MASTERS EXAMINATION IN MATHEMATICS
PURE MATH OPTION, FALL 2011

Algebra

A1. Suppose that G is a group, with normal subgroups A and B so that G/A and G/B are abelian. Prove that $G/(A \cap B)$ is abelian.

Solution. A group G/K is abelian if and only if the commutator subgroup $[G,G]$ is contained in K.

If G/A and G/B are abelian then $[G,G] \leq A$ and $[G,G] \leq B$ so $[G,G] \leq A \cap B$. Therefore, $G/(A \cap B)$ is abelian.

A2. Prove that if the order of G is 132, then G is not simple.

Solution. Let n_p denote the number of p-Sylow subgroups. Since n_{11} is 1 mod 11 and divides 12, we know n_{11} is either 1 or 12. If it is 1, then it is normal and we are done. So instead, assume n_{11} is 12. Then there must be 120 elements of order 11 in G, leaving only 12 more elements available.

Since n_3 is 1 mod 3 and divides 44, we know that n_3 is 1, 4 or 22. If it is 1, then again it is normal and we would be done. If it is 22, that would require 44 elements of order 3 which is not possible. If n_3 is 4 that only requires 8 elements of order 3. This leaves 4 elements available which must form the unique Sylow 2-subgroup, which is then normal.

A3. Prove that the polynomial $x^2 - \sqrt{2}$ is irreducible over $\mathbb{Z}[\sqrt{2}]$.

Solution. Suppose not. Since $x^2 - \sqrt{2}$ is monic, if it factorizes as a product of two non-units, these non-units must each be linear.

Then there are $\alpha, \beta, \gamma, \delta \in \mathbb{Z}[\sqrt{2}]$ so that

$$x^2 - \sqrt{2} = (\alpha x + \beta)(\gamma x + \delta).$$

Since $\alpha \gamma = 1$ we get

$$x^2 - \sqrt{2} = (x + \beta \gamma)(x + \delta \alpha).$$

Let $\beta \gamma = u$ and $\delta \alpha = v$.

Then we have $uv = -\sqrt{2}$ and $u + v = 0$, which means that $u^2 = \sqrt{2}$.

However, if $u = a + b\sqrt{2}$ then $u^2 = (a^2 + 2b^2) + (2ab)\sqrt{2}$. Since $a, b \in \mathbb{Z}$ it is clear that we cannot have $u^2 = \sqrt{2}$.

Complex Analysis

1
C1. Does the integral
\[\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + 2x + 2} \, dx \]
converge? If so, what is its value?

Solution. The integral converges since
\[\left| \frac{\cos(x)}{x^2 + 2x + 2} \right| \leq \frac{1}{x^2 + 2x + 2} \]
and
\[\int_{-\infty}^{\infty} \frac{1}{x^2 + 2x + 2} \, dx \]
converges. To compute its value we note that
\[\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + 2x + 2} \, dx = \text{P.V.} \int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + 2x + 2} \, dx \]
\[= \lim_{R \to \infty} \text{Re} \int_{-R}^{R} \frac{e^{ix}}{x^2 + 2x + 2} \, dx \]
\[= \text{Re} \left. 2\pi i \text{Res}_{z=-1+i} \left[\frac{e^{iz}}{z^2 + 2z + 2} \right] \right|_{z=-1+i} \]
\[- \lim_{R \to \infty} \text{Re} \int_{C_R} \frac{e^{iz}}{z^2 + 2z + 2} \, dz, \]
where \(C_R \) is the upper half of the circle \(|z| = R \) from \(z = R \) to \(z = -R \). Note that
\[\text{Res}_{z=-1+i} \left[\frac{e^{iz}}{z^2 + 2z + 2} \right] = \frac{e^{-1-i}}{2i} \]
and for \(R \) large enough
\[\left| \int_{C_R} \frac{e^{iz}}{z^2 + 2z + 2} \, dz \right| \leq \pi R \cdot \frac{1}{R^2 - 2R - 2} \to 0, \quad \text{as} \quad R \to \infty. \]
Therefore
\[\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + 2x + 2} \, dx = \text{Re} \pi e^{-2-i} = \pi e^{-2} \cos 1. \]

C2. Find all singular points of the function
\[h(z) = e^{\frac{1}{z}} \frac{\sin^2(z)}{(z-1)z^2} \]
and classify them as removable, poles, or essential singularities. Then find the residue of
$h(z)$ at each pole.

