The best FIVE answers will determine your grade.

1. Prove the Cauchy-Goursat theorem: if f is a holomorphic function on an open set $U \subseteq \mathbb{C}$, and R is a standard rectangle contained in U, then

$$\int_{\partial R} f = 0.$$

(A standard rectangle is a set of the form $R = \{x + iy : a \leq x \leq b, c \leq y \leq d\}$.)

You may ASSUME the following (elementary) fact:

Lemma. If f is holomorphic on U then for each $z_0 \in U$ and each $\epsilon > 0$, there is a $\delta > 0$ such that for every standard rectangle r with $z_0 \in r \subseteq U$ such that the diameter ρ of r is $< \delta$, we have

$$|\int_{\partial r} f| < \epsilon \rho^2.$$

2. Suppose that f is an entire function, and that there exist constants C and R, and an integer $n > 0$, such that

$$|f(z)| \leq C|z|^n$$

for every z with $|z| \geq R$. Prove that f is a polynomial function of degree at most n.

3. Suppose that $(f_n)_{n \geq 1}$ is a sequence of holomorphic functions defined on an open set $U \subseteq \mathbb{C}$, which converges uniformly on every compact subset of U to a function $f : U \to \mathbb{C}$. Prove that f is holomorphic on U.

4. Use Liouville’s theorem to show that if $f(z)$ is a non-constant entire function then f takes arbitrarily large real values on \mathbb{C}.

5. Evaluate

$$\int_{\gamma} \frac{z + 3}{(\cos z) - 1} \, dz$$

where γ denotes the circle of radius 6 about 0, with the counterclockwise orientation.

6. Let Q denote the first quadrant in the complex plane, consisting of all points z such that $\text{Re}(z) > 0$ and $\text{Im}(z)$ are both strictly positive. Give an explicit formula for a conformal map of the Q onto the unit disk $|z| < 1$.

1
7. Suppose that \(u \) is a harmonic function defined on an open set \(\Omega \subset \mathbb{C} \), and that \(\Omega \) contains a closed disk in \(D \) with center \(z_0 \) and radius \(R \). The mean value property of \(u \) is

\[
u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) \, d\theta.
\]

Under the ASSUMPTION that \(u \) is the real part of a holomorphic function on \(\Omega \), deduce the mean value property from Cauchy’s integral formula.

8. An open set \(U \subset \mathbb{C} \) is said to be simply connected if every cycle in \(C \) is homologous to 0. Prove that if \(U \) is simply connected then every holomorphic function \(f \) on \(U \) has a primitive. (Hint: use the general form of Cauchy’s theorem to show that for a piecewise smooth path \(\gamma \) in \(U \), the integral

\[
\int_{\gamma} f(z) \, dz
\]

depends only on the endpoints of \(\gamma \) and the function \(f \).)