Algebra

A1. Assume H and K are subgroups of a group G. Show that HK is a subgroup of G if and only if $HK = KH$.

Solution: Assume first that $HK = KH$ and let $a, b \in HK$. We prove $ab^{-1} \in HK$ so HK is a subgroup. Let $a = h_1k_1$ and $b = h_2k_2$, with $h_1, h_2 \in H$ and $k_1, k_2 \in K$. Thus $b^{-1} = k_2^{-1}h_2^{-1}$ and $ab^{-1} = h_1k_1k_2^{-1}h_2^{-1}$. Let $k_3 = k_1k_2^{-1} \in K$ and $h_3 = h_2^{-1} \in H$, so $ab^{-1} = h_1k_3h_3$. Since $HK = KH$, $k_3h_3 = h_4k_4$ with $h_4 \in H$ and $k_4 \in K$. Thus $ab^{-1} = h_1h_4k_4 \in HK$ as desired.

Conversely, assume HK is a subgroup of G. Since $K \leq HK$ and $H \leq HK$, by closure $KH \subseteq HK$. To show the reverse containment, let $hk \in HK$. Since HK is a subgroup, write $hk = a^{-1}$ for some $a \in HK$. If $a = h_1k_1$, then $hk = (h_1k_1)^{-1} = k_1^{-1}h_1^{-1} \in KH$. Thus $KH = HK$.

A2. Let $\mathcal{K} = \{k_1, \ldots, k_m\}$ be a conjugacy class in the finite group G. Prove that the element $K = k_1 + \ldots + k_m$ is in the center of the group ring RG.

Solution: Given $g \in G$ and $k \in \mathcal{K}$, then $gkg^{-1} = k'$ with $k' \in \mathcal{K}$, so $g\mathcal{K}g^{-1} \subseteq \mathcal{K}$. So action by conjugation is an automorphism and gives a permutation of the elements in \mathcal{K}. Thus, in RG, $gKg^{-1} = K$ and K is in the center of RG.

A3. Show that if p is a prime congruent to 3 modulo 4, then p is prime in the ring of Gaussian integers $\mathbb{Z}[i]$.

Solution: If $p = ab$ then one has for the norms $N(a)N(b) = p^2$. If the norm of one of the factors is 1 then this factor is a unit. Hence $N(a) = N(b) = p$. But for $\alpha = a + bi$ one has $N(\alpha) = a^2 + b^2$ and hence $N(\alpha)$ cannot be congruent to 3 modulo 4.
Complex Analysis

C1. Compute the integral
\[\int_0^{2\pi} \frac{\cos \theta}{5 + 4 \cos \theta} \, d\theta. \]

Solution: To compute the integral, we recall that
\[\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \]
and so, by plugging this into the integral and remembering that \(z(\theta) = e^{i\theta}, 0 \leq \theta \leq 2\pi \) is a parametrization of the unit circle \(C \), positively oriented, we get:

\[
\int_0^{2\pi} \frac{\cos \theta}{5 + 4 \cos \theta} \, d\theta = \int_0^{2\pi} \frac{e^{i\theta} + e^{-i\theta}}{10 + 4(e^{i\theta} + e^{-i\theta})} \, d\theta = \int_0^{2\pi} \frac{1 + e^{-2i\theta}}{4e^{i\theta} + 10 + 4e^{-i\theta}} \, e^{i\theta} \, d\theta \\
= \frac{1}{i} \int_C \frac{1 + \frac{1}{z^2}}{4z^3 + 10z^2 + 4z} \, dz = \frac{1}{i} \int_C \frac{z^2 + 1}{4z^3 + 10z^2 + 4z} \, dz
\]

The last integral can easily be computed using the Residue Theorem. Indeed, notice that the denominator can be factored as
\[4z^3 + 10z^2 + 4z = 2z(2z^2 + 5z + 2) = 2z(z + 2)(2z + 1) \]
and so the function we are integrating has two simple poles, at \(z = 0 \) and \(z = -\frac{1}{2} \), inside the unit circle, with residues

\[
\text{Res} \left(\frac{z^2 + 1}{4z^3 + 10z^2 + 4z}; z = 0 \right) = \frac{1}{4}
\]
and
\[
\text{Res} \left(\frac{z^2 + 1}{4z^3 + 10z^2 + 4z}; z = -\frac{1}{2} \right) = -\frac{5}{12}.
\]

