A1. Show that every group of order $294 = 49 \times 2 \times 3$ has a normal subgroup of order 147.

Solution. Let G be a group of order 294 and n_7 be the number of Sylow 7-subgroups of G. By Sylow theorems $n_7 \equiv 1 \mod 7$ and $n_7 | 6$. Thus $n_7 = 1$. Let H be the unique Sylow 7-subgroup of G. If $g \in G$ then gHg^{-1} is a Sylow 7-subgroup. Thus $gHg^{-1} = H$ for all $g \in G$. Let K be a Sylow 3-subgroup of G.

We have $H < G$, $K < G$, $|H| = 49$, $|K| = 3$ and $H \cap K = \{1\}$. Thus HK is a subgroup of G and $|HK| = 147$. Finally, since $[G : HK] = 2$, HK is a normal subgroup of G.

A2. Show that $(\mathbb{Z}/7\mathbb{Z})[X]/(X^3 - 3)$ is isomorphic to $(\mathbb{Z}/7\mathbb{Z})[X]/(X^3 - 5)$.

Solution. Let $L = (\mathbb{Z}/7\mathbb{Z})[X]/(X^3 - 3)$ and $K = (\mathbb{Z}/7\mathbb{Z})[X]/(X^3 - 5)$. To show that $L \cong K$ we will use the fact that finite fields having the same number of elements are isomorphic.

Since $x^3 - 3$ and $x^3 - 5$ do not have roots in $\mathbb{Z}/7\mathbb{Z}$, $x^3 - 3$ and $x^3 - 5$ are irreducible in $(\mathbb{Z}/7\mathbb{Z})[X]$. Thus L and K are fields. Moreover, $|L| = 7^3 = |K|.$

A3. Exhibit a subgroup of the symmetric group S_8 isomorphic to the quaternion group $Q = \{\pm 1, \pm i, \pm j, \pm k\}$. Do this explicitly by giving the permutation corresponding to each of the eight elements of Q.

Solution. The action of Q on itself by left multiplication defines an injective homomorphism φ from Q to S_Q. The bijection $f : Q \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8\}$ with $f(1) = 1$, $f(-1) = 2$, $f(i) = 3$, $f(-i) = 4$, $f(j) = 5$, $f(-j) = 6$, $f(k) = 7$ and $f(-k) = 8$ defines an isomorphism $\psi : S_Q \rightarrow S_8$. Then $\psi \circ \varphi(Q)$ gives a required subgroup with

- $\psi \circ \varphi(1) = (1)$
- $\psi \circ \varphi(-1) = (12)(34)(56)(78)$
- $\psi \circ \varphi(i) = (1324)(5768)$
- $\psi \circ \varphi(-i) = (1423)(5867)$
- $\psi \circ \varphi(j) = (1526)(3847)$
- $\psi \circ \varphi(-j) = (1625)(3748)$
- $\psi \circ \varphi(k) = (1728)(3546)$
- $\psi \circ \varphi(-k) = (1827)(3645)$
Complex Analysis

C1. Find the Taylor or Laurent Series for

\[f(z) = \frac{1}{z^2 - 4} \]

in the indicated domains

(a) \(0 < |z| < 2\), (b) \(|z| > 2\), (c) \(0 < |z - 2| < 4\)

Solution.

(a) For \(0 < |z| < 2\), we rewrite the function \(f(z)\) in terms of \(z/2\) and use that \(|z| < 2\) implies \(|z/2| < 1\) to form the power series expansion:

\[
\begin{align*}
 f(z) &= \frac{1}{z^2 - 4} = \frac{-1/4}{1 - (z/2)^2} = \frac{-1}{4} \cdot \left\{ 1 + (z/2)^2 + (z/2)^4 + (z/2)^6 + \cdots \right\} \\
 &= - \left\{ \frac{1}{2^2} + \frac{z^2}{2^4} + \frac{z^4}{2^6} + \frac{z^6}{2^8} + \cdots \right\} \\
 &= - \sum_{n=0}^{\infty} \frac{z^{2n}}{2^{2n+2}}
\end{align*}
\]

