Statistics and Data Science Seminar

Overlaps and Pathwise Localization in the Anderson Polymer Model

Mike Cranston (UCI)

Abstract: We consider large time behavior of typical paths under the Anderson polymer measure. If P_{κ}^{x} is the measure induced by rate κ , simple, symmetric random walk on \mathbb{Z}^{d} started at x, this measure is defined as $\lfloor d \\ mu^{x}_{kappa, \\beta, T}T(X) = \{ l \\ exp \\left \\ beta \\ int_0^T dW_{X(s)}(s) \\ s) \\ right \\ dP^{x}_{kappa}(X) \\ where \{ W_{x} : x \in \mathbb{Z}^{d} \}$ is a field of iid standard, one-dimensional Brownian motions, $\beta > 0, \kappa > 0$ and $Z_{\kappa,\beta,t}(x)$ the normalizing constant. We establish that the polymer measure gives a macroscopic mass to a small neighborhood of a typical path as $T \rightarrow \infty$, for parameter values outside the perturbative regime of the random walk, giving a pathwise approach to polymer localization, in contrast with existing results. The localization becomes complete as $\frac{\beta^{2}}{\kappa} \rightarrow \infty$ in the sense that the mass grows to 1. The proof makes use of the overlap between two independent samples drawn under the Gibbs measure $\mu_{\kappa,\beta,T}^{x}$, which can be estimated by the integration by parts formula for the Gaussian environment. Conditioning this measure on the number of jumps, we obtain a canonical measure which already shows scaling properties, thermodynamic limits, and decoupling of the parameters. This talk is based on joint work with Francis Comets.

Wednesday, November 2 at 4:00 PM in SEO 636