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Abstract. Many applications of contemporary science involve multiscale dynamics, which are
typically characterized by the time and space scale separation of patterns of motion, with fewer slowly
evolving variables and much larger set of faster evolving variables. This time-space scale separation
causes direct numerical simulation of the evolution of the dynamics to be computationally expensive,
due both to the large number of variables and the necessity to choose a small discretization time
step in order to resolve the fast components of dynamics. In this work we propose a simple method
of determining the closed model for slow variables alone, which requires only a single computation
of appropriate statistics for the fast dynamics with a certain fixed state of the slow variables. The
method is based on the first-order Taylor expansion of the averaged coupling term with respect to
the slow variables, which can be computed using the linear fluctuation-dissipation theorem. We
show that, with simple linear coupling in both slow and fast variables, this method produces quite
comparable statistics to what is exhibited by a complete two-scale model. The main advantage of the
method is that it applies even when the statistics of the full multiscale model cannot be simulated
due to computational complexity, which makes it practical for real-world large scale applications.
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1. Introduction. Multiscale dynamics are common in applications of contem-
porary science, such as geophysical science and climate change prediction [9,15,16,24].
Multiscale dynamics are typically characterized by the time and space scale separation
of patterns of motion, with (typically) fewer slowly evolving variables and much larger
set of faster evolving variables. This time-space scale separation causes direct numer-
ical simulation of the evolution of the dynamics be computationally expensive, due
both to the large number of variables and the necessity to choose a small discretization
time step in order to resolve the fast components of dynamics.

In the climate change science the situation is further complicated by the fact
that climate is characterized by the long-term statistics of the slow variables, which,
under small changes of parameters (such as the solar radiation forcing, greenhouse gas
content, etc) change over even longer time scale than the motion of the slow variables
themselves. In this situation, where long-term statistics of the slow motion patterns
need to be captured, the direct forward time integration of the most comprehensive
global circulation models (GCM) is subject to enormous computational expense.

As a more computationally feasible alternative to direct forward time integra-
tion of the complete multiscale model, it has long been recognized that, if a closed
simplified model for the slow variables alone is available, one could use this closed
slow-variable model instead to simulate the statistics of the slow variables. Numer-
ous closure schemes were developed for multiscale dynamical systems [10, 13,20-23],
which are all based on the averaging principle over the fast variables [25,32,33]. Some
of the methods (such as those in [20-23]) replace the fast nonlinear dynamics with
suitable stochastic processes [34] or conditional Markov chains [10], while others [13]
provide direct closure by suitable tabulation and curve fitting. However, it seems
that all these approaches require either extensive computations to produce a closed
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model (for example, [10,13] require multiple simulations of fast variables alone with
different fixed states of slow variables), or somewhat ad hoc determination of closure
coefficients by matching areas under the time correlation functions [20-23].

In this work we propose a simple method of determining the closed model for
slow variables alone, which requires only a single computation of appropriate statis-
tics for the fast dynamics with a certain fixed state of the slow variables. The method
is based on the first-order Taylor expansion of the averaged coupling term with re-
spect to the slow variables, which, as we show, can be computed using the linear
fluctuation-dissipation theorem [1-8,19,26]. We show through the computations with
the appropriately rescaled two-scale Lorenz 96 model [4] that, with simple linear cou-
pling in both slow and fast variables, this method produces quite comparable statistics
to what is exhibited by the slow variables of the complete two-scale Lorenz model.
The main advantage of the method is its simplicity and easiness of implementation,
partly due to the fact that the fast dynamics need not be explicitly known (that is,
the fast dynamics can be provided as a “black-box” algorithm), and the parameters of
the closed model for the slow variables are determined from the appropriate statistics
of the fast variables for a given fixed state of the slow variables. Additionally, the
method can be applied even when the statistics for slow variables of the full multiscale
model are not available due to computational expense.

The manuscript is structured as follows. In Section 2 we outline the theoretical
grounds for the algorithm. In Section 3 we describe the two-scale Lorenz model
[13,17,18], appropriately rescaled so that the means and variances of both the fast
and slow variables are near zero and one, respectively [4]. Section 4 contains the results
of numerical experiments with both the two-scale Lorenz model and the reduced set
of equations for slow variables only, comparing various statistics of the time series.
Section 5 summarizes the results of this work.

