Instructions: There are 8 problems on this exam, each of equal value. Five correct answers earns a score of one, four a score of two, and three a score of three. (Note: all rings are assumed to have a unit element!)

1. A group G is metabelian if G' is not trivial, but $(G')'$ is trivial, where G' denotes the commutator subgroup of G. Prove that G is metabelian if and only if G is a nonabelian group with an abelian normal subgroup A such that G/A is abelian.

2. Let p and q be distinct prime numbers.
 a. Prove that a group of order pq is solvable.
 b. Prove that a group of order 30 is solvable.

3. Let R be a ring with unit.
 a. Prove that the intersection of all primitive two-sided ideals in a ring R is the same as the intersection of all maximal right ideals.
 b. Suppose that $M \subset R$ is a maximal (two-sided) ideal. Prove that M is primitive.

4. Let $n > 1$ be an integer and let $\zeta_n = e^{2\pi i/n}$. Let Φ_n be the minimal polynomial of ζ_n over \mathbb{Q}.
 a. Prove that Φ_n has integer coefficients.
 b. Let \mathbb{F}_q be a finite field with $q = p^r$ elements for some prime number p. Suppose that p does not divide n. Let $\overline{\Phi}_n(X)$ be the reduction of $\Phi_n(X)$ mod p, which we view as an element of $\mathbb{F}_q[X]$. Prove that $\overline{\Phi}_n(X)$ has a root in \mathbb{F}_q if and only if n divides $q - 1$.

5. Let G be the group $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, and let H be the subgroup generated by the vectors $(2, 4, 15), (-13, -2, -19)$, and $(7, 2, 11)$. Determine the structure of the group G/H.

6. Let F be a field, $f(x)$ an irreducible polynomial over F, and K a finite normal extension of F. Suppose that g and h are irreducible elements of $K[x]$ such that $f = gh$. Show that there exists an automorphism σ of K, fixing F, such that $g = \sigma(h)$.

(Continued on Next Page)
7. Give examples (with proof) of:
 a. A ring R which is not Noetherian.
 b. A ring R which is Noetherian, but not Artinian.
 c. A ring R and a right R-module M which is not projective.
 d. A ring R and a right R-module M which is projective, but not free.

8. Prove that a 72 degree angle can be trisected with ruler and compass, but a 60 degree angle cannot.