easy to see that similarly Bk has non-empty
interior and thus λ(Bk)> 0.

We now note that for any g ∈ Bk, the sets

{Bm ∩ g−1Bl}l,m and {gBm ∩Bl}l,m
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each form Borel partitions of G and so L2(G) can be orthogonally decomposed as

L2(G)=⊕
l,m

L2
(
Bm ∩ g−1Bl

)=⊕
l,m

L2
(
gBm ∩Bl

)
.

Moreover, for every pair m, l, we can define an isomorphism

Tm,l
g : L2

(
Bm ∩ g−1Bl

)→ L2
(
gBm ∩Bl

)
by

Tm,l
g ( f )= exp(l−m) f (g−1 · )

and note that ‖Tm,l
g ( f )‖2 = exp(l−m)‖ f ‖2 for any f ∈ L2

(
Bm∩ g−1Bl

)
. Since L2

(
Bm∩

g−1Bl
)= {0}, whenever l >max{k,m}+1, it follows that the linear operator

Tg =
⊕
m,l

Tm,l
g : L2(G)→ L2(G)

is well-defined, invertible and ‖Tg‖ É exp(k+1).
So g 7→ Tg defines a continuous representation of G in GL(L2(G)). To see that

it is unbounded, note that for any m there are arbitrarily large l such that λ(Bm ∩
g−1Bl)> 0 for some g ∈G and so∥∥Tg

∥∥Ê
‖Tg(χBm∩g−1Bl

)‖2

‖χBm∩g−1Bl
‖2

= exp(l−m).

Since exp(l−m) −→
l→∞

∞, we see that the representation is unbounded. �

The following corollary is now immediate by Proposition 1.44.

Corollary 1.48. Suppose G is a Polish group and V É G is an open subgroup of
infinite index with G =CommG(V ). Then G admits a continuous affine representation
on a separable Hilbert space for which every orbit is unbounded.

2. LOCAL BOUNDEDNESS PROPERTIES

Having studied the preceding global boundedness properties for Polish groups, it
is natural to consider their local counterparts, where by this we understand the exis-
tence of a neighbourhood U ⊆G of the identity satisfying similar covering properties
to those listed in Figure 1.

2.1. A question of Solecki. As mentioned earlier, in [22] and [29], S. Solecki and
V. Uspenskiı̆ independently showed that a Polish group G is compact if and only
if for any open set V 3 1 there is a finite set F ⊆ G with G = FV F. The similar
characterisation of compactness with only one-sided translates FV on the other hand
is fairly straightforward.

An analogous characterisation of locally compact Polish groups is also possible,
namely, a Polish group G is locally compact if and only if there is an open set U 3 1
such that for any open V 3 1 there is a finite set F ⊆G such that U ⊆ FV .

The corresponding property for two-sided translates leads to the following defini-
tion.

Definition 2.1. A topological group G is feebly locally compact if there is a neigh-
bourhood U 3 1 such that for any open V 3 1 there is a finite set F ⊆ G satisfying
U ⊆ FV F.
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Solecki [23] originally considered groups in the complement of this class and
termed these strongly non-locally compact groups. In connection with Solecki’s [23]
study of left-Haar null sets in Polish groups [23], the class of strongly non-locally
compact Polish groups turned out to be of special significance when coupled with the
following concept.

Definition 2.2 (S. Solecki [23]). A Polish group G is said to have a free subgroup at
1 if there is a sequence gn ∈G converging to 1 which is the basis of a free non-Abelian
group and such that any finitely generated subgroup 〈g1, . . . , gn〉 is discrete.

Solecki asked whether it is possible to have a (necessarily non-locally compact)
Polish group, having a free subgroup at 1, that is also feebly locally compact (Ques-
tion 5.3 in [23]). We shall now present a fairly general construction of Polish groups
that are feebly locally compact, but nevertheless fail to be locally compact. Depend-
ing on the specific inputs, this construction also provides an example with a free
subgroup at 1 and hence an answer to Solecki’s question.

2.2. Construction. Fix a countable group Γ and let

HΓ = {g ∈ΓZ ∣∣ ∃m ∀n Ê m g(n)= 1},

which is a subgroup of the full direct product ΓZ. Though HΓ is not closed in the
product topology for Γ discrete, we can equip HΓ with a complete 2-sided invariant
ultrametric d by the following definition.

d(g, f )= 2max
(
k
∣∣ g(k) 6= f (k)

)
.

By the definition of HΓ, this is well-defined and it is trivial to see that the ultrametric
inequality

d(g, f )Émax
{
d(g,h),d(h, f )

}
is verified. Also, since

max
(
k |h(k)g(k) 6= h(k) f (k)

)=max
(
k | g(k) 6= f (k)

)=max
(
k | g(k)h(k) 6= f (k)h(k)

)
,

we see that the metric is 2-sided invariant and hence induces a group topology on
HΓ. Moreover, the countable set{

g ∈ HΓ

∣∣ {k
∣∣ g(k) 6= 1} is finite

}
is dense in HΓ, so HΓ is separable and is easily seen to be complete, whence HΓ is a
Polish group. To avoid confusion with the identity in Γ, denote by e the identity in
HΓ, i.e., e(n)= 1 for all n ∈Z.

We now let Z act by automorphisms on HΓ via bilateral shifts of sequences, that
is, for any k ∈Z and g ∈ HΓ, we let(

k∗ g
)
(n)= g(n−k)

for any n ∈Z. In particular, for any g, f ∈ HΓ and k ∈Z, we have

d(k∗ g,k∗ f )= 2kd(g, f ),

i.e., k∗Bd(e,2m)= Bd(e,2m+k), which shows that Z acts continuously on HΓ. We can
therefore form the topological semidirect product

ZnHΓ,

which is just Z× HΓ equipped with the product topology and the group operation
defined by

(n, g) · (m, f )= (n+m, g(n∗ f )).
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So ZnHΓ is a Polish group. Also, a neighbourhood basis at the identity is given by
the clopen subgroups

Vm = {
(0, g) ∈ZnHΓ

∣∣∀i Ê m g(i)= 1
}= {0}×Bd(e,2m),

which implies that ZnHΓ is isomorphic to a closed subgroup of the infinite symmetric
group S∞. Note also that

. . .⊆V−1 ⊆V0 ⊆V1 ⊆ . . . .

