Combinatorics Seminar

Uniform Hypergraphs Containing no Grids

Miklos Ruszinko (Renyi Institute and Memphis)

Abstract: A hypergraph is called an $r \times r$ {\em grid} if it is isomorphic to a pattern of r horizontal and r vertical lines, i.e., a family of sets $\{A_1, \ldots, A_r, B_1, \ldots, B_r\}$ such that $A_i \cap A_j = B_i \cap B_j = \emptyset$ for $1 \le i < j \le r$ and $|A_i \cap B_j| = 1$ for $1 \le i, j \le r$. Three sets C_1, C_2, C_3 form a {\em triangle} if they pairwise intersect in three distinct singletons, $|C_1 \cap C_2| = |C_2 \cap C_3| = |C_3 \cap C_1| = 1$, $|C_1 \cap C_2| \le C_1 \cap C_3$. A hypergraph is {\em linear}, if $|E \cap F| \le 1$ holds for every pair of edges. We construct large linear r-hypergraphs which contain no grids. Moreover, a similar construction gives large linear r-hypergraphs which contain neither grids nor triangles. For $r \ge 4$ our constructions are almost optimal. These investigations are related to $|E_1| = |E_2|$ or $|E_3| = |E_3|$ or $|E_3| =$

Monday, October 19 at 3:00 PM in SEO 427