1. Let M be a structure in a language with one binary relation E. Suppose that on M, E is an equivalence relation with infinitely many classes with 2 elements and one class with one element. Let T be the theory of M.

Does T admit elimination of quantifiers in the language L? If not, describe a definable expansion of T which is.

Is T model complete?

What is a set of axioms for T? Is T categorical in any infinite cardinalities?

Sketch arguments to justify each of your responses.

2. Write one or two paragraphs to explain the meaning and significance of the following statements to a research mathematician with little background in logic. The continuum hypothesis is independent of ZFC. Although `$V = L$' is a 'logical axiom', \Diamond is a 'mathematical axiom'.

3. Let (G, R) be a graph. A subset Y of G is homogeneous if either no pair of elements from Y are in the relation R or all pairs are.

Prove the infinite Ramsey theorem: if G is infinite then G has an infinite homogeneous subset Y.

Deduce the finite Ramsey theorem: For every integer m there is an integer n such that if (G, R) is a graph of cardinality at least n, it has a homogeneous subset of size m. (It may be helpful to expand the language to do this argument.)

4. Prove that every successor cardinal is regular.

5. Let $x < y$ be a well founded partial ordering of some set with the property $(\forall u)[u < x \iff u < y] \rightarrow x = y$. Show $x < y$ is a linear order.

6. For infinite cardinals λ, prove λ times λ equals λ. Does your proof rely on the axiom of choice?