2. The linear response closure approximation. Consider a two-scale system

of differential equations of the form

dzx d

= =Fy). =Gy, (2.1)
where = z(t) € RV« are the slow variables, y = y(t) € RVv are the fast variables,
and F and G are N, and N, vector-valued functions of « and y, respectively. Here and
below, we assume that the fast variables y are “unresolved”, that is, the computation
of the dynamics for y requires such a small time discretization step, that the direct
computation of (2.1) for long time intervals is practically infeasible. We also assume
that the dynamics for y are fast enough for the system in (2.1) to be approximated
by the averaged dynamics for x, given by

dx
5 = ({Fi@), (F)@)= F(x, z) dpa(2), (2:2)
RNy
for finite times (for a more detailed description of the averaging formalism, see [2,4,25,
32,33]). Above, u, is the invariant probability measure of the limiting fast dynamics
given by

dz
dr
where the solution is given by the flow z(7) = ¢7zo, while x is a fixed constant
parameter for (2.3) and, consequently, p,. Below we assume that (F)(x) varies

= G(x, z), (2.3)
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smoothly with respect to @ (it is known that for stochastically driven systems this
property is generic, and for deterministic dynamics this happens when p, is an SRB
measure [12,27-29,35]). Under the ergodicity assumption for iz, one can replace the
measure average with time average:

T
(F)(x) = lim E F(x,z(7))dr, (2.4)
r—oo T Jo
where z(7) is a long-term trajectory of (2.3).

While suitable multiscale methods exist (see [11] and references therein) where
the computation of the average in (2.4) is performed relatively rarely, even that might
not be computationally feasible in complex multiscale systems with many fast vari-
ables. For the purpose of this work, here we assume that the computation of (2.3) is
practically feasible only for a single choice of the constant parameter @ = x*, where
x* is a suitable point, in the vicinity of which the motion occurs, such as the mean
state of the original dynamics in (2.1), or a nearby state. A poor man’s approach in
this case is to compute the approximate average with respect to pg+, which is a zero
order approximation:

(F)(z) = BN F(x,z) dpg- (2) + O(|lz — z7|). (2.5)
Y
Here, one has to compute the time average in (2.4) only once, for the time series of
(2.3) corresponding to x = x*. However, as recently found in [4], this approximation
may fail to capture the chaotic properties of the slow variables in (2.1). Here we
propose the following first order correction:

(F)(x) = F(x,z) dps- (2)+

RNy

(2.6)
| [, P a6 @ - o) + Ol - 2 )
RYy
where pl,. is the derivative of u, with respect to @, computed at the point & = z*.
It is shown in [4] that the average of F' with respect to ul. can be computed as
the corresponding infinite time linear response to infinitesimal perturbation of @ (for
details on the linear response theory, see [1-8,19,26] and references therein):

8F
Feoa-()= [ [ e sars B2 2 (s @)
RNy RNy
where OF /0y is the Jacobian with respect to the second argument of F, and T',. ,
is the tangent map of (2.3):
0
T.,. ,=—d- 2.8

= bl 28)
Under the assumption of ergodicity of p+, (2.7) can be written as the integral of the
time autocorrelation function, which is computed along a single long-time trajectory
z*(7) of (2.3) with @ = x*:

F(x,z)dul,.(z) =
RNy

- . (2.9)
_/0 [hm/o G (@ (4 AT G (a2 (1) dr | ds,

T—00
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which is also done only once along the same long-term trajectory of (2.3), as for the
time average in (2.5) (for practical purposes, it can be assumed that the time auto-
correlation function decays sufficiently fast to replace the improper integral from zero
to infinity with a proper integral up to a sufficiently long time). While formally valid,
the above formula can be unsuitable for practical computation due to the fact that
usually the limiting fast dynamics in (2.3) are strongly chaotic and mixing with large
positive Lyapunov exponents. The presence of large positive Lyapunov exponents
causes numerical instability in the computation of the tangent map T of (2.3) for
long response times, and, as a result, the infinite-time linear response in (2.9) can-
not be computed. Below we consider the special setting for (2.1) with linear coupling
(which is common in geophysical sciences), and use the quasi-Gaussian linear response
approximation [1-3,5-8,19] for the practical computation of (2.9).