So, by the Residue Theorem,
\[
\int_C \frac{z^2 + 1}{4z^3 + 10z^2 + 4z} \, dz = 2\pi i \left(\frac{1}{4} - \frac{5}{12} \right) = -\frac{\pi i}{3}.
\]

Putting it all together we get
\[
\int_0^{2\pi} \frac{\cos \theta}{5 + 4 \cos \theta} \, d\theta = -\frac{\pi}{3}.
\]
C2. Let f be an entire function such that

$$|f(z)| \leq 1 + |z|^{3/2} \quad \text{for all } z \in \mathbb{C}.$$

Prove that there exist $a_0, a_1 \in \mathbb{C}$ such that

$$f(z) = a_0 + a_1 z.$$

Solution: Since f is an entire function, we know that it has a power series expansion around 0 with infinite radius of convergence,

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n,$$

and, from the Cauchy integral formula,

$$f^{(n)}(0) = \frac{n!}{2\pi i} \oint_{C_R} \frac{f(w)}{w^{n+1}} \, dw,$$

where C_R is the circle of radius $R > 0$, positively oriented.

Since $|f(w)| \leq 1 + R^{3/2}$ on C_R and C_R has length $2\pi R$, we find for each $n \geq 0$ and each $R > 0$,

$$|f^{(n)}(0)| = \frac{n!}{2\pi} \left| \oint_{C_R} \frac{f(w)}{w^{n+1}} \, dw \right| \leq \frac{n!}{2\pi} \cdot \frac{1 + R^{3/2}}{R^{n+1}} \cdot 2\pi R.$$

But for $n \geq 2$ the right-hand side

$$\frac{n!(1 + R^{3/2})}{R^n} \to 0 \quad \text{as} \quad R \to \infty,$$

and so

$$f^{(n)}(0) = 0 \quad \text{for all } n \geq 2.$$

Putting this into the powers series for f we conclude that

$$f(z) = f(0) + f'(0)z = a_0 + a_1 z, \quad \text{for } a_0 = f(0), \ a_1 = f'(0).$$

C3. Let $f(z) = \sin z$. Find

$$\max \{|f(z)| : z \in K\},$$

where

$$K = \{x + iy : 0 \leq x, y \leq 2\pi\}.$$
Solution: Since
\[f(z) = \sin z = \frac{e^{iz} - e^{-iz}}{2i} \]
is analytic on the close square \(K \), we know from the Maximum Modulus Principle that \(|f| \) will achieve its maximum on the boundary of \(K \),

\[\partial K = \{ x + iy : x = 0 \text{ or } x = 2\pi \text{ or } y = 0 \text{ or } y = 2\pi \} . \]

On the two vertical edges, \(x = 0 \) and \(x = 2\pi \), we have
\[|f(iy)| = |f(2\pi + iy)| = \frac{|e^{-y} - e^{y}|}{2} = \frac{e^{y} - e^{-y}}{2} . \]

Since
\[\frac{d}{dy} \left(\frac{e^{y} - e^{-y}}{2} \right) = \frac{e^{y} + e^{-y}}{2} > 0 , \]
we see that the maximum of \(f \) is achieved at \(2\pi i \) and \(2\pi + 2\pi i \), and it equals
\[|f(2\pi i)| = |f(2\pi + 2\pi i)| = \frac{e^{2\pi} - e^{-2\pi}}{2} . \]

On the horizontal edge, \(y = 0 \), we get
\[|f(x)| = |\sin x| \leq 1 \]
and it achieves its maximum value, 1, at \(x = \frac{\pi}{2} \) and \(x = \frac{3\pi}{2} \).