(b) For \(|z| > 2\), we rewrite the function \(f(z)\) in terms of \(2/z\) and use that \(|z| > 2\) implies \(|2/z| < 1\) to form the power series expansion:

\[
\begin{align*}
 f(z) &= \frac{1}{z^2 - 4} = \frac{1}{z^2(1 - (2/z)^2)} \\
 &= \frac{1}{z^2} \cdot \left\{ 1 + (2/z)^2 + (2/z)^4 + (2/z)^6 + \cdots \right\} \\
 &= \frac{1}{z^2} + \frac{2^2}{z^4} + \frac{2^4}{z^6} + \frac{2^6}{z^8} + \cdots \\
 &= \sum_{n=0}^{\infty} \frac{2^{2n}}{z^{2n+2}}
\end{align*}
\]

(c) For \(0 < |z - 2| < 4\), we find the Laurent series for the function \(f(z)\) about \(z = 2\), and use that \(0 < |z - 2| < 4\) to expand it in a power series in terms of \((z - 2)\):

\[
\text{(c) For } 0 < |z - 2| < 4, \text{ we find the Laurent series for the function } f(z) \text{ about } z = 2, \text{ and use that } 0 < |z - 2| < 4 \text{ to expand it in a power series in terms of } (z - 2):}
\]
\[f(z) = \frac{1}{z^2 - 4} = \frac{1}{(z + 2)(z - 2)} = \frac{1}{(z - 2)} \cdot \frac{1}{4 + (z - 2)} \]
\[= \frac{1}{4(z - 2)} \cdot \left\{ 1 + \frac{(z - 2)}{4} + \frac{(z - 2)^2}{4^2} + \frac{(z - 2)^3}{4^3} + \ldots \right\} \]
\[= \frac{(z - 2)^{-1}}{4} + \frac{1}{4^2} + \frac{(z - 2)^2}{4^3} + \frac{(z - 2)^3}{4^4} + \ldots \]
\[= \sum_{n=-1}^{\infty} \frac{(z - 2)^n}{4^{n+2}} \]

C2. Use the Cauchy Residue Theorem to calculate the Fourier transform

\[F(k) = \int_{-\infty}^{\infty} \frac{e^{-ikx}}{1 + x^2} \, dx \]

of the function \(f(x) = \frac{1}{1 + x^2} \), where \(k > 0 \) is real.

Solution. The function \(f(z) = \frac{1}{1 + z^2} \) has poles at \(z = \pm i \), so we can use the Cauchy Residue Theorem to evaluate the indefinite integral. Note that for \(z = x + iy \) where \(y \geq 0 \), the function \(e^{-ikz} \) is unbounded, so we must choose the contour in the half plane \(y \leq 0 \), so about the pole \(z = -i \). Also note that then the integral traverses the boundary curve \(y = 0 \) in a clockwise direction, which introduces a factor of \(-1\) in front of the residue. Thus, we obtain

\[\int_{-\infty}^{\infty} \frac{e^{-ikx}}{1 + x^2} \, dx = -2\pi i \cdot \text{Res}_{z=-i} \frac{e^{-ikz}}{z+i} \]
\[= -2\pi i \cdot \frac{e^{-k}}{(-i)-i} \]
\[= \pi e^{-k} \]

C3. Let \(f \) be a holomorphic function defined on all of \(\mathbb{C} \). Suppose that \(f \) satisfies the identity

\[f(z) = f(z + 1) = f(z + i) \quad \text{for all } z \in \mathbb{C}. \]

Prove that \(f \) must be constant.

Solution. The identity \(f(z) = f(z + 1) \) implies the identity \(f(z) = f(z + n) \) for all integers \(n \) by induction, and likewise \(f(z) = f(z + i) \) implies \(f(z) = f(z + mi) \) for all integers \(m \).