2.1. Special case with linear coupling. Here we consider the special setting
of (2.1) with linear coupling between x and y:

F(z,y)= f(x)+ Ly, G(z,y)=g(y) + L.z, (2.10)

where f and g are nonlinear vector functions of & and y, respectively, and L, and
L, are constant matrices of suitable sizes. For this simplified setting, observe that
0G/0x = L, OF /0y = L,, and, therefore, the approximate averaged system is given

by
dx —x * *
s = f(x)+ Lyz"+ L,R*L,(x —x"), (2.11a)
— N S A
z'=lim — | 2"(r)dr, (2.11b)
r—oo 1 [o
. ol IV (Y A
R :/ [hm —/ T2 (7 dT:| ds, (2.11c)
0 r—oo T 0

where z(t) is the solution of the fast limiting system

dz _ g(2) + Lyx (2.12)
dt

with @ specified as a constant parameter, and z*(t) corresponds to = *. The for-
mula in (2.11c) is usually unsuitable for direct numerical computation due to rapidly
growing Lyapunov exponents at fast scales. Instead, one can use the quasi-Gaussian
linear response approximation, where (2.11c) becomes the integral of the time autocor-
relation function under the assumption of the Gaussian invariant measure for (2.12).
With linear coupling, the measure-averaged linear response formula (2.7) becomes

F(xz,z)du,.(z) = L, </ T ,dug(2) ds) L,. (2.13)
0o JrRNy '

RNy

Now, the Gaussian probability density is given by

ph(z) = (21) 2 det T % exp <—%(z )Ty (2 - z*)) , (2.14)
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where X* is the long-time covariance matrix of (2.12), computed at the point x*:

1 T
¥ = lim - [ (2*(1) — 2°)(2*(7) — 2)T dr. (2.15)
r—oo 1T Jq
Recalling that T,. , = 0¢5.2/0z and replacing dugz-(2) = pg(2)dz, we obtain,
after integration by parts over z,

F(z,z)du,.(z) = —L, (/ / d);*z(?pc(z) dz ds) L,. (2.16)
RNy o JRMy 0z

Computing the derivative of (2.14) with respect to z, we obtain

F(z,z)du,.(z) = L, (/000 - b5e2(z — 2) pi(z)dz ds) >0, (2.17)

RNy

Switching back to time-averaging, we obtain

F(z,z)dul,.(z) =
RNy

=L, /OOO [lim l/or 27+ 8)(2*(7) —z*)TdT} ds T*1L,. (2.18)

T—00 T

and, therefore, R* in (2.11a) can now be computed as

o0 i

R* = / [lim 1/ 25 (1 + s)(z* (1) — )7 dT] ds &1, (2.19)
0 r—oo T 0

For details, see [1-3,5-8,19]).

For even better precision of the linear response computation, one can also use
the blended linear response approximation [5-8|, however, in this work we do not
implement it, as it is shown that for the model and regimes considered, the quasi-
Gaussian approximation is already quite precise.

Even with the linear coupling, the function Z(x) (the dependence of the mean
state of (2.12) on x) is not generally linear. Thus, the validity of the linear approxi-
mation in (2.11a) depends on the influence (or lack thereof) of the nonlinearity of the
function Z(x). While rigorous estimates of the validity of the linear approximation in
(2.11a) can hardly be provided in general case, here, instead, we try to justify it by
comparing the fast limiting system in (2.12) to the Ornstein-Uhlenbeck process [31].
Consider an Ornstein-Uhlenbeck process of the form

4 reem)tLare (2.20)
dr dr
where m is a constant Ny-vector, I' is a constant N, x N, positive-definite matrix,
W, is a K-dimensional Wiener process, o is a constant Ny x K matrix, and x is, as
in (2.12), is a constant parameter. Then, it is easy to see that the difference between
the statistical mean states of (2.20) corresponding to & and x* is

Zov — Zoy =D 'Ly(x — x¥), (2.21)

which is valid for (xz — x*) of an arbitrary norm. At the same time, by the regression
theorem [26], the time correlation function of (2.20) with @ = x* is given by

(2ot + ) (250 (t) — Z250)") = exp(—sT)Z5y, (2.22)
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where 37, is the covariance matrix of the Ornstein-Uhlenbeck process in (2.20) for
x = x*. Thus, according to (2.19), the infinite-time linear response operator for (2.20)
is computed as

R}, = / exp(—sT)ds =T, (2.23)
0

By comparing (2.23) with (2.21), one can see that, for the Ornstein-Uhlenbeck process,
the quasi-Gaussian linear response formula in (2.19) is exact for an arbitrarily large
perturbation (x — x*). Hence, if the nonlinear process in (2.12) behaves statistically
similarly to the Ornstein-Uhlenbeck process in (2.20), the averaged system in (2.11a)
can be expected to behave statistically similarly to the slow part of (2.10). Below
we numerically test the approximation for slow variables in the special setting with
linear coupling using the two-scale Lorenz model [1,2,4,10,13,17].