Then one can easily verify that for any k ∈Z and g ∈ HΓ

(k, e) · (0, g) · (k, e)−1 = (0,k∗ g)

and hence

(k, e) ·Vm · (k, e)−1 = (k, e) · ({0}×Bd(e,2m)
) · (k, e)−1 = {0}×Bd(e,2m+k)=Vm+k

for any k,m ∈Z.
We claim that ZnHΓ is Weil complete. To see this, suppose that fn ∈ ZnHΓ is

left-Cauchy, i.e., that f −1
n fm −→

n,m→∞1. Writing fn = (kn, gn) for kn ∈Z and gn ∈ HΓ, we

have f −1
n = (−kn, (−kn)∗ g−1

n
)

and so

f −1
n fm =(−kn, (−kn)∗ g−1

n
)(

km, gm
)

=(
km −kn, ((−kn)∗ g−1

n )((−kn)∗ gm)
)

=(
km −kn, (−kn)∗ (g−1

n gm)
)
.

Since f −1
n fm −→

n,m→∞1, the sequence kn ∈ Z is eventually constant, say kn = k for n Ê
N, and so for all n,m Ê N,

f −1
n fm = (

0, (−k)∗ (g−1
n gm)

)
.

Since Z acts continuously on HΓ it follows that (−k)∗ (g−1
n gm) −→

n,m→∞ e if and only if

g−1
n gm −→

n,m→∞ e, i.e., if and only if (gn) is left-Cauchy in HΓ. Since HΓ has a complete

2-sided invariant metric it follows that (gn) converges to some g ∈ HΓ and so ( fn)
converges in ZnHΓ to (k, g), showing that ZnHΓ is Weil complete.

Denoting by F∞ the free non-Abelian group on denumerably many letters a1,a2, . . .,
the following provides an easy answer to Solecki’s question mentioned above.

Theorem 2.3. The group Zn HF∞ is a non-locally compact, Weil complete Polish
group, having a free subgroup at 1. Also, ZnHF∞ is isomorphic to a closed subgroup
of S∞ and there is an open subgroup U ÉZnHF∞ whose conjugates f U f −1 provide a
neighbourhood basis at 1. In particular, ZnHF∞ feebly locally compact.

Proof. To see that ZnHF∞ is not locally compact, we define for every m ∈Z a contin-
uous homomorphism

πm : ZnHF∞ → F∞
by πm(k, g) = g(m). Keeping the notation from before, Vm = {0}×Bd(e,2m), we see
that for any m ∈ Z, πm−1 : Vm → F∞ is surjective. So no Vm is compact and hence
ZnHF∞ cannot be locally compact. Now, to see that ZnHF∞ has a free subgroup at
1, define gn ∈ HΓ by

gn(k)=
{

an, if k É−n;
1, if k >−n.
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Then (0, gn) −→
n→∞(0, e) in ZnHF∞ , so if we let βn = (0, gn), we see that 〈β1,β2,β3, . . .〉

is a non-discrete subgroup of ZnHF∞ . To see that {β1,β2,β3, . . .} is a free basis for
〈β1,β2,β3, . . .〉, it suffices to see that for every n, 〈β1,β2, . . . ,βn〉 is freely generated by
{β1,β2, . . . ,βn}. But this follows easily from the fact that π−n(βi)= ai for any i É n and
that π−n is a homomorphism into F∞. This argument also shows that 〈β1,β2, . . . ,βn〉
is discrete. So ZnHF∞ has a free subgroup at 1.

That ZnHF∞ is isomorphic to a closed subgroup of S∞ has already been proved
and, moreover, we know that for any m, (m, e) ·V−m · (m, e) = V0. So for the last
statement it suffices to take U =V0. �

3. MICROSCOPIC STRUCTURE

The negative answer to Solecki’s question of whether feebly locally compact Polish
groups are necessarily locally compact indicates that there is a significant variety of
behaviour in Polish groups with respect to coverings by translates of open sets. Also,
as indicated by Malicki’s result [15] that no oligomorphic closed subgroup of S∞ is
feebly locally compact, the macroscopic or large scale structure of Polish groups has
counterparts at the local level. We shall now develop this even further by bringing it
to the microscopic level of Polish groups as witnessed by neighbourhood bases at 1.

More precisely, we shall study the conditions under which any neighbourhood
basis at 1

V0 ⊇V1 ⊇V2 ⊇ . . . 3 1

will cover G via, e.g., sequences of two-sided translates G = ⋃
n∈N fnVn gn by sin-

gle elements fn, gn ∈ G or two-sided translates G = ⋃
n∈NFnGEn by finite subsets

Fn,En ⊆ G. As opposed to this, neighbourhood bases V0 ⊇ V1 ⊇ V2 ⊇ . . . 3 1 failing
these covering properties can be thought of a being narrow in the group G.

As is fairly easy to see (see Proposition 3.1 below), some of these covering prop-
erties are generalisations of local compactness, but (which is less trivial) must fail
in non-compact Roelcke precompact Polish groups. Moreover, as will be shown in
Section 3.5, the existence of narrow sequences (Vn) allows for the construction of
isometric actions on various spaces with interesting local dynamics.

3.1. Narrow sequences and completeness. To commence our study, let us first
note how some of the relevant covering properties play out in the context of locally
compact groups.