Since \(|f(z)| \) is continuous, it is bounded on the closed disk \(\{ z \mid |z| \leq 2 \} \) by a constant \(M \).
Finally, observe that for any \(z \in \mathbb{C} \), write \(z = x + iy \), then there exists an integer \(n \) such that \(0 \leq x - n < 1 \) and an integer \(m \) such that \(0 \leq y - m < 1 \). Then \((x - n)^2 + (y - m)^2 \leq 2 \) and so \((x - n) + i(y - m) \in \{ z \mid |z| \leq 2 \} \).

Then \(|f(z)| = |f((x - n) + i(y - m))| \leq M \), so that \(|f(z)| \leq M \) for all \(z \in \mathbb{C} \). This implies that \(f(z) \) is a bounded holomorphic function on \(\mathbb{C} \), hence must be constant by Louiville’s Theorem.

PURE MATH OPTION, Spring 2012

Number Theory

N1. Determine all primes \(p \) such that the equation

\[
x^2 + 3x + 6 \equiv 0 \pmod{p}
\]
is solvable modulo \(p \).

N2. Let \(\phi(n) = \# \{ 1 \leq k \leq n : (k, n) = 1 \} \) be the Euler function.

(1) Show that if \(n \) has at least three distinct prime factors, then \(\phi(n) \geq 8 \).
(2) Find \(n \) such that \(\phi(n) = 4 \).
(3) Find \(n \) such that \(\phi(n) = 6 \).
(4) Find \(n \) such that \(\phi(n) = \frac{n}{3} \).

Solution. Let

\[
n = \prod_{i=1}^{k} p_i^{\alpha_i}
\]
be the prime factorization of \(n \). Then

(1)

\[
\phi(n) = \prod_{i=1}^{k} p_i^{\alpha_i - 1}(p_i - 1).
\]

1. By hypothesis, \(k \geq 3 \). Then, by (1),

\[
\phi(n) \geq (2 - 1)(3 - 1)(5 - 1) = 8.
\]

2. Using part 1 and the hypothesis \(\phi(n) = 4 \), we deduce that \(k \leq 2 \).

If \(n = p^a \) (i.e. \(k = 1 \)), then

\[
p^a - 1(p - 1) = 4,
\]

which implies \(n \in \{5, 8\} \).

If \(n = p_1^{\alpha_1}p_2^{\alpha_2} \) (i.e. \(k = 2 \)), then

\[
p_1^{\alpha_1 - 1}p_2^{\alpha_2 - 1}(p_1 - 1)(p_2 - 1) = 4,
\]

which implies \(n \in \{10, 12\} \).

3. Reasoning as in part 2, we obtain that \(n \in \{7, 9, 14, 18\} \).

4. Let us assume that \(k \geq 3 \). Then, using the hypothesis and (1), we deduce that

\[
3(p_1 - 1)(p_2 - 1) \ldots (p_k - 1) = p_1p_2 \ldots p_k.
\]
By the uniqueness of the prime factorization, we deduce that $p_1 = 3$, hence
\[2(p_2 - 1) \ldots (p_k - 1) = p_2 \ldots p_k.\]
Again by the uniqueness of the prime factorization, we deduce that $p_2 = 2$, hence
\[(p_3 - 1) \ldots (p_k - 1) = p_3 \ldots p_k.\]
Invoking one more time the uniqueness of the prime factorization, we are led to a contradiction.

The above shows that $k \leq 2$ and
\[n \in \{2^{\alpha_1}3^{\alpha_2} : \alpha_1, \alpha_2 \in \mathbb{N}\}.\]

N3.

1. Use Fermat’s Little Theorem to determine all the primes p for which
 \[3p^2 + 11p^2 \equiv 0 \pmod{p^2}\]
2. Use Fermat’s Little Theorem to determine all the primes p for which
 \[4^{2p^2} + 3^{2p^2} \equiv 0 \pmod{p^2}\]

Solution.