Solution. \(z = 3\) is an essential singularity, \(z = 0\) is a removable singular point, \(z = 1\) is a simple pole.

\[
\text{Res}_{z=1} h(z) = e^{-1/2} \sin^2 1.
\]

C3. Let \(D = \{(x, y) \in \mathbb{R}^2 : (x - 1)^2 + y^2 < 1 \text{ and } (x - \frac{1}{2})^2 + y^2 > \frac{1}{4}\}\), let \(\bar{D}\) be the closure of \(D\), and let \(D' = \bar{D} \setminus \{(0, 0)\}\).

Find a function \(\psi(x, y)\) on \(D'\) that is harmonic on \(D\) and continuous on \(D'\) such that \(\psi(x, y) = 30\) when \((x - 1)^2 + y^2 = 1\) and \(\psi(x, y) = 10\) when \((x - \frac{1}{2})^2 + y^2 = \frac{1}{4}\).

Hint: use a linear fractional transformation with a pole \(z = 0\).

Solution. The transformation \(w = T(z) = 1/z\) maps the domain into a channel with boundaries \(\text{Re } w = 1/2\) and \(\text{Re } w = 1\). Clearly \(f(w) = 50 - 40 \text{ Re } w\) is harmonic. Then

\[
\phi(x, y) = f(T(z)) = 50 - 40 \text{ Re } \frac{1}{z} = 50 - \frac{40x}{x^2 + y^2}
\]

is a harmonic function satisfying given boundary conditions.

Number Theory

N1. Show that for any integer \(n\) the expression

\[
\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}
\]

is always an integer.

Solution 1. \(\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15} = \frac{3n^5 + 5n^3 + 7n}{15}\), so the goal is to show that 15 divides \(3n^5 + 5n^3 + 7n\) for all \(n\). Equivalently, one must show that 3 and 5 divide \(3n^5 + 5n^3 + 7n\) for all \(n\).

Modulo 3, \(3n^5 + 5n^3 + 7n = 5n^3 + 7n = -n^3 + n = -n(n - 1)(n + 1)\). Since \(n - 1\), \(n\), and \(n + 1\) are consecutive integers, 3 must divide one of them. Thus 3 always divides \(3n^5 + 5n^3 + 7n\).

Similarly, modulo 5, \(3n^5 + 5n^3 + 7n = -2n^5 + 2n = 2n(1 - n^4) = 2n(1 - n)(1 + n)(1 + n^2) = -2n(n - 1)(n + 1)(n^2 + 1)\). If \(n = 0, 1\), or \(-1\) (mod 5) then 5 divides \(n, n - 1, \text{ or } n + 1\).
respectively. If \(n = 2 \) or \(3 \) (mod 5), then \(n^2 + 1 = 0 \) (mod 5). Thus in all cases 5 divides \(3n^5 + 5n^3 + 7n \) and we are done.

Solution 2. By Fermat’s little theorem, \(n^5 \equiv n \) (mod 5), so that \(3n^5 + 5n^3 + 7n \equiv 3n + 7n \equiv 10n \equiv 0 \) (mod 5), while similarly \(n^3 \equiv n \) (mod 3), so that \(3n^5 + 5n^3 + 7n \equiv 5n^3 + 7n \equiv 5n + 7n \equiv 12n \equiv 0 \) (mod 3).

N2. Find all integers \(x \) such that

\[
\begin{align*}
x &\equiv 1 \text{ mod } 2; \\
x &\equiv 1 \text{ mod } 3; \\
x &\equiv 1 \text{ mod } 5; \\
x &\equiv 1 \text{ mod } 7.
\end{align*}
\]

Solution. This is an immediate consequence of the Chinese remainder theorem. One can also do it directly: \(x = 1 \) (mod \(p \)) implies that \(p \) divides \(x - 1 \). So in the situation of the problem, 2, 3, 5, 7 all divide \(x - 1 \). Since these numbers are all prime, their product 210 divides \(x - 1 \), which in turn means that \(x = 1 \) (mod 210). Conversely, if \(x = 1 \) (mod 210) then 210 divides \(x - 1 \), so that 2, 3, 5 and 7 all divide \(x - 1 \) and thus \(x = 1 \) (mod \(p \)) for \(p = 2, 3, 5, 7 \). Hence the \(x \) satisfying the conditions of the problem are exactly those \(x \) congruent to 1 modulo 210; that is, the \(x \) of the form 210\(n + 1 \) for some integer \(n \).