Proposition 3.1. (a) Suppose G is a non-discrete, locally compact Polish group.
Then there are open sets

V0 ⊇V1 ⊇ . . . 3 1

such that for any fn ∈G, G 6=⋃
n fnVn.

(b) Suppose G is a non-discrete, unimodular, locally compact Polish group. Then
there are open sets

V0 ⊇V1 ⊇ . . . 3 1

such that for any fn, gn ∈G, G 6=⋃
n fnVn gn.

(c) Suppose G is a non-discrete, locally compact Polish group. Then for any open
sets

V0 ⊇V1 ⊇ . . . 3 1

there are finite sets Fn ⊆G such that G =⋃
n FnVn.
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(d) Let Γ be a non-trivial finite group. Then Zn HΓ is a non-discrete, locally
compact Polish group having a compact open subgroup U such that for any
open set V 3 1 there is f ∈ZnHΓ with U ⊆ f V f −1. In particular, whenever

V0 ⊇V1 ⊇ . . . 3 1

are open sets there are fn, gn ∈ZnHΓ such that ZnHΓ =⋃
n fnVn gn.

Proof. (a) Let λ be left Haar measure on G and choose Vn 3 1 open such that λ(Vn)<
λ(G)/2n+2. Then for any fn ∈G,

λ(
∞⋃

n=0
fnVn)É

∞∑
n=0

λ( fnVn)=
∞∑

n=0
λ(Vn)<λ(G),

so G 6=⋃
n fnVn.

(b) This is proved in the same manner as (a) using that Haar measure is 2-sided
invariant in a unimodular group.

(c) Let U ⊆ G be any compact neighbourhood of 1. Then any open V 3 1 covers U
by left-translates and hence by a finite number of left translates. So if open V0 ⊇V1 ⊇
. . . 3 1 are given, find finite En ⊆ G such that U ⊆ EnVn. Then if {hn}n∈N is a dense
sequence in G, we have G = ⋃

n hnU = ⋃
n hnEnVn. Setting Fn = hnEn we have the

desired conclusion.
(d) One easily sees from the construction of HΓ that Bd(e,1) is compact and thus

U = {0}×Bd(e,1) is a compact neighbourhood of 1 in ZnHΓ. So ZnHΓ is locally
compact. Now, if V0 ⊇ V1 ⊇ . . . 3 1 are open, there are fn ∈ ZnHΓ such that U ⊆
fnVn f −1

n . So if {hn}n∈N is a dense subset of ZnHΓ, then ZnHΓ =⋃
n hn fnVn f −1

n . �

Our first task is to generalise Proposition 3.1 (a) to all non-discrete Polish groups.

Proposition 3.2. Suppose G is a non-discrete Polish group. Then there are open sets

V0 ⊇V1 ⊇ . . . 3 1

such that, for any gn ∈G, we have G 6=⋃
n gnVn.

Proof. Fix a compatible complete metric d on G. We will inductively define sym-
metric open sets V0 ⊇ V1 ⊇ . . . 3 1 and elements fs ∈ G for s ∈ ⋃

nÊ1{0,1}n with the
following properties: For every finite binary string s of length n (possibly the empty
string ;) and every i ∈ {0,1}, we have

(a) diam( fsiV n)< 1
n+1 ,

(b) fs0V
2
n ∩ fs1V

2
n =;,

(c) fsiV n ⊆ fsVn−1.

To see how this is done, we begin by choosing f0, f1 ∈ G distinct and then find a
symmetric open set V0 3 1 such that diam( f0V 0) < 1, diam( f1V 0) < 1 and f0V

2
0 ∩

f1V
2
0 = ;. For the inductive step, suppose n Ê 1 and that Vn−1 and fs have been

defined for all s ∈ {0,1}n. Then, for all s ∈ {0,1}n, we choose distinct fs0, fs1 ∈ fsVn−1
and subsequently choose some symmetric open 1 ∈Vn ⊆Vn−1 small enough to ensure
that

• diam( f tV n)< 1
n+1 for all t ∈ {0,1}n+1,

• fs0V
2
n ∩ fs1V

2
n =; for all s ∈ {0,1}n, and

• fsiV n ⊆ fsVn−1 for all s ∈ {0,1}n and i ∈ {0,1}.
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Suppose that construction has been done and that gn ∈ G are given. We show
that G 6=⋃

n gnVn as follows. First, as f0V
2
0 ∩ f1V

2
0 =;, there must be some i0 ∈ {0,1}

such that f i0V 0∩g0V0 =;. And again, since f i00V
2
1∩ f i01V

2
1 =;, there must be some

i1 ∈ {0,1} such that f i0 i1V 1 ∩ g1V1 =;. Etc. So inductively, we define i0, i1, . . . ∈ {0,1}
such that for any n, f i0 i1...in V n∩ gnVn =;. Since the f i0 i1...in V n are nested and have
vanishing diameter, it follows that

⋂
n f i0 i1...in V n is non-empty and evidently disjoint

from
⋃

n gnVn. �

Topological groups G with the property that for any open V0 ⊇ V1 ⊇ . . . 3 1 there
are finite sets Fn ⊆G with G =⋃

n FnVn are said to be o-bounded or Menger bounded
[24]. By Proposition 3.1 (c), these are clearly a generalisation of the locally compact
Polish groups, but it remains open whether they actually coincide with the locally
compact groups within the class of Polish groups.

Problem 3.3. Suppose G is a non-locally compact Polish group. Are there open sets
V0 ⊇V1 ⊇ . . . 3 1 such that, for any finite sets Fn ⊆G, we have G 6=⋃

n FnVn?

There is quite a large literature on o-boundedness in the context of general topo-
logical groups, though less work has been done on the more tractable subclass of
Polish groups. T. Banakh [3, 4] has verified Problem 3.3 under additional assump-
tions, one of them being Weil completeness [3]. We include a proof of his result here,
as it can be gotten by only a minor modification of the proof of Proposition 3.2.