Finally, on the other horizontal edge, \(y = 2\pi \),
\[|f(x + 2\pi i)| = |\sin(x + 2\pi i)| = \frac{1}{2} |\cos x(e^{-2\pi} - e^{2\pi}) + i \sin x(e^{-2\pi} + e^{2\pi})| \]
\[= \frac{1}{2} \sqrt{\cos^2 x(e^{-2\pi} - e^{2\pi})^2 + \sin^2 x(e^{-2\pi} + e^{2\pi})^2} \]
\[= \frac{1}{2} \sqrt{e^{4\pi} + e^{-4\pi} + 2(\sin^2 x - \cos^2 x)} . \]

This function clearly achieves its maximum when \(\sin^2 x = 1 \) and \(\cos^2 x = 0 \), in other words when \(x = \frac{\pi}{2} \) or \(x = \frac{3\pi}{2} \), in which cases
\[\max_{y=2\pi} |f(z)| = \frac{1}{2} \sqrt{e^{4\pi} + e^{-4\pi} + 2} = \frac{e^{2\pi} + e^{-2\pi}}{2} . \]

Summing up, we see that
\[\max_{y=0} |f(z)| = 1 < \max_{x=0, x=2\pi} |f(z)| = \frac{e^{2\pi} - e^{-2\pi}}{2} < \max_{y=2\pi} |f(z)| = \frac{e^{2\pi} + e^{-2\pi}}{2} , \]
and therefore
\[\max_{z \in K} |\sin z| = \frac{e^{2\pi} + e^{-2\pi}}{2} , \]
achieved at \(z = \frac{\pi}{2} + 2\pi i \) and \(z = \frac{3\pi}{2} + 2\pi i \).
_logic

Convention: If \(\mathcal{M} \) is a structure, we denote the universe of \(\mathcal{M} \) by \(|\mathcal{M}|\).

L1. Let \(L \) be a first-order language with equality, a unary function symbol \(f \), and a binary relation symbol \(< \).

(a) Write down a sentence \(\theta \) asserting that \(< \) is a linear ordering (that is, \(< \) is irreflexive, transitive, and any two elements are comparable).

(b) Is the set of \(L \)-sentences \(S := \{ \forall x (x < y \rightarrow f(x) < f(y)), \exists x (f(f(f(x)))) = x \land f(x) \neq x \} \) satisfiable? If yes, give an example of a structure that satisfies it; if not, explain why not.

(c) Is the set \(S \cup \{ \theta \} \) satisfiable? (\(\theta \) is the sentence in part (a).)

Solution: (a) Let \(\theta \) be the sentence

\[
\forall x \; \neg x < x \\
& \forall x \; \forall y \; \forall z \; ((x < y \land y < z) \rightarrow x < z) \\
& \forall x \; \forall y \; (x < y \lor x = y \lor y < x)
\]

(b) Yes. For example, if \(\mathcal{M} \) is the structure with exactly two distinct elements \(x, y \) satisfying \(f^\mathcal{M}(x) = y, \; f^\mathcal{M}(y) = x \) and \(x <^\mathcal{M} x <^\mathcal{M} y <^\mathcal{M} y <^\mathcal{M} x \), then \(\mathcal{M} \models S \).

(c) No. For if \(\mathcal{M} \models S \cup \{ \theta \} \), then \(<^\mathcal{M} \) is a strict linear ordering of \(|\mathcal{M}|\). So suppose \(x \in |\mathcal{M}| \) satisfies \(f(f(f(x)))) = x \) and \(f(x) \neq x \), say \(x < f(x) \). Then also \(f(x) < f(f(x)), \; f(f(x)) < f(f(f(x))) \) and \(f(f(f(x))) < f(f(f(f(x)))) \), whereby \(x < f(f(f(x)))) \) and hence also \(x \neq f(f(f(x)))) \), contradicting the assumption on \(x \). A similar argument applies if \(f(x) < x \).

L2. Suppose \(L \) is a first order language with equality, \(T \) an \(L \)-theory and \(\phi(x) \) an \(L \)-formula with exactly one free variable \(x \). Suppose that for every finite number \(C \) there is an infinite model \(\mathcal{M} \) of \(T \) such that

\[
\{ x \in |\mathcal{M}| : \mathcal{M} \models \phi(x) \}
\]

is finite, but of cardinality \(\geq C \).

