\qquad

Midterm Exam 1

Duration: 2 hours
Total: 100 points
The following rules apply:

- You are expected to abide by the University's rules concerning Academic Honesty.
- You may not use your books, notes, or any electronic device including cell phones.
- You must show all of your work. An answer, right or wrong, without the proper justification will receive little to no credit.
- You must complete your work in the space provided.

Check next to your instructor:

Kobotis	
Slutskyy	
Dai	
Xie @ 11am	
Xie @ noon	
Heard	
Steenbergen @ noon	
Steenbergen @ 2pm	
Woolf	
Cheskidov	
Shvydkoy	

Problem	Points	Score
1	6	
2	9	
3	10	
4	10	
5	15	
6	5	
7	15	
8	10	
9	10	
10	10	
Total	100	

(6 pts) 1. Two vectors are given by $\mathbf{u}=\langle 1,1\rangle, \mathbf{v}=\langle-1,2\rangle$. Draw the vectors on a coordinate grid. Find coordinates of the vectors $\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}$ and plot this couple of vectors on the same grid.
(9 pts) 2. For each of the couples below determine whether the angle between the vectors is acute, obtuse, or right?
(a) $\mathbf{u}=\langle 3,1,2\rangle, \mathbf{v}=\langle-1,0,1\rangle$.
(b) $\mathbf{u}=4 \mathbf{i}-2 \mathbf{j}, \mathbf{v}=-\mathbf{j}+\mathbf{k}$.
(c) $\mathbf{u}=\left\langle-\frac{1}{2}, 3\right\rangle, \mathbf{v}=\left\langle 2, \frac{1}{3}\right\rangle$.
(10 pts) 3. Find an equation of the line perpendicular to two vectors $\mathbf{u}=\langle 1,1,4\rangle, \mathbf{v}=\langle 0,-1,2\rangle$ and passing through the point $P(0,1,3)$.
(10 pts) 4. Find an equation of the tangent line to the curve $\mathbf{r}(t)=\left\langle\frac{2}{t}, t, 2\right\rangle$ at the point $t=1$.
(15 pts) 5. Find the area of the triangle with vertices at $P(1,0,2), Q(3,1,0), R(0,0,2)$.
\qquad

(5 pts) 6. Determine which one of these equations fits best for the curve pictured above. Explain your reasons, do not just give a guess.
(a) $\mathbf{r}(t)=\langle\cos t, \sin t, 3 t\rangle$,
(b) $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$,
(c) $\mathbf{r}(t)=\langle 2 t, \sin t, \cos t\rangle$,
(d) $\mathbf{r}(t)=\langle t, 1+t,-3 t\rangle$.
(15 pts) 7. An object is hit at 8 feet from the ground with an initial velocity $\mathbf{v}_{0}=\langle 2,8\rangle \frac{\mathrm{ft}}{\mathrm{s}}$. Assuming $g=32 \frac{f t}{s^{2}}$ answer the following questions:
(a) Write down a parametric equation of the trajectory.
(b) Determine the time of flight and range of the object.
(c) What was the maximum hight of the object during its flight?
(10 pts) 8. Find the arc length of the curve given by

$$
\mathbf{r}(t)=\left\langle\frac{t^{2}}{2}, \frac{t^{3}}{3}\right\rangle
$$

on the range $0 \leq t \leq 1$.
(10 pts) 9. For the curve given by

$$
\mathbf{r}(t)=\left\langle e^{t}, \sqrt{2} t, e^{-t}\right\rangle
$$

compute the curvature at $t=0$.
(10 pts) 10. Find the principal unit normal vector at time t to the curve

$$
\mathbf{r}(t)=\langle\cos t, \sqrt{2} \sin t, \cos t\rangle
$$