Proposition 3.4. Suppose G is a Weil complete, non-locally compact Polish group.
Then there are open sets

V0 ⊇V1 ⊇ ·· · 3 1

such that for any finite subsets Fn ⊆G, G 6=⋃
n FnVn.

Proof. Fix a compatible complete left-invariant metric d on G. By the same inductive
procedure as before, we choose open Vn 3 1 and fs ∈G for every s ∈⋃

nÊ1N
n such that,

for all s ∈Nn and i 6= j ∈N,

• diam( fsiV n)< 1
n+1 ,

• fsiV
2
n ∩ fs jV

2
n =;,

• fsiV n ⊆ fsVn−1.

This is possible by the left-invariance of d and the fact that any open set V 3 1 fails
to be relatively compact and therefore contains infinitely many disjoint translates
of some open set 1 ∈ U ⊆ V . The remainder of the proof follows that of Proposition
3.2. �

For good order, let us also state the analogue of Proposition 3.4 for 2-sided trans-
lates.

Proposition 3.5. Suppose G is a non-locally compact Polish SIN group. Then there
are open sets

V0 ⊇V1 ⊇ ·· · 3 1

such that for any finite subsets Fn,En ⊆G, G 6=⋃
n FnVnEn.

Proof. Same proof as for Proposition 3.4, using the fact that any 2-sided invariant
compatible metric on G is complete. �
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3.2. Narrow sequences and conjugacy classes. While the results of the previ-
ous section essentially relied on various notions of completeness, we shall now in-
vestigate which role conjugacy classes play in 2-sided coverings. For simplicity of
notation, if G is a Polish group and g ∈ G, we let gG = { f g f −1 ∣∣ f ∈ G} denote the
conjugacy class of g.

Theorem 3.6. Suppose G is a non-discrete Polish group such that the set

A = {
g ∈G

∣∣ 1 ∈ cl
(
gG)}

is not comeagre in any open neighbourhood of 1. Then there are open

V0 ⊇V1 ⊇ . . . 3 1

such that for any fn, gn ∈G, G 6=⋃
n fnVn gn.

Proof. Fix a compatible complete metric d on G. Note that

A =⋂
n

{g ∈G
∣∣ ∃ f ∈G d(1, f g f −1)< 1/n},

which is a countable intersection of open sets. Since A is not comeagre in any open
V 3 1, by the Baire category theorem, we see that for any open V 3 1 there must be
some n such that

{g ∈G
∣∣ ∃ f ∈G d(1, f g f −1)< 1/n}

is not dense in V and therefore disjoint from some non-empty open W ⊆V . It follows
that for any open V 3 1 there are non-empty open W ⊆V and U 3 1 such that f W f −1∩
U =; for all f ∈G.

Claim 3.7. For all non-empty open D ⊆ G there are a,b ∈ D and an open set U 3 1
such that, for all f , g ∈G, either

f U g∩aU =;
or

f U g∩bU =;.

Proof. Since V = D−1D is a neighbourhood of 1, we can find non-empty open sets
W ⊆ D−1D and U = U−1 3 1 such that, for all f ∈ G, W ∩ f U f −1 = ;. Choose also
a,b ∈ D so that a−1b ∈ W . By shrinking U if necessary, we can moreover suppose
that Ua−1bU ⊆W and that

Ua−1bU ∩ (
f U f −1 · f U f −1)=Ua−1bU ∩ f U2 f −1 =;

for all f ∈G.
Thus, for all f , g ∈G,

(gaU)−1 · gbU ∩ ( f U f −1)−1 · ( f U f −1)=;,

whence either
aU ∩ g−1 f U f −1 =;

or
bU ∩ g−1 f U f −1 =;.

Since f , g are arbitrary, the claim follows. �

Using the claim, we can inductively define open sets V0 ⊇ V1 ⊇ . . . 3 1 and as ∈ G
for s ∈⋃

nÊ1{0,1}n such that, for all s ∈ {0,1}n and i ∈ {0,1}, we have
• diam(asiV n)< 1

n+1 ,
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• asiV n ⊆ asVn−1,
• for all f , g ∈G, either as0V n ∩ f Vn g =; or as1V n ∩ f Vn g =;.

So, if fn, gn ∈G are given, we can inductively define i0, i1, . . . ∈ {0,1} such that

ai0 i1...in V n ∩ fnVn gn =;
for every n. It follows that

⋂
n ai0 i1...in V n is non-empty and disjoint from

⋃
n fnVn gn.

�

We note that by Proposition 3.1 (d) the conclusion of Theorem 3.6 fails for ZnHZ2 .

3.3. Narrow sequences in oligomorphic groups. As mentioned earlier, the non-
Archimedean Polish groups are exactly those isomorphic to closed subgroups of S∞.
A closed subgroup G É S∞ is said to be oligomorphic if for any finite set A ⊆N and
n Ê 1, the pointwise stabiliser GA = {g ∈ G

∣∣ ∀x ∈ A g(x) = x} induces only finitely
many distinct orbits on Nn. In particular, if one views N as a discrete metric space
with distance 1 between all points, then an oligomorphic closed subgroup satisfies
condition (3) of Proposition 1.22, showing that it must be Roelcke precompact. In
fact, Tsankov [25] characterised the Roelcke precompact closed subgroups of S∞ as
those that can be written as inverse limits of oligomorphic groups.

Theorem 3.8. Let G be an oligomorphic closed subgroup of S∞. Then there is a
neighbourhood basis at 1, V0 ⊇V1 ⊇V2 ⊇ . . . 3 1 such that

G 6=⋃
n

FnVnEn

for all finite subsets Fn,En ⊆G.