Show that \(T \) has a model \(\mathcal{N} \) such that

\[
A = \{ x \in |\mathcal{N}| : \mathcal{N} \models \phi(x) \}
\]

and its complement \(|\mathcal{N}| \setminus A \) are infinite subsets of \(|\mathcal{N}|\).
Solution: Let \((c_n)_{n \in \mathbb{N}}\) and \((d_n)_{n \in \mathbb{N}}\) be disjoint sets of new constant symbols and let \(S\) be the theory having axioms
\[
\{\phi(c_0), \phi(c_1), \phi(c_2), \ldots, \neg\phi(d_0), \neg\phi(d_1), \ldots, c_i \neq c_j, d_i \neq d_j\}_{i \neq j}.
\]

By assumption on \(T\), \(T \cup S\) is finitely satisfiable and hence has a model \(\mathcal{N}\). Moreover,
\[
\{c^\mathcal{N}_i\}_{i \in \mathbb{N}} \subseteq A = \{x \in |\mathcal{N}| : \mathcal{N} \models \phi(x)\}
\]
while
\[
\{d^\mathcal{N}_i\}_{i \in \mathbb{N}} \subseteq |\mathcal{N}| \setminus A.
\]
So \(A\) is both infinite and coinfinite.

L3. A first order formula is called **existential** if it is of the form
\[
\exists x_1 \exists x_2 \ldots \exists x_n \psi,
\]
where \(\psi\) is a formula without quantifiers. Similarly, a formula of the form
\[
\forall x_1 \forall x_2 \ldots \forall x_n \psi,
\]
where \(\psi\) is a formula without quantifiers, is called **universal**.

Two formulae \(\phi(x_1, \ldots x_n)\) and \(\psi(x_1, \ldots x_n)\) are **equivalent modulo** \(T\) if every model of \(T\) satisfies
\[
\forall x_1 \ldots \forall x_n (\psi \leftrightarrow \phi).
\]

For a given theory \(T\), show that if every formula is equivalent modulo \(T\) to a universal formula, then every formula is equivalent modulo \(T\) to an existential formula.

Solution: Suppose \(L\) is the language of \(T\). Let \(\phi(x_1, \ldots x_n)\) be any \(L\)-formula and find a quantifier free \(L\)-formula \(\psi(x_1, \ldots x_n, y_1, \ldots y_m)\) such that
\[
T \models \forall x_1 \ldots \forall x_n (\neg\phi(x_1, \ldots x_n) \leftrightarrow \forall y_1 \ldots \forall y_m \psi(x_1, \ldots x_n, y_1, \ldots y_m)).
\]

Then also
\[
T \models \forall x_1 \ldots \forall x_n (\phi(x_1, \ldots x_n) \leftrightarrow \exists y_1 \ldots \exists y_m \neg\psi(x_1, \ldots x_n, y_1, \ldots y_m)).
\]
So \(\phi\) is equivalent modulo \(T\) to an existential formula.
Number Theory

N1. Find all integers \(n \) such that \(\phi(n) = 4 \).

Solution: The Euler function \(\phi \) is the number of integers \(k \) relatively prime to \(n \) with \(1 \leq k \leq n \). For \(p \) prime and \(e \geq 1 \), \(\phi(p^e) = p^e - 1 \). For \(a \) and \(b \) relatively prime, \(\phi(ab) = \phi(a)\phi(b) \). For \(n > 1 \), \(\phi(n) < n \).

If \(\phi(n) = 4 \) then \(n > 4 \). If \(p \) divides \(n \), then \(p \leq 5 \). Hence \(n = 2^a3^b5^c \) where \(a \leq 3 \), \(b \leq 1 \), and \(c \leq 1 \). Further if \(c = 1 \) then \(b = 0 \). The possibilities are:

\[
\begin{array}{cccc}
a & b & c & n \\
0 & 0 & 1 & 5 \\
1 & 0 & 1 & 10 \\
2 & 0 & 1 & 12 \\
3 & 0 & 0 & 8 \\
\end{array}
\]

N2. Find all integral \(x \) such that

\[
\begin{align*}
3x & \equiv 2 \pmod{7} \\
x & \equiv 5 \pmod{11}
\end{align*}
\]

Solution: Since \(3 \cdot 5 \equiv 1 \pmod{7} \), if \(3x \equiv 2 \pmod{7} \), then

\[
x \equiv 15x \equiv 10 \equiv 3 \pmod{7}.
\]

Hence \(x = 7k + 3 \) for some integer \(k \). Then we have:

\[
\begin{align*}
7k + 3 & \equiv 5 \pmod{11}, \\
7k & \equiv 2 \pmod{11} \\
-k & \equiv 21k \equiv 6 \pmod{11} \\
k & \equiv 5 \pmod{11} \\
k & = 5 + 11\ell \\
x & = 7(5 + 11\ell) + 3 = 38 + 77\ell \text{ for any } \ell \in \mathbb{Z}.
\end{align*}
\]