1. By Fermat’s Little Theorem,
 \[3p^2 = (3^p)^p \equiv 3^p \equiv 3 \pmod{p}\]
 and
 \[11p^2 \equiv 11 \pmod{p}.\]
 This gives
 \[0 \equiv 3p^2 + 11p^2 \equiv 3 + 11 = 14 \pmod{p},\]
 which implies $p \in \{2, 7\}$.
 Conversely, only $p = 7$ satisfies the hypothesis. Thus $p = 7$ is the only solution.
2. Similarly to part 1, we have
 \[4^{2p^2} + 3^{2p^2} \equiv 16 + 9 = 25 \pmod{p}.\]
 This gives $p = 5$. Conversely, $p = 5$ satisfies the hypothesis, so this is the only solution.

Real Analysis

R1. Consider the sequence $\{a_n\}_{n=1}^{\infty}$ defined by
\[a_1 = 1, \quad a_{n+1} = \frac{3a_n - 1}{a_n}.\]
Prove that (i) the sequence is monotonic, (ii) bounded. (iii) Find the limit.

Solution. First, we examine what the limit should be. Solving $L = \frac{3L-1}{L}$, we get $L^2 - 3L + 1 = 0$ or $L = \frac{3}{2} \pm \frac{\sqrt{5}}{2}$, two positive roots, one of which will be the limit. By induction on n, we
show that \(a_{n+1} > a_n \) and that \(a_n \) is always between the two roots, which will give (i) and (ii). One can verify it directly for \(n = 1 \) to start the induction. So we assume we know the result for \(n \) and wish to show it for \(n + 1 \). Note that
\[
a_n - a_{n+1} = a_n - \frac{3a_n - 1}{a_n} = \frac{a_n^2 - 3a_n + 1}{a_n}
\]
If \(a_n \) is between the two roots (so in particular \(a_n > 0 \)), then \(\frac{a_n^2 - 3a_n + 1}{a_n} < 0 \) and we see \(a_n < a_{n+1} \). Furthermore, we have
\[
a_{n+1}^2 - 3a_n + 1 = (3 - \frac{1}{a_n})^2 - 3(3 - \frac{1}{a_n}) + 1 = 9 - \frac{6}{a_n} + \frac{1}{a_n^2} - 9 + \frac{3}{a_n} + 1
\]
\[
= \frac{1}{a_n^2} - \frac{3}{a_n} + 1
\]
\[
= \frac{a_n^2 - 3a_n + 1}{a_n^2}
\]
This quantity is negative since by induction hypothesis \(a_n \) is between the two roots, so \(a_{n+1} \) is between these two roots as well and we have shown the induction step.

Lastly, to find the limit, one takes the limit in both sides of \(a_{n+1} = \frac{3a_n - 1}{a_n} \), getting \(L^2 - 3L + 1 = 0 \). We get the larger root \(\frac{3}{2} + \frac{\sqrt{5}}{2} \) since the sequence is increasing and stays between the two roots.

R2. Let \(\{a_n\}_{n=1}^{\infty} \) and \(\{b_n\}_{n=1}^{\infty} \) be two bounded sequences. Prove that
\[
\limsup_{n \to \infty} (a_n - b_n) \leq \limsup_{n \to \infty} (a_n) - \liminf_{n \to \infty} (b_n).
\]
Give an example where the inequality is strict.

Solution. \(\limsup_{n \to \infty} (a_n - b_n) = \lim_{k \to \infty} \sup_{n \geq k} (a_n + (-b_n)) \). The supremum is subadditive, so this is at most \(\lim_{k \to \infty} (\sup_{n \geq k} a_n + \sup_{n \geq k} (-b_n)) \). By additivity of limits (note we use boundedness here), this is \(\lim_{k \to \infty} \sup_{n \geq k} a_n + \lim_{k \to \infty} \sup_{n \geq k} (-b_n) = \lim_{k \to \infty} \sup_{n \geq k} a_n + \lim_{k \to \infty} (-\inf_{n \geq k} b_n) = \limsup_{n \to \infty} a_n - \liminf_{n \to \infty} b_n \). The examples 1, 0, 1, 0, ... and 0, -1, 0, -1, 0, ... show the inequality may be strict.

R3. Show that the series
\[
\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}x\right)
\]
converges to a differentiable function on \((-\infty, \infty)\) and that it can be differentiated term by term.