Proof. Since, for any finite subset A ⊆ N, the pointwise stabiliser GA induces only
finitely many orbits on N, it follows that the model theoretical algebraic closure of A,

acl(A)= {x ∈N ∣∣ GA · x is finite}

is finite. Using that G f A · f x = f GA f −1 f x = f GA ·x, one sees that f ·acl(A)= acl( f A)
for any f ∈G, and, since Gacl(A) has finite index in GA , we also find that acl(acl(A))=
acl(A). Finally, for any n Ê 1, G induces only finitely many orbits on the space N[n]

of n-elements subsets of N. So, as |acl(A)| = | f ·acl(A)| = |acl( f A)|, the quantity

M(n)=max
(|acl(A)| ∣∣ A ∈N[n])

is well-defined.

Claim 3.9. For all g i ∈G and finite sets Bi ⊆N with

M(0)< |B0| É |B1| É . . .

and |Bi|→∞, we have G 6=⋃
i∈N g iGBi .

To prove the claim, we will inductively construct finite algebraically closed sets
A i ⊆N and elements f i ∈G such that the following conditions hold for all i ∈N,

(1) A i ⊆ A i+1,
(2) f i+1 ∈ f iGA i ,
(3) i ∈ A i,
(4) i ∈ f i A i,
(5) f iGA i ∩ g iGBi =;,
(6) for any j ∈N, if B j ⊆ A i, then also f iGA i ∩ g jGB j =;.
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Assume first that this construction has been made. Then, as the A i is are increas-
ing with i, we have by (2) that f i|A i = f j|A i for all i É j. Also, by (3), for any i ∈ N,
f i(i)= f i+1(i)= f i+2(i)= . . . and by (4) f −1

i (i) ∈ A i, whence also

f i f −1
i (i)= f i+1 f −1

i (i)= f i+2 f −1
i (i)= . . .

and so
f −1

i (i)= f −1
i+1(i)= f −1

i+2(i)= . . . .

It follows that ( f i) is both left and right Cauchy and thus converges in G to some
f ∈⋂

i f iGA i . Since by (5) we have f iGA i ∩ g iGBi =; it follows that f ∉⋃
i g iGBi .

To begin the construction, set A−1 = acl(;) and f−1 = 1. Then (6) hold since |A−1| <
|B j| for all j.

Now, suppose f−1, . . . , f i and A−1, . . . , A i have been chosen such that (1)-(6) hold.
Choose first n Ê i+1 large enough such that M(|A i|+3)< |Bn+1| and set

C = {i+1}∪B0 ∪ . . .∪Bn ∪ f −1
i g0B0 ∪ . . .∪ f −1

i gnBn.

As A i is algebraically closed, every orbit of GA i on N\ A i is infinite. Therefore, by a
lemma of P. M. Neumann [18], there is some h ∈GA i such that h(C\A i)∩(C\A i)=;.
Setting f i+1 = f ih ∈ f iGA i , we note that if m ∈ C \ A i, then h(m) ∉ C, whence

f i+1(m)= f ih(m) ∉ g0B0 ∪ . . .∪ gnBn.

If possible, choose m ∈ Bi+1 \ A i and set

A i+1 = acl(A i ∪ {m, i+1, f −1
i+1(i+1)}).

Otherwise, let
A i+1 = acl(A i ∪ {i+1, f −1

i+1(i+1)}).

That (1)-(4) hold are obvious by the choice of A i+1. For (5), i.e., that

f i+1GA i+1 ∩ g i+1GBi+1 =;,

note that if Bi+1 ⊆ A i, then this is verified by condition (6) for the previous step and
the fact that f i+1GA i+1 ⊆ f iGA i . On the other hand, if Bi+1 6⊆ A i, then there is some
m ∈ (A i+1∩Bi+1)\ A i, whence f i+1(m) ∉ g i+1Bi+1. In this case, f i+1(m) 6= g i+1(m) and
so

f i+1GA i+1 ∩ g i+1GBi+1 =;.

Finally, suppose that B j ⊆ A i+1 for some j, whence by the choice of n we have j É n.
If already B j ⊆ A i, then

f i+1GA i+1 ∩ g jGB j =;
holds by (6) at the previous step. And if, on the other hand, there is some m ∈
(A i+1 ∩B j)\ A i, then m ∈ C \ A i and so f i+1(m) ∉ g jB j, whence

f i+1GA i+1 ∩ g jGB j =;,

which ends the construction and therefore verifies the claim.
To construct the neighbourhood basis (Vn) at 1, we pick finite algebraically closed

sets A0 ⊆ A1 ⊆ . . .⊆N=⋃
n∈N An such that M(0)< |A0| and let Vn =GAn . Noting that

for any f ,h ∈G, f GAn h−1 = f h−1GhAn , we see that if Fn and En are finite subsets of
G, we have ⋃

n
FnVnEn =⋃

n
FnGAn En =⋃

n
gnGBn

for some gn ∈G and Bn ⊆N as in the claim. It thus follow that G 6=⋃
n FnVnEn. �
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3.4. Narrow sequences in Roelcke precompact groups. Suppose G is a group
acting by isometries on a metric space (X ,d). For any n Ê 1, we let G act diagonally
on X n, i.e.,

g · (x1, . . . , xn)= (gx1, . . . , gxn),

and equip X n with the supremum metric d∞ defined from d by

d∞
(
(x1, . . . , xn), (y1, . . . , yn)

)= sup
1ÉiÉn

d(xi, yi).

Also, for any x ∈ X n and ε> 0, let

V (x,ε)= {g ∈G
∣∣ d∞(gx, x)< ε}.

