1. Find the Galois group of $x^5 - 7$ over \mathbb{Q}.

2. Let G be a group of order 77. Show that G is cyclic.

3. Let R be a ring with 1, and let $u, v \in R$ satisfy $uv = 1$ (so v is a right inverse of u). Prove that the following are equivalent:
 (a) There is a nonzero element w in R, such that $uw = 0$;
 (b) u is not a unit;
 (c) u has more than one right inverse.

4. Let G be a group. Suppose $g \in G$. Denote by C_g the automorphism of G induced by conjugation by g, so $C_g(x) = gxg^{-1}$, for each $x \in G$.
 (a) Consider the map $\phi : G \rightarrow \text{Aut}(G)$ defined by $\phi(g) = C_g$. Show that ϕ is a group homomorphism.
 (b) Show that $\text{Ker}(\phi) = Z(G)$, the center of G. Suppose that $\alpha \in \text{Aut}(G)$. Show that $\alpha C_g \alpha^{-1} = C_{\alpha(g)}$. Show that the image of ϕ is a normal subgroup of $\text{Aut}(G)$.
 (c) Show that if $Z(G)$ is trivial, then $Z(\text{Aut}(G))$ is also trivial.

5. Let G be a finite group. Suppose that K is a normal subgroup of G and P is a p–Sylow subgroup of K. Show that $G = KN_G(P)$.

6. Show that \mathbb{Q} is not a finitely generated module over \mathbb{Z}.

7. Let A be a nonzero finite abelian group.
 (a) Prove that A is not a projective \mathbb{Z}-module.
 (b) Prove that A is not an injective \mathbb{Z}-module.

8. Let p be a prime number. Suppose L is a finite field with p^{10} elements. How many subfields does L have?