N3. Let \(p \geq 7 \) be a prime. Let \(a \) be such that \(a \not\equiv 1 \) mod \(p \) and \(a^3 \equiv 1 \) mod \(p \).

1. Show that \(a^2 + a + 1 \equiv 0 \) mod \(p \).

2. Show that for \(1 \leq k \leq 5 \) we have \((a + 1)^k \not\equiv 1 \) mod \(p \), and finally show that \((a + 1)^6 \equiv 1 \) mod \(p \).

Solution. Since \(a^3 \equiv 1 \) (mod \(p \)), one has that \(p \) divides \(a^3 - 1 = (a - 1)(a^2 + a + 1) \). Since \(a \not\equiv 1 \) (mod \(p \)), \(p \) does not divide \(a - 1 \), so it must divide \(a^2 + a + 1 \), giving part 1).

For part 2, note that since \(a^2 + a + 1 = 0 \) (mod \(p \)), \(a + 1 = -a^2 \) (mod \(p \)). So \((a + 1)^6 = (-a^2)^6 = (a^3)^4 = 1 \) (mod \(p \)). So as an element of \(\mathbb{Z}_p^* \), the order of \(a + 1 \) divides 6. To see it has order exactly 6, thereby giving part b), note that \((a + 1)^2 = (-a^2)^2 = a^4 = a \not\equiv 1 \) (mod \(p \)), while \((a + 1)^3 = (-a^2)^3 = -a^6 = -(a^3)^2 = -1 \) mod \(p \).

Real Analysis

R1.
1. Let \(f : \mathbb{R} \to \mathbb{R} \) be a differentiable function with continuous derivative \(f'(x) \). Let \(a, b \in \mathbb{R} \) with \(a < b \). Prove that there exists \(M \) such that
\[
|f(x) - f(y)| \leq M|x - y|
\]
for all \(x, y \in [a, b] \).

2. Let \(M > 0 \) and \(a < b \). Find a function \(f : \mathbb{R} \to \mathbb{R} \) satisfying (1) for all \(x, y \in [a, b] \) but which is not differentiable everywhere on \((a, b)\).

Solution.

(a) Let \(x, y \in [a, b] \). We may assume without loss of generality that \(x < y \). By the Mean Value Theorem, there exists \(z \in (x, y) \) such that
\[
f(x) - f(y) = f'(z) \cdot (x - y).
\]
Since \(f' \) is continuous and \([a, b]\) is a closed interval, \(f' \) is bounded on \([a, b]\) and thus there exists \(M \geq 0 \) such that
\[
- M \leq f'(t) \leq M \text{ for all } t \in [a, b].
\]
It therefore follows that
\[
|f(x) - f(y)| = |f'(z)| \cdot |x - y| \leq M|x - y|.
\]

(b) Choose \(z \in (a, b) \) arbitrary and define \(f(x) = M|x - z| \). It then follows that
\[
|f(x) - f(y)| \leq M||x - z| - |y - z|| \leq M|x - y|
\]
for all \(x, y \in [a, b] \). We now show that \(f \) is not differentiable at \(z \). On the one hand, if \(y \in (z, b) \) then
\[
\frac{f(y) - f(z)}{y - z} = M
\]
and hence
\[
\lim_{y \to z^+} \frac{f(y) - f(z)}{y - z} = M.
\]
On the other hand, if \(y \in (a, z) \) then
\[
\frac{f(y) - f(z)}{y - z} = - M
\]
and hence
\[
\lim_{y \to z^-} \frac{f(y) - f(z)}{y - z} = -M.
\]
This shows that the right and left limits are not equal and therefore the limit does not exist.

R2. Let \(f \) and \(g \) be continuous functions on \([a, b]\) with \(g(x) \geq 0 \) for all \(x \in [a, b] \). Prove that there exists \(x \in [a, b] \) such that
\[
\int_a^b f(t)g(t)dt = f(x) \int_a^b g(t)dt.
\]
Solution. Since \(f \) is continuous, it attains its minimum \(m \) and its maximum \(M \) on \([a, b]\).

Since \(g \) is non-negative, it follows that
\[
mg(t) \leq f(t)g(t) \leq Mg(t)
\]
for all \(t \in [a, b] \) and hence
\[
mL \leq \int_a^b f(t)g(t)dt \leq ML,
\]
where \(L := \int_a^b g(t)dt \). Now, note that the function \(F : [a, b] \to \mathbb{R} \) given by \(F(x) := f(x) \cdot L \) is continuous on \([a, b]\) and attains its minimum \(mL \) and its maximum \(ML \) on \([a, b]\). By the Intermediate Value Theorem, there thus exists \(x \in [a, b] \) such that \(F(x) = \int_a^b f(t)g(t)dt \).