N3. (a) Show that if \(p \) is a prime congruent to 3 mod 4, then

\[
\left(\left(\frac{p-1}{2} \right)! \right)^2 \equiv 1 \pmod{p}.
\]

(b) Show that \(30!6! \) is congruent to \(-1 \) mod 37.
Solution: (a) If \(p \) is prime, then Wilson’s theorem states
\[
(p - 1)! \equiv -1 \pmod{p}.
\]
For \(p = 4k + 3 \),
\[
(p - 1)! = 1 \cdot 3 \cdot 3 \cdots (2k + 1)(p - 2k - 1)(p - 2k - 2) \cdots (p - 1)
\equiv ((2k + 1)!)^2(-1)^{2k+1} \equiv -((2k + 1)!)^2 \pmod{p}.
\]
Hence \(
\left(\frac{p - 1}{2}\right)! \equiv 1 \pmod{p}.
\)
(b) Again by Wilson’s theorem with \(p = 37 \) (and noting that 6 is even)
\[
30! \cdot 6! = 30!(37 - 6)(37 - 5) \cdots (37 - 1)
\equiv 37! \pmod{37}
\equiv -1 \pmod{37}.
\]

Real Analysis

R1. Suppose \(g(x) \) is a function on \(\mathbb{R} \) such that \(|g(x) - g(y)| \leq |x - y|^\frac{1}{2} \) for all \(x \) and \(y \). Let \(g_n(x) = g(x + \frac{1}{n}) \) for all positive integers \(n \). Show that \(g_n(x) \) converges uniformly to \(g(x) \) on \(\mathbb{R} \) as \(n \to \infty \).

Solution: \(|g_n(x) - g(x)| = |g(x + \frac{1}{n}) - g(x)| \leq |(x + \frac{1}{n}) - x|^\frac{1}{2} = n^{-\frac{1}{2}} \). Thus for any \(\epsilon > 0 \), if \(n \) satisfies \(n^{-\frac{1}{2}} < \epsilon \) (i.e. if \(n > \frac{1}{\epsilon^2} \)) then \(|g_n(x) - g(x)| < \epsilon \), uniformly in \(x \).

R2. Define the sequence \(\{a_n\}_{n=0}^\infty \) of numbers as follows. Let \(a_0 = 2 \). For \(n > 0 \), define \(a_n \) by
\[
a_n = \frac{1}{2} + \frac{a_{n-1}}{2}.
\]

a) Show that \(1 < a_n < a_{n-1} \) for all \(n \).
b) Show that the sequence \(\{a_n\}_{n=0}^\infty \) is convergent and find its limit.

Solution: (a) By induction assume \(a_{n-1} > 1 \). Then \(a_n \) is the sum of \(\frac{1}{2} \) and a number greater than \(\frac{1}{2} \) and thus is greater than 1. The inequality \(a_n < a_{n-1} \) can be rewritten as \(\frac{1}{2} < \frac{a_{n-1}}{2} \) or \(a_{n-1} > 1 \) which again holds by the induction hypothesis.

(b) By completeness of the reals, a decreasing sequence of numbers bounded below has a limit \(L \). Taking limits in both sides of the recursion \(a_n = \frac{1}{2} + \frac{a_{n-1}}{2} \) as \(n \) goes to infinity gives \(L = \frac{1}{2} + \frac{L}{2} \) which is solved by \(L = 1 \).
R3. For which real values of x does the series $\sum_{n=2}^{\infty} \frac{(2x-1)^n}{n \log n}$ converge? (Distinguish between absolute and conditional convergence; state convergence criteria that you are using.)

Solution: There are four cases: (1) $x < 0$ or $x > 1$, (2) $0 < x < 1$, (3) $x = 0$, (4) $x = 1$.

In case (1) the ratio test for the absolute values $a_n = |2x - 1|^n / n \log n$ gives

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = |2x - 1| \cdot \lim_{n \to \infty} \frac{(n+1) \cdot \log(n+1)}{n \cdot \log n} = |2x - 1| > 1.$$

So $a_n \not\to 0$ and the series diverges.