Solution. It suffices to show the result on any interval \((-R, R)\). Using that \(|\sin(y)| \leq |y| \) for all \(y \), we have that \(|\sin(\frac{1}{n^2}x)| \leq \frac{1}{n^2}R \) on the interval \((-R, R)\). The derivative of \(\sin(\frac{1}{n^2}x) \) is \(\frac{1}{n^2}\cos(\frac{1}{n^2}x) \), and since \(|\cos(y)| \leq 1 \) for all \(y \) we have \(\left| \frac{d}{dx} \sin(\frac{1}{n^2}x) \right| \leq \frac{1}{n^2} \) on \((-R, R)\). Because \(\sum_n \frac{1}{n^2}R \) and \(\sum_n \frac{1}{n^2} \) are both finite, the sum of the terms converges uniformly on \((-R, R)\), as does the sum of their derivatives. As a result, the series converges to a differentiable function on \((-R, R)\) which may be differentiated term by term.
L1. A 2-coloured graph \((V, E, C_1, C_2)\) consists of a set \(V\) of vertices, a binary edge relation \(E\) on \(V\) that is irreflexive and symmetric, and a partition \(V = C_1 \cup C_2\) into two disjoint sets such that no two vertices in \(C_1\) are \(E\)-related and no two vertices in \(C_2\) are \(E\)-related.

(a) Let \(L = \{E, C_1, C_2\}\) be the language consisting of a binary relation symbol \(E\) and unary relation symbols \(C_1\) and \(C_2\). Write an \(L\)-sentence \(\sigma\) whose models are exactly the 2-coloured graphs.

(b) Let \(\phi(x, y)\) be the \(L\)-formula
\[Exy \lor \exists z (Exz \& Ez \& Ey) \lor \exists v \exists w (Exz \& Ez \& Ew \& Ewy)\]
and let \(\tau\) be the \(L\)-sentence
\[\forall x \forall y (x \neq y \rightarrow \phi(x, y)).\]
Construct a model of \(\{\sigma, \tau\}\) with exactly 5 elements. Clearly state the domain and the interpretations of all the relations in your model.

(c) Let \(\theta\) be the \(L\)-sentence
\[\forall x \exists y \exists z (y \neq z \& Exy \& Ez \& \forall v (v \neq y \& v \neq z \rightarrow \neg Exv)).\]
Decide if \(\{\sigma, \tau, \theta\}\) has a model with exactly 5 elements by either constructing such a model or arguing that it cannot exist.

Solution.
(a) \[\sigma = \forall x (C_1 x \lor C_2 x) \& \neg \exists x (C_1 x \& C_2 x) \& \forall x \forall y (Exy \rightarrow Ey)\]
\[\& \forall x \forall y (Exy \rightarrow ((C_1 x \& C_2 y) \lor (C_1 y \& C_2 x))).\]

(b) Let \(\mathcal{M}\) be the structure with underlying set \(\{0, 1, 2, 3, 4\}\). Let \(E^\mathcal{M} := \{(i, i+1) : 0 \leq i \leq 3\}\). Let \(C_1^\mathcal{M} := \{0, 2, 4\}\) and \(C_2^\mathcal{M} := \{1, 3\}\).

(c) Suppose, for contradiction, there is a model \(\mathcal{M}\) of the set \(\{\sigma, \tau, \theta\}\), where the underlying set of \(\mathcal{M}\) contains exactly 5 elements. Since \(\mathcal{M} \models \sigma\), \(\mathcal{M}\) is a 2-coloured graph. Since \(\mathcal{M} \models \tau\) and \(\mathcal{M}\) is size-5, \(\mathcal{M}\) is a connected graph. Because \(\mathcal{M} \models \theta\), all edges in \(\mathcal{M}\) have degree exactly two. A connected graph with all edges of degree 2 must be a cycle. In other words, we know that for some labelling of the points in \(\mathcal{M}\) as \(\{0, 1, 2, 3, 4\}\), \(E^\mathcal{M} = \{(i, (i+1) \mod 5) : 0 \leq i \leq 4\}\). Without loss of generality, 0 is in \(C_1^\mathcal{M}\). Then, by a short induction, the fact that \(\mathcal{M}\) is 2-coloured yields that 4 is also in \(C_1^\mathcal{M}\). However, \((0, 4)\) is an edge, contradicting that \(\mathcal{M}\) is a 2-coloured graph. Thus, no such model exists.