We then have the following easy facts
(1) V (x,ε) ·V (x,δ)⊆V (x,ε+δ),
(2) f ·V (x,ε) · f −1 =V ( f x,ε),
(3) if x and y are tuples of the same finite length, then V (x,σ)⊆V

(
y,σ+2d∞(x, y)

)
,

(4) for any subset U ⊆G,

dH(U · x,U · y)É d(x, y),

where dH denotes the Hausdorff distance induced by d.
Also, an ε-ball in X is any subset of the form

B(x,ε)= {y ∈ X
∣∣ d(x, y)< ε}

and if D ⊆ X is any subset, we define the ε-expansion of D by

(D)ε = {y ∈ X
∣∣ ∃x ∈ D d(x, y)< ε}.

For the following sequence of lemmas, suppose G is a Roelcke precompact Polish
group acting continuously and by isometries on a separable complete metric space
(X ,d) with a dense orbit.

Lemma 3.10. For any ε> δ> 0, σ> 0 and x ∈ X n, the set

B(x,σ,δ)= {y ∈ X
∣∣ V (x,σ) · y can be covered by finitely many δ-balls}

can be covered by finitely many ε-balls.

Proof. Let α> 0 be small enough such that 2α<σ and δ+2α< ε. Also, by Proposition
1.22 (3), let A ⊆ X be a finite set such that V (x,α) ·A is an α-net in X . Let also C ⊆ A
be the subset of all z ∈ A such that V (x,σ−α)·z can be covered by finitely many (δ+α)-
balls. Since A and hence C is finite, there are finitely many (δ+α)-balls B1, . . . ,Bk
covering V (x,σ−α) ·C.

Now, suppose that y ∈ X and V (x,σ)· y can be covered by finitely many δ-balls and
find z ∈ A and g ∈V (x,α) such that d(gz, y)<α. Then

V (x,σ−α) · g−1 y⊆V (x,σ−α) ·V (x,α) · y⊆V (x,σ) · y

can be covered by finitely many δ-balls and so, as

dH
(
V (x,σ−α) · g−1 y,V (x,σ−α) · z)É d(g−1 y, z)<α,

also V (x,σ−α) · z can be covered by finitely many (δ+α)-balls, i.e., z ∈ C. Since
α< σ−α, we have gz ∈ V (x,σ−α) · z ⊆ B1 ∪ . . .∪Bk and hence y ∈ (B1)α∪ . . .∪ (Bk)α.
Since the (Bi)α are each contained in the ε-balls with the same centre, the result
follows. �
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We also note that
B(gx,σ,δ)= g ·B(x,σ,δ).

Using this, we can prove the following.

Lemma 3.11. Suppose ε> δ> 0, σ> 0 and n Ê 1. Then there is some k Ê 1 such that
for every z ∈ X n, B(z,σ,δ) can be covered by k many ε-balls.

Proof. Choose α> 0 such that 2α<σ and find by Proposition 1.22 (3) some x1, . . . , xp ∈
X n such that

G · x1 ∪ . . .∪G · xp

is α-dense in X n. By Lemma 3.10, pick some k Ê 1 such that each B(xi,σ−2α,δ) can
be covered by k many ε-balls.

Now suppose z ∈ X n is given and find g ∈G and 1É i É p such that d∞(xi, gz)<α.
Then

V (xi,σ−2α)⊆V (gz,σ)
and hence

g ·B(z,σ,δ)=B(gz,σ,δ)

= {y ∈ X
∣∣ V (gz,σ) · y can be covered by finitely many δ-balls}

⊆ {y ∈ X
∣∣ V (xi,σ−2α) · y can be covered by finitely many δ-balls}.

Since the latter can be covered by k many ε-balls, also B(z,σ,δ) can be covered by k
many ε-balls. �

The next statement is obvious.

Lemma 3.12. Suppose δ> 0, σ> 0 and x ∈ X n. Then, for any y ∉B(x,σ,δ) and any
finite set B1, . . . ,Bk ⊆ X of δ-balls, there is some g ∈V (x,σ) such that gy ∉ B1∪. . .∪Bk.

In the following, assume furthermore that X is non-compact. Since X is not totally
bounded, we can find some ε> 0 such that X contains an infinite 2ε-separated subset
D ⊆ X .

Lemma 3.13. For any σ > 0, 0 < δ < ε
2 and n Ê 1, there is y ∈ ⋃

nÊ1 X n such that for
any x ∈ X n, finite F ⊆G and h ∈G, there is g ∈V (x,σ) such that

g ·V (xˆh−1 y,δ)∩F ·V (y,δ) ·h =;.

Proof. By Lemma 3.11, we can find some k Ê 1 such that for any x ∈ X n there are k
many ε-balls covering B(x,σ,2δ). Choose distinct y0, . . . , yk ∈ D and notice that for
any h ∈G, x ∈ X n and ε-balls B1, . . . ,Bk covering B(x,σ,2δ), we have

{h−1 y0, . . . ,h−1 yk} 6⊆ B1 ∪ . . .∪Bk,

whence there is some i = 0, . . . ,k such that h−1 yi ∉B(x,σ,2δ). We set y = (y0, . . . , yk)
and V =V (y,δ).

Suppose now that x ∈ X n, F ⊆G is finite and h ∈G. Then

FV h = Fh ·V (h−1 y,δ)

and we can pick some i = 0, . . . ,k such that h−1 yi ∉B(x,σ,2δ). It follows that there
is some g ∈V (x,σ) such that

d(gh−1 yi, f yi)Ê 2δ

for all f ∈ F, whence

g ·V (h−1 yi,δ)∩Fh ·V (h−1 yi,δ)=;
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and thus also

g ·V (xˆh−1 y,δ)∩FV h =;,

which proves the lemma. �

Theorem 3.14. Suppose G is a non-compact, Roelcke precompact Polish group. Then
there is a neighbourhood basis at 1, V0 ⊇V1 ⊇ . . . 3 1 such that for any hn ∈G and finite
Fn ⊆G,

G 6=⋃
n

FnVnhn.