In case (2) the same ratio test gives absolute convergence.

In case (3) the series is $\sum (-1)^n / n \log n$; it converges conditionally by Leibnitz’s rule because $1/n \log n \to 0$ monotonically.

In case (4) the series is $\sum 1/n \log n = +\infty$. This can be deduced from Cauchy criterion comparing the series to $\sum 2^k a_{2k} = \text{const} \cdot \sum 1/k$, or by the integral criterion with change of variables $u = e^x$.

So the series converges for $x \in [0, 1)$ with conditional convergence at $x = 0$.

Topology

T1. Let X and Y be topological spaces and $f : X \to Y$ a function. Prove that f is continuous if and only if for every subset $A \subset X$ we have $f(A) \subset f(A)$.

Solution: Assume f is continuous, and let A be any subset of X. Since $f(A)$ is closed in Y and f is continuous, $f^{-1}(f(A))$ is closed in X. Further, $A \subset f^{-1}(f(A)) \subset f^{-1}(f(A))$. Thus $f^{-1}(f(A))$ is a closed set containing A and therefore $A \subset f^{-1}(f(A))$. Applying f gives $f(A) \subset f(A)$ as claimed.

Assume for every subset $A \subset X$ we have $f(A) \subset f(A)$. Let U be an open subset of Y and x a point with $f(x) \in U$. To show f continuous we need to see that $f^{-1}(U)$ contains a neighborhood of x. Equivalently, we need to show that $x \notin f^{-1}(U^c)$. Let $A = f^{-1}(U^c)$. By assumption $f(A) \subset f(A)$. Since $f(A) = f(f^{-1}(U^c) \subset U^c$ and U^c is closed, $f(A) \subset U^c$, and so $f(A) \subset U^c$. Since $f(x) \in U$ this proves $x \notin A$ as needed.

T2. Let X and Y be topological spaces with X and Y compact and Y Hausdorff. Prove that a function $f : X \to Y$ is continuous if and only if the subset

$$Gr_f = \{(x, f(x)) : x \in X\} \subset X \times Y$$

is closed when $X \times Y$ is given the product topology.
Solution: Assume f is continuous. Let (x, y) be a point of $\overline{Gr_f}$. We need to prove $y = f(x)$. If not, then because Y is Hausdorff there are disjoint open sets U and V in Y containing y and $f(x)$ respectively. By the continuity of f, $V' = f^{-1}(V) \subset X$ is open in X. Therefore $V' \times U$ is an open subset of $X \times Y$ containing (x, y). By construction $f(V')$ and U are disjoint, so $V' \times U$ is disjoint from Gr_f, contradicting the fact that $(x, y) \in \overline{Gr_f}$.

Assume Gr_f is closed. We show f is continuous by showing $f^{-1}(C)$ is closed for all closed $C \subset Y$. Because Y is compact, C is compact and therefore $X \times C$ is compact in $X \times Y$. Since Gr_f is closed, the subset $Z = X \times C \cap Gr_f$ is also compact. The projection $X \times Y$ to X is continuous, so the projection of Z to X is compact and hence closed. This projection is precisely $f^{-1}(C)$, so f is continuous.

T3. Let τ be the collection of subsets of \mathbb{R} given by

$$\tau := \{ A \subset \mathbb{R} : \text{ Either } A = \emptyset \text{ or } \mathbb{R} \setminus A \text{ is compact in the standard topology} \}.$$

(a) Is \mathbb{R} with the topology τ connected?

(b) Is \mathbb{R} with the topology τ Hausdorff?

(c) Is \mathbb{R} with the topology τ compact?

Solution: By the definition of τ, any non-empty τ-open set contains the semi-infinite intervals $(a, +\infty)$ and $(-\infty, -a)$ for some $a \geq 0$. In particular, no two non-empty τ-open sets are disjoint. Thus:

(a) (\mathbb{R}, τ) is connected.

(b) (\mathbb{R}, τ) is not Hausdorff.

(c) (\mathbb{R}, τ) is compact: If U_α is any open cover, let U_0 be one of the sets which is non-empty. Since, by definition, the complement U^c_0 is compact in the usual topology, and since all τ-open sets are also open in the standard topology, there is a finite subset of the U_α that cover U^c_0. Together with U_0 this gives a finite subcover of \mathbb{R}.

10