3. The two-scale Lorenz model. Here we choose the two-scale forced damped
Lorenz model [1,2,4,10,13,17] for the computational study of the dynamical properties
of a two-scale slow-fast process with generic features of climate-weather systems, such
as the presence of linearly unstable waves, strong nonlinearity, forcing, dissipation,
chaos and mixing. The two-scale forced damped Lorenz model is given by

J
. A
xX; ::vi_l(xi+1 —xi_g)—xi—i—Fw — 7‘”;%,]‘, (31&)
. 1 Az
Yig =2 Wi j+1(Wij—1 — Yijr2) — Yij + Fyl + — i (3.1b)

where 1 < i < N,, 1 < j < J. The following notations are adopted above:
e x is the set of the slow variables of size N,. The following periodic boundary
conditions hold for x: ;4 N, = 243
e y is the set of the fast variables of size N, = N,J where J is a positive
integer. The following boundary conditions hold for y: y;yn, ; = vi,; and
Yij+J = Yi+1,53
e [, and F), are the constant forcing parameters;
e )\, and )\, are the coupling parameters;
e ¢ is the time scale separation parameter.
Originally in [10,13,17] there was no constant forcing F' term in the equation for
a-variables in (3.1), however, in its absence the behavior of the y-variables is strongly
dissipative [1,2]. Here, as in [2], we add a constant forcing F} in the right-hand side of
the second equation in (3.1) to induce the strongly chaotic behavior of the y-variables
with large positive Lyapunov exponents.

3.1. Rescaled Lorenz model. In the Lorenz model (3.1), F, and F), regulate
the chaos and mixing of the x and y variables, respectively [1,2,4]. However, the
mean state and mean energy are also affected by the changes in forcing, which affects
the mean and energy trends in coupling for the fixed coupling parameters. To adjust
the effect of coupling independently of forcing, here we rescale the Lorenz model as
in [19]. Consider the uncoupled Lorenz model

d

&xi = xi,l(le - Ii,Q) —x; + F (32)
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with the same periodic boundary conditions as above [18]. Observe that the long term
statistical mean state Z and the standard deviation 5 in (3.2) are the same for all z;
due to the translational invariance. Now, we rescale x and t as

r; = T + B, tZI, (33)
p

where the new variables & have zero mean state and unit standard deviation. In the
rescaled variables, the Lorenz model becomes
A . . . 1. . . F—z
By =21 (Bip1 — Tim2) + 3 [T(Zit1 — Bi—2) — @] + o (3.4)
where T and § are, of course, the functions of F. In addition to setting the mean
state and variance of Z; to zero and one, respectively, due to the time rescaling the
autocorrelation functions of z acquire roughly identical time scaling for any F (for
details, see [19]). Here, we similarly rescale the two-scale Lorenz model from (3.1):

dr

1 F,—Zx

J
. _ . A
T = 33i71(33i+1 - Ii72) + B_ ($(Ii+1 - 331'72) - ﬂfz) + T - 7y E Yi,j5 (3.5&)
x T j:l

) 1 1,
Uij = = |Yijr1Wij—1 — Yij+2) + 7 GWij-1 — Vij+2) — Yij) +
© Py (3.5b)
Fy,—y Az '
t—p | T %
B

where Z, 9, 8 and 3, are the long term means and standard deviations of the cor-
responding uncoupled system in (3.2) with either F, or Fy set as a constant forcing.
In the rescaled Lorenz model (3.5), the values of F,, and F, do not significantly affect
the mean state, mean energy and the time scale for both the slow variables & and fast
variables y, and mostly regulate the mixing and non-Gaussianity of the probability
distributions of the long-term time series.