Proof. By Proposition 1.22 (4), without loss of generality we can suppose that G is
a closed subgroup of Isom(X ,d), where (X ,d) is a separable complete metric space
with a dense G-orbit. Since G in non-compact, so is X and thus there is an ε> 0 such
that X contains an infinite 2ε-separated subset D ⊆ X .

Let z1, z2, . . . be a dense sequence in X with each point listed infinitely often and
set δn = ε

3n . So
∑

nÊmδn −→
m→∞0.

We define inductively tuples yi ∈
⋃

nÊ1 X n and natural numbers ni as follows.
First, let n1 = 1 and apply Lemma 3.13 to σ= δ= δ1 and n = n1 to get y1. In general,
if ni and yi are chosen, we set ni+1 = ni + length(yi)+2 and apply Lemma 3.13 to
σ= δ= δi+1 and n = ni+1 to find yi+1. Finally, set Vi =V (yi,δi).

Thus, for any x ∈ X ni , finite F ⊆G and h ∈G, there is some g ∈V (x,δi) such that

g ·V (xˆh−1 yi,δi)∩FVih =;.

Now suppose Fi ⊆G are finite subsets and hi ∈G. Set x1 = z1. By induction on i,
we now construct xi ∈⋃

nÊ1 X n and g i ∈G such that

(1) xi ∈ X ni ,
(2) xi+1 =

(
xi,h−1

i yi, zi, (g1 · · · g i)−1(zi)
)
,

(3) g i ∈V (xi,δi),
(4) g1 g2 · · · g i ·V (xiˆh−1

i yi,δi)∩FiVihi =;.

Note that since δi+1 +δi+1 < δi, we have by (2) and (3) above

g1 g2 · · · g i g i+1 ·V (xi+1,δi+1)⊆ g1 g2 · · · g i ·V (xi+1,δi+1)V (xi+1,δi+1)

⊆ g1 g2 · · · g i ·V (xi+1,δi)

⊆ g1 g2 · · · g i ·V (xiˆh−1
i yi,δi)

⊆ g1 g2 · · · g i ·V (xi,δi),

and so, in particular,

∞⋂
i=1

g1 · · · g i ·V (xiˆh−1
i yi,δi)=

∞⋂
i=1

g1 · · · g i ·V (xi,δi),

which is disjoint from
⋃∞

i=1 FiVihi.
We claim that g1 g2 g3 · · · converges pointwise to a surjective isometry from X to

X and hence converges in G.
First, to see that it converges pointwise on X to an isometry ψ from X to X , it

suffices to show that g1 g2 g3 · · · (zl) converges for any l, i.e., that
(
g1 g2 · · · g i(zl)

)∞
i=1 is
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Cauchy in X . But

d
(
g1 · · · g i(zl), g1 · · · g i+m(zl)

)=d
(
zl , g i+1 · · · g i+m(zl)

)
Éd

(
zl , g i+1(zl)

)+d
(
g i+1(zl), g i+1 g i+2(zl)

)
+ . . .+d

(
g i+1 · · · g i+m−1(zl), g i+1 · · · g i+m(zl)

)
Éd

(
zl , g i+1(zl)

)+d
(
zl , g i+2(zl)

)+ . . .+d
(
zl , g i+m(zl)

)
<δi+1 +δi+2 + . . .+δi+m

<δi,

whenever i Ê l, showing that the sequence is Cauchy.
To see the pointwise limit ψ is surjective, it suffices to show that the image of ψ is

dense in X . So fix zl and ε> 0. We show that Im(ψ)∩B(zl ,ε) 6= ;. Begin by choosing
i large enough such that δi < ε and zl = zi. Then zl = zi = g1 · · · g i(x) for some term x
in xi+1 and hence, by a calculation as above, we find that

d(zl , g1 · · · g i+m(x))= d
(
g1 · · · g i(x), g1 · · · g i+m(x)

)< δi

for any m Ê 0, whence ψ(x)= limm→∞ g1 · · · g i+m(x) is within ε of zl .
Finally, since the sets g1 · · · g i ·V (xi,δi) are decreasing and

g1 · · · g i ∈ g1 · · · g i ·V (xi,δi)

for every i, we have

ψ= lim
i

g1 · · · g i ∈
⋂
i

g1 · · · g i ·V (xi,δi)

and hence ψ ∈G \
⋃

i FiVihi, which finishes the proof. �

In [15], Malicki studied Solecki’s question of whether any feebly locally compact
Polish group is locally compact and proved among other things that none of Isom(U1),
U (`2) nor oligomorphic closed subgroups of S∞ are feebly non-locally compact. Theo-
rem 3.8 strengthens his result for oligomorphic closed subgroups of S∞, but Theorem
3.14 does not imply his results for Isom(U1) and U (`2). We do not know if Theorem
3.14 can be strengthened to two-sided translates FnVnEn, where Fn,En ⊆G are ar-
bitrary finite subsets.

3.5. Isometric actions defined from narrow sequences. Using the narrow se-
quences (Vn) defined hitherto, we shall now proceed to construct (affine) isometric
actions of Polish groups with interesting dynamics. The basic underlying construc-
tion for this was previously used by Nguyen Van Thé and Pestov [19] in their proof
of the equivalence of (3) and (4) of Theorem 1.1.

Definition 3.15. Suppose G is a Polish group acting continuously and by isometries
on a separable complete metric space (X ,d). We say that

(1) G is strongly point moving if there are εn > 0 such that for all xn, yn ∈ X there
is some g ∈G satisfying d(gxn, yn)> εn for all n ∈N,

(2) G is strongly compacta moving if there are εn > 0 such that for all compact
subsets Cn ⊆ X there is some g ∈G satisfying dist(gCn,Cn)> εn for all n ∈N.

Here the distance between two compact sets is the minimum distance between
points in the two sets.

