Computational complexity

5. Consider 2-tape Turing machines with alphabet \{0, 1\}. Prove that there is a language \(L \) such that \(L \) can be decided in time \(O(n^5) \) but \(L \) cannot be decided in time \(8n \).

6. (a, 5 points) State a polynomial-time algorithm to decide graph reachability. (b, 15 points) Prove that \text{NLOGSPACE} \subseteq \text{P}.

7. (a, 2 points) Give an example of an NP-complete language \(X \). (b, 10 points) Explain why every language \(L \in \text{NP} \) can be reduced to \(X \). You must construct a reduction for each \(L \); you do not need to prove that the reduction works. (c, 8 points) Prove that \(\text{P} = \text{NP} \) if and only if \(X \in \text{P} \).

8. Prove that there is an undecidable language that can be decided in non-uniform polynomial time.