The Lorenz model (3.5) represents the setting with linear coupling as in (2.10),
with f, g, L, and L, given by

F,—=x
filx) = xi—1(Tig1 — wi2) + B, (@(Tig1 — ®im2) — i) + 5z (3.6a)
1 1
9i,i(Y) = Z Vi1 Wij—1 = Yijr2) + 2 (@Wij—1 = Yij+2) = yij) +
e By
) (3.6b)
By
By
s A
L, = ?LT7 Ly=—7L  Lign =0y (3.6¢)

Now, one can immediately see that for the Lorenz model in (3.5), the limiting system
in (2.3) is given by

d Az
g+ 2 rra, 1)

3
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while the approximate averaged system around the point x* is given by

dx Ay + . Az)y v T N

T - f(x) g Lz 7 LR'L" (x —z"). (3.8)
Above, the parameter € in the denominator suggests that the first-order correction
term is of order e 1, which is misleading, because R* scales proportionally to € (since
it is the integral of the time autocorrelation function with rate of decay proportional
to e71). For simplicity of computation, for the Lorenz model we rescale the fast
limiting dynamics by € to bring the time scale to order 1 since the scaling parameter
¢ is known explicitly®, which yields

d
d—i =eg(z)+ N\ L'z, (3.9)
for the fast limiting dynamics for fixed @, while for the averaged dynamics we obtain
d A Az . «
d—f = f(@) - Lz - LR L (2 - o), (3.10)

where R is computed from the time series of (3.9) using the quasi-Gaussian approx-
imation in (2.19).

4. Numerical experiments. Here we present a numerical study of the pro-
posed approximation for slow dynamics, applied to the rescaled Lorenz model in
(3.5). We compare the statistical properties of the slow variables for the three follow-
ing systems:

1. The complete rescaled Lorenz system from (3.5);

2. The approximation for slow dynamics alone from (3.10);

3. The poor man’s version of (3.10) with the first-order correction term R* set

to zero (further referred to as the “zero-order” system).

The fixed parameter x* for the computation of R* was set to the long-term mean
state & of (3.5) (in practical situations, a rough estimate could be used). The quasi-
Gaussian approximation in (2.19) is used to compute the first order correction term
R*. While it is practically impossible to compute the improper integrals in (2.19) for
infinite upper limit, in practice we use sufficiently long (but finite) limits of integration.
In particular, for all computational results presented below, the correction term R*
is computed numerically as

1 TCOT‘T Tau
R = 7 / 25 (14 s)(z*(r) — 29T drds =71, (4.1)
av JO 0

where the averaging time window T,, equals 10000 time units, while the correlation
time window T¢ equals 50 time units (it was observed that the time autocorrelation
function in (4.1) decays essentially to zero within the 50 time-unit window for all
studied regimes). The mean state Z* and the covariance matrix X* are also computed
by time-averaging with the same averaging window of 10000 time units.

Due to translational invariance of the studied models, the statistics are invariant
with respect to the index shift for the variables x;. For diagnostics, we monitor the
following long-term statistical quantities of x;:

1Generally, when no scaling parameter is available explicitly in (2.1), one can still multiply the
right-hand side of (2.3) by a heuristic small parameter to bring the time scale of (2.3) to order 1,
since the averaged dynamics are invariant with respect to the e-scaling of the limiting fast dynamics
(for details, see [4]). Or, equivalently, use appropriately small time step and averaging window for
(2.3).
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a. The probability density functions (PDF), computed by bin-counting. A PDF gives
the most complete information about the one-point statistics of x;, as it shows the
statistical distribution of x; in the phase space.

b. The time autocorrelation functions (z;(t)x;(t + s)), where the time average is over
t, normalized by the variance (x?) (so that it always starts with 1).

c. The time cross-correlation functions (x;(t)x;4+1(t + s)), also normalized by the
variance (7).

d. The energy autocorrelation function

(22 (a2t + 5))

K6) = e e mt+ o7

This energy autocorrelation function measures the non-Gaussianity of the process

(it is identically 1 for all s if the process is Gaussian, such as the Ornstein-Uhlenbeck

process). For details, see [22].
The success (or failure) of the proposed approximation of the slow dynamics depends
on several factors. First, as the quasi-Gaussian linear response formula is used for the
computation of R, the precision will be affected by the non-Gaussianity of the fast
dynamics. Second, it depends how linearly the mean state Z for the fast variables
depends on the slow variables . Here we observe the limitations of the proposed
approximation by studying a variety of dynamical regimes of the rescaled Lorenz
model in (3.5). The following dynamical regimes are studied:

e N, =20, J =4 (so that N, = 80). Thus, the number of the fast variables is
four times greater than the number of the slow variables.

