Instructions: There are 8 problems on this exam, each of equal value. Five correct answers earns a score of one, four a score of two, and three a score of three. (Note: all rings are assumed to have a unit element!)

1. Let G be a finite group of order m, and let H be a normal cyclic subgroup of G of prime order p. Suppose that m is relatively prime to $p - 1$. Prove that H belongs to the center of G.

2. Let G be a finite group and let X be a finite set on which G acts. For $g \in G$, let $\chi(g)$ be the number of fixed points of g on X. Let n be the number of orbits of G on X. Prove that
 \[n = \frac{1}{|G|} \sum_{g \in G} \chi(g). \]

3. Let E/F be a field extension and let L be the subset of E consisting of elements which are algebraic over F. Prove that L is a field.

4. Let E, L, and F be fields with $F \subset L \subset E$. Suppose that E is normal over F. Prove that E is normal over L, and give an example to show that L need not be normal over F.

5. Let f be an irreducible polynomial of degree d over the finite field of order p. Let F be a field with p^n elements. Prove that f has a root in F if and only if d divides n.

6. Let R be a Noetherian ring, and let M be a finitely generated right R-module. Prove that every right submodule of M is finitely generated.

7. Let ζ be a primitive 13^{th} root of unity.
 A. Prove that $E = \mathbb{Q}(\zeta)$ has a unique subfield F of degree 3 over \mathbb{Q} and a unique subfield L of degree 4 over \mathbb{Q}.
 B. Prove that $F = \mathbb{Q}(\alpha)$, where $\alpha = \zeta + \zeta^5 + \zeta^8 + \zeta^{12}$.

8. Let R be a ring (with unity, as always.)
 A. Let P be a right R-module. Prove that the following two conditions are equivalent:
 1. Given right R modules M and N, a surjective map $\phi : M \to N$, and a map $\pi : P \to N$, there is a map $f : P \to M$ such that $\phi \circ f = \pi$.
 2. There exists a right R-module Q such that $P \oplus Q$ is free.
 B. Suppose every simple right R-module is free. Prove that R is a division ring.