L2. Let \(L\) be a first order language. Prove or disprove each of the following two statements.

(a) Every \(L\)-formula is logically equivalent to an \(L\)-sentence.

(b) Every \(L\)-formula is satisfiable in a finite model.
(b) Every L-sentence is logically equivalent to an L-formula that is not a sentence.

Solution.

(a) False. Consider the L-formula $\psi := (x \equiv y)$. Suppose, for contradiction, that θ is an L-sentence that is logically equivalent to ψ. By completeness,
\[\emptyset \vdash ((x \equiv y) \leftrightarrow \theta) \]
By Eqn. (2) and laws of deductions,
\[\emptyset \vdash \forall x \forall y ((x \equiv y) \leftrightarrow \theta) \]
Now fix an arbitrary L-structure \mathcal{M}. By Eqn. (3),
\[\mathcal{M} \models \forall x \forall y ((x \equiv y) \leftrightarrow \theta) \]
Choose arbitrary points a, b in \mathcal{M}. We have two equations (we let “a” refer to a constant denoting a when it appears in a formula):
\[\mathcal{M} \models ((a \equiv b) \leftrightarrow \theta) \]
\[\mathcal{M} \models ((a \equiv a) \leftrightarrow \theta) \]
Since θ has no free variables,
\[\mathcal{M} \models ((a \equiv b) \leftrightarrow (a \equiv a)) \]
So we have shown that for any L-structure \mathcal{M}, for any points a, b in \mathcal{M}, we must have that $a = b$, which is a contradiction.

(b) True. Let φ be any L-sentence. Then the following is an L-formula which is not an L-sentence: $\psi := \varphi \& (x \equiv x)$. Any interpretation satisfying φ must satisfy ψ. Any interpretation satisfying ψ trivially satisfies φ. Thus φ and ψ are logically equivalent.

L3. Let $L = \{c, f, <\}$, where c is a constant symbol, f is a unary function symbol and $<$ is a binary relation symbol.

(a) State the compactness theorem for first-order logic and state what it means for an L-structure \mathcal{N} to be a substructure of an L-structure \mathcal{M}.

Define \mathcal{N} to be the L-structure with universe $\mathbb{N} = \{0, 1, 2 \ldots\}$, where c is interpreted as 0, f is interpreted as the successor function, and $<$ is interpreted as the usual linear ordering on \mathbb{N}. Let T be the set of all L-sentences true in \mathcal{N}.

(b) Show that there is an L-structure \mathcal{M} satisfying T and containing \mathcal{N} as a substructure such that there is an element a of \mathcal{M} with
\[f^\mathcal{M}(f^\mathcal{M}(\cdots f^\mathcal{M}(c^\mathcal{M})\cdots)) <^\mathcal{M} a \]
for all $k \geq 0$. 8
Solution. (a) Compactness theorem: Let Γ be any set of L-formulas. If every finite subset Γ_0 of Γ is satisfiable, then Γ is satisfiable.

Fix L-structures \mathcal{M} and \mathcal{N} with underlying sets M and N, respectively. \mathcal{N} is a substructure of \mathcal{M} if the following conditions hold:

1. $N \subseteq M$
2. $c^N = c^M$
3. $a <^N b \iff a <^M b$, for all $a, b \in N$
4. $f^N(a) = f^M(a)$, for all $a \in N$

(b) We wish to satisfy the following set Γ of L-formulas

$\{ T \cup \{ f(f(\cdots f(c)\cdots)) : 0 \leq k, k \in \mathbb{N} \} \}$

However, any finite subset of Γ is contained in a set Γ_0 of the form

$\{ T \cup \{ f(f(\cdots f(c)\cdots)) : 0 \leq k \leq m \} \}$

for some integer, m. But Γ_0 is satisfiable in \mathcal{N} by choosing any element l in \mathbb{N} to interpret x, provided that $m <^N l$.