R3. Let \(f_n : [0, 1) \to \mathbb{R} \) be the function defined by
\[
f_n(x) := \sum_{k=1}^n \frac{x^k}{1+x^k}.
\]

1. Prove that \(f_n \) converges to a function \(f : [0, 1) \to \mathbb{R} \).

2. Prove that for every \(0 < a < 1 \) the convergence is uniform on \([0, a]\).

3. Prove that \(f \) is differentiable on \((0, 1)\).

Solution. (a) Let \(x \in (0, 1) \). By the ratio test the series \(\sum_{k=1}^\infty \frac{x^k}{1+x^k} \) converges absolutely, thus \(f_n(x) \) converges to the limit \(f(x) := \sum_{k=1}^\infty \frac{x^k}{1+x^k} \).

(b) Let \(a \in (0, 1) \). Clearly, we have
\[
0 \leq \frac{x^k}{1+x^k} \leq a^k
\]
for every \(x \in [0, a] \) and every \(k \geq 1 \). Since \(\sum_{k=1}^\infty a^k \) converges it follows from the Weierstrass M-test that the sequence \(f_n \) of functions converges uniformly on \([0, a]\).

(c) Note that
\[
\left. \frac{d}{dx} \right|_x \left(\frac{x^k}{1+x^k} \right) = \frac{kx^{k-1}}{(1+x^k)^2}
\]
for all \(x \in (0, 1) \) and hence
\[
f'_n(x) = \sum_{k=1}^n \frac{kx^{k-1}}{(1+x^k)^2}
\]
for all \(x \in (0, 1) \). One shows as in (a) and (b) that the sequence \(f'_n \) of functions converges to a function \(g : (0, 1) \to \mathbb{R} \), uniformly on \((0, a)\) for every \(a \in (0, 1) \). Since every \(f'_n \) is
continuous it follows that \(g \) is continuous. It follows from this that \(f \) is differentiable on \((0, 1)\) with derivative \(g(x) \) at \(x \) for every \(x \in (0, 1) \).

Logic

L1. Prove or disprove the following claim.

Claim: Suppose \(L \) is a propositional language and \(F, G \) are two \(L \)-formulas with no common propositional variables. Then whenever
\[
| F \rightarrow G,
\]
either \(\neg F \) or \(G \) is a tautology.

Solution. The claim is true. To see this, suppose towards a contradiction that neither \(\neg F \) nor \(G \) is a tautology and let \(v_F \) and \(v_G \) be \(L \)-valuations such that \(v_F^*(\neg F) = 0 \) and \(v_G^*(G) = 0 \), where \(v^* \) is the canonical extension of \(v \) to the set of all \(L \)-formulas. Now let \(v \) be any valuation that agrees with \(v_F \) on all propositional variables occurring in \(F \) and agrees with \(v_G \) on all propositional variables occurring in \(G \). This is possible, since \(F \) and \(G \) have no common variables. Then \(v^*(\neg F) = 0 \), while \(v^*(G) = 0 \), whence \(v^*(F \rightarrow G) = 0 \), contradiction our assumption.

L2. Let \(L = \{ f \} \), where \(f \) is a unary function symbol. Find an \(L \)-sentence \(\phi \) such that

(a) for any \(n \geq 1 \), \(\phi \) has a model of size \(2^n - 1 \), and

(b) any finite \(L \)-structure satisfying \(\phi \) will have odd cardinality.

Solution. We let \(\phi \) say that \(f \) is an involution with exactly one fixed point, i.e., \(\phi \) is the sentence
\[
\forall x \, ffx = x \land \exists x \, (ffx = x \land \forall y \, (fy = y \rightarrow x = y)).
\]

L3. Decide whether the following argument is valid by either providing a proof in a proof system of your choice or by providing a counter-example.

