Combinatorics Seminar

A variation of the Ramsey problem: (p, q)-colorings
 Alex Cameron (UIC)

Abstract: For fixed integers p and q, let $f(n, p, q)$ denote the minimum number of colors needed to color all of the edges of the complete graph K_{n} such that no clique of p vertices spans fewer than q distinct colors. Any edge-coloring with this property is known as a (p, q)-coloring. In this talk I will present a recent result showing that $\mathrm{f}(\mathrm{n}, 5,5) \leq \mathrm{n}^{1 / 3+\mathrm{o}(1)}$ as $n \rightarrow \infty$ by giving an explicit $(5,5)$-coloring. This improves upon the best known probabilistic upper bound of $O\left(n^{1 / 2}\right)$ given by Erdos and Gyarfas, and comes close to matching the best known lower bound $\Omega\left(n^{1 / 3}\right)$.