Thus, Γ is satisfied by some structure \mathcal{M}'. The induced substructure \mathcal{N}' of \mathcal{M}' with domain

$\{ f^{\mathcal{M}'}(f^{\mathcal{M}'}(\cdots f^{\mathcal{M}'}(c^{\mathcal{M}'})) : k \geq 0 \}$

is isomorphic to \mathcal{N}' by the fact that both $\mathcal{M}, \mathcal{N} \models T$. Thus we may construct an isomorphic copy \mathcal{M} of \mathcal{M}', that contains \mathcal{N} as a substructure. \mathcal{M} is the desired structure.

Topology

T1. Recall that a space X is said to be limit point compact if every infinite subset of X has a limit point. Prove that every compact space is limit point compact.

Solution. Suppose X is a compact space, and let A be a subset of X without a limit point. We will show A is finite. Since A has no limit points, for each $x \in X - A$ there is an open set U_x containing x not intersecting A, and for each $x \in A$ there is an open set U_x containing x such that $U_x \cap A = \{x\}$. These U_x form an open cover of X, which has a finite subcover U_{x_1}, \ldots, U_{x_n} by compactness of X. Note $U_{x_i} \cap A = \{x_i\}$ or \emptyset, depending on whether or not $x_i \in A$. Thus $A = \bigcup_{i=1}^{n}(A \cap U_{x_i}) \subset \{x_1, \ldots, x_n\}$, a finite set. So A is finite.

T2.

1. Prove that the unit interval $[0, 1]$ is not homeomorphic to the unit square $S = [0, 1] \times [0, 1]$.
2. Prove that a continuous surjective map from $[0, 1]$ to S (i.e. a “space-filling curve”) cannot be injective.

Solution.
1) Suppose \(f : [0, 1] \to S \) were a homeomorphism. Then we could find an \(x \in (0, 1) \) such that \(f(x) \) is in the interior of \(S \). This would imply that \([0, 1] - \{x\}\) were homeomorphic to \(S - \{f(x)\} \). But \([0, 1] - \{x\}\) is not connected, while \(S - \{f(x)\}\) is connected, a contradiction.

2) Suppose now \(f : [0, 1] \to S \) were a continuous surjection. Suppose \(f \) were injective. If \(F \subset [0, 1] \) is closed then \(F \) is compact, so \(f(F) \) is compact and thus closed. Hence \(f \) takes closed sets to closed sets, implying \(f^{-1} \) is continuous. Thus \(f \) is a homeomorphism, which by part a) can’t happen.

T3. Let \(X \) and \(Y \) be topological spaces and \(p : X \to Y \) a continuous surjective function such that \(p(U) \) is open for every open set \(U \subset X \). Suppose that \(Y \) is connected and that \(p^{-1}(\{y\}) \) is connected for every \(y \in Y \). Prove that \(X \) is connected.

Solution. Suppose \(X \) were not connected, we will obtain a contradiction. Then \(X = U \cup V \), where \(U \) and \(V \) are both open and nonempty. Note that \(p(U) \) and \(p(V) \) are nonempty open sets in \(Y \), and by surjectivity \(p(U) \cup p(V) = Y \). We will show that \(p(U) \) and \(p(V) \) are disjoint, contradicting connectivity of \(Y \). For suppose \(y \) were in \(p(U) \cap p(V) \). Then \(p^{-1}(y) \) intersects both \(U \) and \(V \), and thus \(p^{-1}(y) = (p^{-1}(y) \cap U) \cup (p^{-1}(y) \cap V) \) expresses \(p^{-1}(y) \) as a union of two disjoint relatively open sets, contradicting connectedness of \(p^{-1}(y) \). Hence there cannot be any \(y \in p(U) \cap p(V) \) and we are done.