We can now reformulate the existence of narrow sequences in Polish groups by
the existence of strongly point moving isometric actions as follows.
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Theorem 3.16. Let G be a Polish group. Then the following are equivalent.
(1) G admits a strongly point moving continuous isometric action on a separable

complete metric space,
(2) G has a neighbourhood basis (Vn) at 1 such that for any fn,hn ∈ G, G 6=⋃

n fnVnhn.

Proof. (2)⇒(1): Suppose (2) holds and let V0 ⊇V1 ⊇ . . . 3 1 be the given neighbourhood
basis at 1. Fix also a compatible left-invariant metric d on G. Then, by decreasing
each Vn, we can suppose that

Vn = {g ∈G
∣∣ d(g,1)< 3εn}

for some εn > 0. Note then that, for f , g,h ∈G, we have

g ∉ f Vnh ⇐⇒ f −1 gh−1 ∉Vn ⇐⇒ d( f −1 gh−1,1)Ê 3εn ⇐⇒ d(gh−1, f )Ê 3εn.

Let now (X ,d) denote the completion of G with respect to d and consider the exten-
sion of the left shift action of G on itself to X . Then, for any xn, yn ∈ X , there are
fn,hn ∈ G such that d(xn,h−1

n ) < εn and d(yn, fn) < εn, whence, if g ∉ ⋃
n fnVnhn, we

have d(gh−1
n , fn) Ê 3εn and thus d(gxn, yn) > εn for all n. Thus, G is strongly point

moving.
(1)⇒(2): Let εn > 0 be the constants given by a strongly point moving isometric

action of G on a separable complete metric space X and let x ∈ X be fixed. Set
Wn = {g ∈ G

∣∣ d(gx, x) < εn} and let Vn ⊆ Wn be open subsets such that (Vn) forms
a neighbourhood basis at 1. Then, if fn,hn ∈ G are given, find some g such that
d(gh−1

n x, fnx)> εn for all n. It thus follows that g ∉⋃
n fnVnhn. �

The following lemma is proved in a slightly different but equivalent setup in [19].

Lemma 3.17. Suppose G is a group acting by isometries on a metric space (X ,d),
e ∈ X and let ρe denote the affine isometric action of G on Æ(X ) defined by

ρe(g)m = m(g−1 · )+mge,e.

Then, for any m1,m2 ∈Æ(X ), there are finite sets F,E ⊆ X such that if g ∈G satisfies
d(gF,E)> 2ε, then also ‖ρe(g)m1 −m2‖ > ε.
Proof. By approximating each mi by a molecule within distance ε

2 , it suffices to show
that for any molecules m1,m2 ∈ M(X ) there are finite sets F,E ⊆ G such that if
d(gF,E) > 2ε, then also ‖ρe(g)m1 − m2‖ Ê 2ε. For this, write m1 = ∑n

i=1 aimxi ,yi ,
m2 =∑k

i=1 bimvi ,wi and assume that g ∈G satisfies

d({gxi, gyi, ge}n
i=1, {vi,wi, e}k

i=1)> 2ε.

Now, letting f : X →R be defined by

f (x)=min
{
2ε,d(x, {vi,wi, e}k

i=1)
}

we see that f is 1-Lipschitz and f (x) = 2ε for all x ∈ {gxi, gyi, ge}n
i=1, while f (x) = 0

for x ∈ {vi,wi, e}k
i=1. It follows that

‖ρe(g)m1 −m2‖ =
∥∥ n∑

i=1
aimgxi ,gyi +mge,e −

k∑
i=1

bimvi ,wi

∥∥
=

n∑
i=1

ai
(
f (xi)− f (yi)

)+ (
f (ge)− f (e)

)+ k∑
i=1

bi
(
f (vi)− f (wi)

)
= 2ε,
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which proves the lemma. �

Theorem 3.18. Let G be a Polish group. Then the following are equivalent.
(1) G admits a strongly compacta moving continuous affine isometric action on

a separable Banach space,
(2) G has a neighbourhood basis (Vn) at 1 such that for any finite subsets Fn,En ⊆

G, G 6=⋃
n FnVnEn.

Proof. The implication (1)⇒(2) is similar to that of Theorem 3.16. Also for (2)⇒(1),
let again d be a compatible left-invariant metric on G and let G act on itself on the
left. As before, we can suppose that Vn = {g ∈ G

∣∣ d(g,1) < 6εn} for some εn > 0 and
thus for all finite sets Fn,En ⊆ G there is some g ∈ G such that d(gFn,En) Ê 6εn for
all n ∈N. Fix an arbitrary element e ∈G and let ρe denote the affine isometric action
of G on Æ(G) defined by ρe(g)m = m(g−1 · )+mge,e.

Assume now that Cn ⊆ Æ(G) are compact and find finite εn-dense subsets Mn ⊆
Cn. By Lemma 3.17, there are finite subsets Fn,En ⊆G such that if d(gFn,En)> 6εn,
then ‖ρe(g)m1−m2‖ > 3εn for all m1,m2 ∈ Mn, whereby also ‖ρe(g)m1−m2‖ > εn for
all m1,m2 ∈ Cn, finishing the proof of the theorem. �

Combining Theorems 3.16, 3.18, 3.8, 3.14, 3.6 and Propositions 3.1 (b), 3.5, we
obtain the following two corollaries.

Corollary 3.19. The following classes of Polish groups admit strongly point moving,
continuous isometric actions on separable complete metric spaces,

• non-discrete, unimodular, locally compact groups,
• non-compact, Roelcke precompact groups,
• Polish groups G such that {g ∈ G

∣∣ 1 ∈ cl(gG)} is not comeagre in any neigh-
bourhood of 1.

Corollary 3.20. The following classes of Polish groups admit strongly compacta
moving, continuous affine isometric actions on separable Banach spaces,

• non-locally compact SIN groups,
• oligomorphic closed subgroups of S∞.
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