Solution. Let \(\mathcal{M} \) consist of elements \(a, b \) such that
\[
P^Ma, \quad P^Mb, \quad R^Maaa, \quad R^Mbbb, \quad R^Mabb, \quad R^Mbba.
\]

Then \(\mathcal{M} \) satisfies the premiss, but not the conclusion and thus the argument is invalid.

\[
\forall x \, (P(x) \rightarrow \forall z \, (P(z) \rightarrow \exists y \, R(x, y, z))) \quad \nabla x \, (P(x) \rightarrow \exists y \, \forall z \, (P(z) \rightarrow R(x, y, z)))
\]
Topology

T1. Let X be an infinite set. The **Zariski topology** on X is defined by the collection of subsets

$$\mathcal{T} = \{ U = X - A \mid A \subset X, \text{ A is finite } \} \cup \{ \emptyset \}$$

a) Show that \mathcal{T} satisfies the axioms of a topology.

b) What is the closure of the set $A = \{1/n \mid n = 1, 2, \ldots \}$ in the Zariski topology on \mathbb{R}?

Solution.

a) The set $A = \emptyset$ is finite, so $X = X - \emptyset$ is open.

Let $\{U_\alpha \mid \alpha \in A\}$ be an arbitrary collection of open sets for \mathcal{T}. Then for each α there is a finite set $A_\alpha \subset X$ with $U = X - A_\alpha$. Then by DeMorgan’s Laws,

$$\bigcup_{\alpha \in A} U_\alpha = \bigcup_{\alpha \in A} (X - A_\alpha) = X - \bigcap_{\alpha \in A} A_\alpha = X - A$$

where $A = \bigcap_{\alpha \in A} A_\alpha$ is the intersection of finite sets, so is finite. Thus, $X - A$ is open in \mathcal{T}.

Let $\{U_1, \ldots, U_n\}$ be a finite collection of open sets for \mathcal{T}. Then for each i there is a finite set $A_i \subset X$ with $U = X - A_i$. Then by DeMorgan’s Laws,

$$\bigcap_{i=1}^n U_i = \bigcap_{i=1}^n (X - A_i) = X - \bigcup_{i=1}^n A_i = X - A$$

where $A = A_1 \cup \cdots \cup A_n$ is a finite union of finite sets, so finite. Thus, $X - A$ is open in \mathcal{T}.

b) The closure \overline{A} of A is the intersection of all closed subsets in \mathcal{T} containing A. The closed subsets of \mathcal{T} are the complements of the open subsets in \mathcal{T}, so either a closed subset is a finite subset of X, or all of X. No finite subset contains the infinite set A, thus X is the only closed subset containing A. Thus, $\overline{A} = X$. □

T2. Let X be a topological space and $A, B \subset X$. Define $\partial A = \overline{A} - int(A)$, where $int(A) \subset A$ is the largest open subset of X contained in A. Show that if B is connected, and $B \cap A \neq \emptyset$, and $B \setminus A \neq \emptyset$, then $B \cap \partial A \neq \emptyset$.

Solution. Suppose that $B \cap \partial A = \emptyset$. Then $\overline{A} = A \cup \partial A = int(A) \cup \partial A$ is a closed subset of X, so

$$U = B - \overline{A} = B \cap (X - (int(A) \cup \partial A)) = B - int(A)$$
is an open, non-empty, proper subset of B. But $\text{int}(A)$ is an open subset of X, so $B - \text{int}(A)$ is also closed. Thus, the set $V = \text{int}(A) \cap B$ is open in B and disjoint from B.

We assume that $B \cap A \neq \emptyset$ and $B \cap \partial A = \emptyset$, hence $V \neq \emptyset$. Thus, the connected set $B = U \cup V$ where U and V are open, disjoint non-empty subsets, which is a contradiction. □

T3. Let X be a Hausdorff topological space and $A \subset X$ a subset. Suppose there exists a continuous map $f : X \to A$ (for the relative topology on A) with $f(x) = x$ for every $x \in A$. Prove that A is closed in X.

Solution. If $A = X$ we are done, as X is always closed in itself. Thus, assume there exists $x \in X - A$ and we must show there exists an open subset $W \subset X - A$ with $x \in W$.

Set $y = f(x) \in A$. As $x \notin A$ and $y = f(x) \in A$ we have $x \neq y$. By the Hausdorff assumption, there exists disjoint open sets $U, V \subset X$ with $x \in U$ and $y \in V$.

As $V \cap A$ is open in A and f is continuous, $V' = f^{-1}(V \cap A)$ is open in X and $f(x) = y$ implies that $x \in V'$.

Set $W = U \cap V'$, an open set in X, then $x \in W$.

Suppose that $z \in W$ then $f(z) \in V \cap A$ and $z \in U$. As $U \cap V = \emptyset$, this implies that $f(z) \neq z$, hence $z \notin A$. Thus, $W \subset X - A$ is an open neighborhood of x disjoint from A. This shows that $X - A$ is open, hence A is closed. □