Combinatorics Seminar

Largest union-intersecting families
Gyula O.H. Katona (MTA Renyi Institute (Budapest))

Abstract: Janos Korner asked the following question. Let $[\mathrm{n}]=\{1,2, \ldots, n\}$ and let $\mathcal{F} \subset 2^{[n]}$ be a family of its subsets. It is called union-intersecting if $\left(F_{1} \cup F_{2}\right) \cap\left(F_{3} \cup F_{4}\right)$ is non-empty whenever $F_{1}, F_{2}, F_{3}, F_{4} \in \mathcal{F}$ and $F_{1} \neq F_{2}, F_{3} \neq F_{4}$. What is the maximum size of a union-intersecting family? This question is answered in the present paper. The optimal construction when n is odd consists of all subsets of size at least $\frac{\mathrm{n}-1}{2}$ while in the case of even n it consists of all sets of size at least $\frac{n}{2}$ and sets of size $\frac{n}{2}-1$ containing a fixed element, say 1 . We also proved some extensions, variants and analogues of this statement. The following one is an example. Suppose that \mathcal{F} is a union-intersecting family of k-element subsets of $[\mathrm{n}]$. We found that the optimal construction for this problem consists of all k-element subsets of size k containing the element 1 , and one more additional set, for $n>n(k)$. The results were jointly achieved with Daniel T. Nagy.