e £ = 0.01. The time scale separation of two orders of magnitude is consistent
with typical real-world geophysical processes (for example, the annual and
diurnal cycles of the Earth’s atmosphere).

e )\, = )\, = 0.3,0.4. These values of coupling are chosen so that they are
neither too weak, nor too strong (although 0.3 is weaker, and 0.4 is stronger).
Recall that the standard deviations of both z; and y; ; variables are approx-
imately 1, and, thus, the contribution to the right-hand side from coupled
variables is weaker than the self-contribution, but still of the same order.

e F, = 6,16. The slow forcing F, adjusts the chaos and mixing properties
of the slow variables, and in this work it is set to a weakly chaotic regime
F, = 6, and strongly chaotic regime F, = 16.

o I, = 8,12. The fast forcing adjusts the chaos and mixing properties of the
fast variables. Here the value of F, is chosen so that the fast variables are
either moderately chaotic for Fy = 8, or more strongly chaotic for Fy = 12.

In Figure 4.1 we show the probability density functions and time autocorrelation
functions for the limiting fast dynamics in (3.9), with the parameters N, = 20, N, =
80, F; = 6, Az = Ay = 0.3, and two values of the fast forcing: F,, = 8 and F, = 12.
Observe that the PDFs are not Gaussian (although close to it), and have nonzero
skewness. The time autocorrelation functions decay slower for F,, = 8 and faster for
F, = 12, indicating slower and faster mixing, respectively. In other regimes, these
PDFs and autocorrelation functions look very similar to what is presented in Figure
4.1.

Another point we would like to emphasize before presenting the results of the
computational study, is that the matrices R* and, consequently, LRL” in (3.10)
are not diagonal. In Figure 4.2 we display both R* and LRL" for the dynamical
regime with F, = 6, F, = 8, and A\, = A\, = 0.4 (only the central columns of R*
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N,=20, N,=80, F,=6, ,=0.3, A,=0.3

N, =20, Ny=80, F.=6, A\,=0.3, )\y=0.3 1 ‘ ‘ —
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F1G. 4.1. The probability density functions and time autocorrelation functions of the limiting
fast dynamics in (3.9) for Fz =6, and Az = Ay = 0.3.

N,=20, N,=80, F,=6, F,=8, A,=0.4, A,=0.4 N,=20, N,=80, F,=6, F,=8, A,=0.4, A,=0.4
08 T T T T T T 3 T T T

08 ! ! ! ! ! ! ! 05 ! ! !
40 30 20 -10 0 10 20 30 40 -10 -5 0 5 10

FIG. 4.2. The matrices R* (left) and LR*LT (right) of the reduced dynamics in (3.10) for
Fr =6, Fy =8, and Ay = Ay = 0.4. Only a single column of each matriz is displayed with
its diagonal element corresponding to zero horizontal coordinate, as the matrices are translation-
nvariant.

and LRL" are displayed with diagonal elements corresponding to zero horizontal
coordinates of the plots, as both matrices are translation-invariant). Observe that
there are significant off-diagonal entries in both matrices. Both R* and LRL” are
positive-definite in the presented regime (the lowest eigenvalues of their symmetric
parts are 6.314 - 1072 and 0.8814, respectively), and, as a result, the linear correction
term in (3.10) causes damping effect on the reduced dynamics (for more details about
chaotic properties of reduced dynamics, see [4]). For other regimes, the matrices are
similar to the presented regime (that is, substantial off-diagonal entries are present),
and we do not display those here.

