Algebraic Topology Preliminary Exam

May 2, 1997

Do any five of the following eight problems.

1. Let \(f : A \to B, \ g : B \to C, \) and \(h : C \to D \) be maps such that \(g \circ f \) and \(h \circ g \) are homotopy equivalences. Prove that \(f, g, \) and \(h \) are homotopy equivalences. Hint: consider \(g \) first.

2. If \(M^3 \) is a compact, connected, orientable 3-manifold with \(H_1(M^3; \mathbb{Z}) = 0 \), show \(M \) has the homology of \(S^3 \).

If \(M^3 \) is nonorientable, show \(H_1(M^3; \mathbb{Z}) \) is infinite.

3. Let \(f : S^n \to S^n \) and let \(a : S^n \to S^n \) be the antipodal map.
 (i) If \(f(x) \neq x \) for all \(x \), then \(f \simeq a \).

 If \(f(x) \neq a(x) \) for all \(x \), then \(f \simeq 1_{S^n} \).

 (ii) If \(g : RP^n \to RP^n \), \(n \) even, then \(g \) has a fixed point.

4. The existence of a continuous, surjective map \(f : I \to I \times I \) (G. Peano, 1890) presents a difficulty for proofs that \(\pi_1(S^2) = \{1\} \). Explain why there is a difficulty and how some (one) method of proving this result handles this difficulty.

5. Let \(f : S^1 \times \text{int}D^2 \to S^3 \) be an embedding. Let \(\Sigma^1 = f(S^1 \times \{0\}) \) and let \(V = S^3 - \Sigma^1 \).

 (\(\Sigma^1 \) is a knot with a tubular neighborhood.) Use the Mayer-Vietoris sequence to compute \(H_1(V; \mathbb{Z}) \).

6. Use \(U(1) = S^1 \) and the fibration
 \[U(n) \to U(n + 1) \to S^{2n+1} \]
 to compute \(\pi_1 U(n) \) for \(n \geq 1 \), \(\pi_2 U(n) \) for \(n \geq 2 \), and \(\pi_3 U(n) \) for \(n \geq 2 \).

7. In the commutative diagram of abelian groups

 \[
 \begin{array}{cccccc}
 A & \overset{i}{\to} & B & \overset{j}{\to} & C & \overset{k}{\to} & D & \overset{l}{\to} & E \\
 \downarrow{\alpha} & & \downarrow{\beta} & & \downarrow{\gamma} & & \downarrow{\delta} & & \downarrow{\epsilon} \\
 A' & \overset{i'}{\to} & B' & \overset{j'}{\to} & C' & \overset{k'}{\to} & D' & \overset{l'}{\to} & E'
 \end{array}
 \]

 the rows are exact. Show that if \(\beta \) and \(\delta \) are one-to-one, and \(\alpha \) is onto, then \(\gamma \) is one-to-one.

8. Let \(f : CP_m \to CP_m \) induce multiplication by the integer \(k \) on \(\pi_2(CP_m) \). Describe the maps \(f_* \) and \(f^* \) induced by \(f \) on the integral homology group \(H_2(CP_m; \mathbb{Z}) \) and on the integral cohomology ring \(H^*(CP_m; \mathbb{Z}) \). What is the degree of \(f \) as a map of manifolds? Cite appropriate theorems to justify your description.