1) a) Define the class of *Primitive recursive* functions.

b) Show that if $g : \mathbb{N} \to \mathbb{N}$ is primitive recursive, and $f : \mathbb{N} \to \mathbb{N}$ by
 \[f(n) = \sum_{m<n} g(m) \]
 then f is primitive recursive.

c) Outline a proof that there is a general recursive function which is not primitive recursive.

2) a) What does it mean to say that $A \subset \mathbb{N}$ is Π_n-complete?

b) Let $Total = \{ e : \phi_e$ is a total function}. Show that $Total$ is Π_2-complete.

3) Let $Pr(x, y)$ be the predicate in the language of arithmetic representing the relation “x codes a proof from PA of the formula with Gödel code y” and let $Pr^*(x, y)$ represent “x codes a proof from PA of the negation of the formula with Gödel code y”. Let $\Psi(v)$ be the formula
 \[\forall x \ Pr(x, v) \to \exists z < x Pr^*(z, y). \]
 Let ϕ be the Rosser sentence such that $PA \vdash \phi \iff \Psi([\phi])$.

a) Show that $PA \not\vdash \phi$.

b) Show that $PA \not\vdash \neg \phi$.

4) Let T be an L-theory such that if $A \models T$ and $B \subset A$, then $B \models T$. Let $\Gamma = \{ \phi : \phi$ is universal and $T \models \phi \}$. Show that if $C \models \Gamma$, then $C \models T$.

5) Let T be a complete theory in a countable language.

a) Suppose that $|S_n(T)| \leq \aleph_0$ for all n. Show that there is a countable \aleph_0-saturated model of T.

b) Sketch the proof that if T is not atomic, then $|S_n(T)| = 2^{\aleph_0}$ for some n.

6) Let T be a complete theory in a countable language. Suppose that $|S_n(T)| \leq \aleph_0$ for all $n \in T$. Let t_0, \ldots, t_n, \ldots list all elements of $\bigcup S_n(T)$. Let $X \subset \omega$. Suppose for each n there is $M_{X,n}$ which for $i \leq n$, $M_{X,n}$ realizes t_i if and only if $i \in X$. Show that there is M_X such that for all i, M_X realizes t_i if and only if $i \in X$.

7) Let T be a complete theory in a countable language. Prove $A \models T$ is prime if and only if A is atomic and countable.

8) a) Show that every \aleph_0-saturated model is \aleph_0-homogeneous.

b) Show that every atomic model is \aleph_0-homogeneous.