MATHEMATICS 220: FINAL EXAM
 University of Illinois at Chicago
 (Fazioli, Knessl, Nicholls)
 May 5, 2011

Please read the exam carefully and follow all instructions. SHOW ALL OF YOUR WORK. Please put a box around your final answer.

1. (30 points) Solve the following first order ordinary differential equations.
(a) (10 points)

$$
\frac{d y}{d x}=\frac{x \cos \left(x^{2}\right)}{y}
$$

(b) (10 points)

$$
\frac{d y}{d x}=\frac{-3 x^{2} y+e^{x}}{x^{3}+1}
$$

(c) (10 points)

$$
\frac{d y}{d x}=\frac{1-y^{2} \sin \left(x y^{2}\right)}{2 x y \sin \left(x y^{2}\right)}
$$

2. (15 points) Consider the initial value problem:

$$
y^{\prime}=x-y^{2}, \quad y(0)=1
$$

(a) (5 points) Use the Euler method with one step to approximate $y(0.2)$.
(b) (10 points) Use the Euler method with two steps to approximate $y(0.2)$.
3. (20 points) Let $p(t)$ be the population of some species, which satisfies the ordinary differential equation

$$
p^{\prime}(t)=3 p(t)-p^{2}(t)
$$

(a) (5 points) If $p(0)=0$ what is $p(t)$ for $t>0$?
(b) (5 points) If $p(0)=3$ what is $p(t)$ for $t>0$?
(c) (10 points) Solve for $p(t)$ for the initial condition $p(0)=1$, and then evaluate the limit of $p(t)$ as $t \rightarrow \infty$.
4. (30 points) Solve the following initial value problems.
(a) (15 points)

$$
y^{\prime \prime}(t)+2 y^{\prime}(t)+2 y(t)=2 t+5 e^{t}, \quad y(0)=4, \quad y^{\prime}(0)=5
$$

(b) (15 points)

$$
2 t^{2} y^{\prime \prime}(t)-t y^{\prime}(t)-2 y(t)=0, \quad y(1)=1, \quad y^{\prime}(1)=-1
$$

5. (20 points) Find the general solution to the following system of ordinary differential equations (your answer should involve only two arbitrary constants).

$$
\begin{aligned}
x^{\prime}(t) & =4 x(t)-y(t) \\
y^{\prime}(t) & =9 x(t)-2 y(t)
\end{aligned}
$$

6. (20 points) Find the inverse Laplace transform of the following function.

$$
F(s)=\frac{3 s^{2}-7 s}{\left(s^{2}-4 s+5\right)(s+1)}
$$

7. (20 points) Solve the following initial value problem using the method of Laplace transforms (other methods will receive zero points).

$$
y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)=\delta(t-3), \quad y(0)=0, \quad y^{\prime}(0)=1
$$

8. (25 points) Find the real values of λ (eigenvalues) for which the following problem has a nontrivial solution. Also, determine the nontrivial solutions (eigenfunctions).

$$
\begin{aligned}
& y^{\prime \prime}(x)+\lambda y(x)=0, \quad 0<x<\pi \\
& y^{\prime}(0)=0, \quad y(\pi)=0
\end{aligned}
$$

9. (20 points) Consider the function

$$
f(x)= \begin{cases}0, & 0<x<\pi / 4 \\ 1, & \pi / 4<x<\pi / 2 \\ 0, & \pi / 2<x<3 \pi / 4 \\ -1, & 3 \pi / 4<x<\pi\end{cases}
$$

(a) (16 points) Find the Fourier sine series for f.
(b) (2 points) To what value does this series converge at $x=\pi / 2$? Why?
(c) (2 points) To what value does this series converge at $x=\pi$? Why?

List of Laplace Transforms

1. $\mathcal{L}\{1\}=\frac{1}{s}, \quad s>0$
2. $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
3. $\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$
4. $\mathcal{L}\{\sin (b t)\}=\frac{b}{s^{2}+b^{2}}, \quad s>0$
5. $\mathcal{L}\{\cos (b t)\}=\frac{s}{s^{2}+b^{2}}, \quad s>0$
6. $\mathcal{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}}, \quad s>a$
7. $\mathcal{L}\left\{e^{a t} \sin (b t)\right\}=\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
8. $\mathcal{L}\left\{e^{a t} \cos (b t)\right\}=\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
9. $\mathcal{L}\{f+g\}=\mathcal{L}\{f\}+\mathcal{L}\{g\}$
10. $\mathcal{L}\{c f\}=c \mathcal{L}\{f\}$
11. $\mathcal{L}\left\{e^{a t} f(t)\right\}(s)=\mathcal{L}\{f\}(s-a)$
12. $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$
13. $\mathcal{L}\left\{f^{\prime \prime}\right\}(s)=s^{2} \mathcal{L}\{f\}(s)-s f(0)-f^{\prime}(0)$
14. $\mathcal{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathcal{L}\{f\}(s)-s^{n-1} f(0)-\ldots-f^{(n-1)}(0)$
15. $\mathcal{L}\left\{t^{n} f(t)\right\}(s)=(-1)^{n} \frac{d^{n}}{d s^{n}} \mathcal{L}\{f\}(s)$
16. $\mathcal{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} F(s)$
17. $\mathcal{L}\{u(t-a)\}(s)=\frac{e^{-a s}}{s}$
18. $\mathcal{L}\{g(t) u(t-a)\}(s)=e^{-a s} \mathcal{L}\{g(t+a)\}(s)$
19. If f has period T then

$$
\mathcal{L}\{f\}(s)=\frac{F_{T}(s)}{1-e^{-s T}}=\frac{\int_{0}^{T} e^{-s t} f(t) d t}{1-e^{-s T}}
$$

20. $\mathcal{L}\{\delta(t-a)\}(s)=e^{-a s}$

List of PDE Formulae

1. The solution of the homogeneous heat equation $u_{t}=\beta^{2} u_{x x}$ with Dirichlet boundary conditions is:

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-(\beta n \pi / L)^{2} t} \sin \left(\frac{n \pi}{L} x\right) .
$$

2. The solution of the homogeneous heat equation $u_{t}=\beta^{2} u_{x x}$ with Neumann boundary conditions is:

$$
u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-(\beta n \pi / L)^{2} t} \cos \left(\frac{n \pi}{L} x\right) .
$$

3. The inhomogeneous heat equation has a solution of the form $u(x, t)=v(x)+$ $w(x, t)$, where v is the steady-state solution and w solves a homogeneous heat equation.
4. The solution of the homogeneous wave equation $u_{t t}=\alpha^{2} u_{x x}$ with Dirichlet boundary conditions is:

$$
u(x, t)=\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\alpha \frac{n \pi}{L} t\right)+b_{n} \sin \left(\alpha \frac{n \pi}{L} t\right)\right\} \sin \left(\frac{n \pi}{L} x\right)
$$