4.1. Probability density functions of the slow dynamics. In Figures 4.3
and 4.4 we show the probability density functions of the slow dynamics for the full two-
scale Lorenz model, the reduced closed model for the slow variables alone in (3.10),
and its poor man’s zero order version without the linear correction term. Observe that
for the more weakly coupled regimes with A, = A, = 0.3 the PDFs look rather similar,
however, it can be seen that the reduced model with the correction term reproduces
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N,=20, Ny:80, A=0.3, )\y:0-3, F=6, Fy:8 N,=20, Ny=80, A=0.3, Ay:0.3, F.=16, Fy:8
05 T T T T T T 1 05 T T T T T T 1
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Reduced system ------- Reduced system -------
Zero-order system -------- __ Zero-order system --------
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FIc. 4.3. PDFs, Ay = Ay = 0.3.

the PDF's much closer to those of the full two-scale Lorenz model, than the zero-order
model. In the more strongly coupled regime with A\, = Ay = 0.4 the situation tilts
even more in favor of the reduced model with linear correction term in (3.10): observe
that for the weakly chaotic regime with F,, = 6 the PDFs of the full two-scale Lorenz
model have three sharp peaks, indicating strong non-Gaussianity. The reduced model
in (3.10) reproduces these peaks, while its zero-order version fails. In addition, in
Table 4.1 we show the Lo-errors in PDF's between the full two-scale Lorenz model and
the two reduced models. Observe that, generally, the reduced system with the linear
correction term in (3.10) produces more precise results than its poor man’s version
without the correction term.

4.2. Time autocorrelation functions of the slow dynamics. In Figures 4.5
and 4.6 we show the time autocorrelation functions of the slow dynamics for the full
two-scale Lorenz model, the reduced closed model for the slow variables alone in (3.10),
and its poor man’s zero order version without the linear correction term. Observe
that for the more weakly coupled regimes with A\, = A, = 0.3 the time autocorrelation
functions look similar, yet the reduced model with the correction term reproduces the
time autocorrelation functions more precisely than the zero-order model. In the more
strongly coupled regime with A\, = A, = 0.4 the difference between the reduced model
in (3.10) and its poor man’s zero-order version is even more drastic: observe that for
the weakly chaotic regime with F, = 6 the time autocorrelation functions of the full
two-scale Lorenz model do not exhibit decay (indicating very weak mixing), and the
reduced model in (3.10) reproduces the autocorrelation functions of the full two-scale
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FIG. 4.4. PDFs, Ay = Ay = 0.4.
Aoy = 0.3, F, =8 Aoy = 0.3, F, = 12
Red. 7.0. Red. Z.0.
F,=6 | 5.036-10"2 | 1.165- 102 F,=6 || 2.581-1072 | 1.576- 102
F, =16 || 5.593-1073 | 1.469 - 102 F,=16 | 2.71-1073 | 1.818-1072
Aoy =04, F, =8 Aoy = 0.4, F, = 12
Red. 7.0. Red. Z.0.
F,=6 0.1022 8.857-1072 F,=6 9.28-1072 0.1113
F, =16 || 3.725-1073 | 2.703-10~2 F, =16 || 5.885-1073 | 3.209- 1072
TABLE 4.1

Lo-errors between the PDFs of the slow variables of the full two-scale Lorenz model and the
two reduced models. Notations: “Red.” stands for “Reduced” (that is, (3.10)), and “Z.0.” stands
for “Zero-order”, the poor man’s version of (3.10).

Lorenz model rather well, while its zero-order version fails. In addition, in Table
4.2 we show the Ly-errors in time autocorrelation functions (for the correlation time
interval of 20 time units, as in Figures 4.5 and 4.6) between the full two-scale Lorenz
model and the two reduced models. Observe that, generally, the reduced system with
the linear correction term in (3.10) produces more precise results than its poor man’s
version without the correction term.

4.3. Time cross-correlation functions. In Figures 4.7 and 4.8 we show the
time cross-correlation functions of the slow dynamics for the full two-scale Lorenz
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F1G. 4.5. Time autocorrelation functions, Az = Ay = 0.3.

Moy — 0.3, F, = 8

Moy =03, F, = 12

Av. 7.0. Av. 7.0.
F,=6 || 5.841-1072 0.1211 F, = 6.539 - 102 0.1572
F, =16 || 4.079-1072 | 5.342-10~2 F,=16 | 1.559-1072 | 7.396- 102

Az,y = 04, Fy =8 )\x,y = 047 Fy =12
Av. 7.0. Av. 7.0.
F,=6 5.538-1072 | 0.3677 F,=6 0.2981 0.3986

F,=16 | 8.534-10"2 | 0.1355

F, =16 || 4.835-1072 | 0.1482

TABLE 4.2

Lo-errors between the time autocorrelation functions of the slow variables of the full two-scale
Lorenz model and the two reduced models. Notations: “Red.” stands for “Reduced” (that is, (3.10)),
and “Z.0.” stands for “Zero-order”, the poor man’s version of (3.10).

model, the reduced closed model for the slow variables alone in (3.10), and its poor
man’s zero order version without the linear correction term. Observe that for the
more weakly coupled regimes with A\; = A, = 0.3 the time cross-correlation functions
look similar, however, it is seen that the reduced model with the correction term
reproduces the time cross-correlation functions more precisely than the zero-order
model. In the more strongly coupled regime with A\, = Ay = 0.4, the reduced model
in (3.10) becomes much more precise than its poor man’s zero-order version: here, for
the weakly chaotic regime with F,, = 6 the time cross-correlation functions of the full
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FI1G. 4.6. Time autocorrelation functions, Az = Ay = 0.4.
Aoy =03, F, =8 Aoy = 0.3, F, = 12
Av. 7.0. Av. 7.0.
F,=6 | 6.825-1072 | 0.1437 F,=6 | 6.838-1072 [ 0.1799
F, =16 0.1094 0.2134 F, =16 || 3.687-1072 | 0.2548
Aey = 0.4, F, =8 Aoy = 04, F, =12
Av. Z.0. Av. Z.0.
F,=6 | 5.313-1072 | 0.3666 F, =6 0.3137 0.3942
F, =16 0.1258 0.3232 F,=16 | 6.953-1072 | 0.3321
TABLE 4.3

Lo-errors between the time cross-correlation functions of the slow variables of the full two-scale
Lorenz model and the two reduced models. Notations: “Red.” stands for “Reduced” (that is, (3.10)),

and “Z.0.” stands for “Zero-order”, the poor man’s version of (3.10).

two-scale Lorenz model do not exhibit decay (indicating very weak mixing), and the
reduced model in (3.10) reproduces the cross-correlation functions of the full two-scale
Lorenz model rather well, while its zero-order version fails.
4.3 we show the Lo-errors in time cross-correlation functions (for the correlation time
interval of 20 time units, as in Figures 4.7 and 4.8) between the full two-scale Lorenz
model and the two reduced models. Observe that, generally, the reduced system with
the linear correction term in (3.10) produces more precise results than its poor man’s

version without the correction term.

In addition, in Table
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4.4. Energy autocorrelation functions. In Figures 4.9 and 4.10 we show the
energy autocorrelation functions of the slow dynamics for the full two-scale Lorenz
model, the reduced closed model for the slow variables alone in (3.10), and its poor
man’s zero order version without the linear correction term. Observe that for the more
weakly coupled regimes with A\, = A, = 0.3 the energy autocorrelation functions look
similar, although the reduced model with the correction term reproduces the energy
autocorrelation functions more precisely than the zero-order model. In the more
strongly coupled regime with A\, = A, = 0.4, the reduced model in (3.10) is much
more precise than its poor man’s zero-order version: here, for the weakly chaotic
regime with F,, = 6 the energy autocorrelation functions of the full two-scale Lorenz
model is significantly sub-Gaussian, and the reduced model in (3.10) reproduces the
sub-Gaussianity of the energy autocorrelation functions of the full two-scale Lorenz
model rather well, while its zero-order version fails. In addition, in Table 4.4 we show
the Ly-errors in energy autocorrelation functions (for the correlation time interval of
20 time units, as in Figures 4.9 and 4.10) between the full two-scale Lorenz model and
the two reduced models. Observe that, generally, the reduced system with the linear
correction term in (3.10) produces more precise results than its poor man’s version
without the correction term.

5. Summary. In this work we develop a simple method of constructing the
closed reduced model for slow variables of a multiscale model with linear coupling,
which requires only a single computation of the mean state and the time autocorre-
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Aoy =03, F, =38 Aoy =03, F, = 12
Av. 7.0. Av. 7.0.
F,=6 | 8911-1073 | 2.027-1072 F, = 6.783-1073 | 2.131-102
F, =16 | 6.885-1073 | 1.434-102 F, =16 || 4.154-1073 | 1.455-1072
Aoy = 0.4, F, =8 Aoy = 0.4, F, = 12
Av. 7.0. Av. Z.0.
F,=6 2.66- 102 0.2779 F,=6 | 3.499.-102 0.3125
F, =16 | 9.746- 1073 | 2.284-102 F,=16 | 549-1073 | 2.414-1072
TABLE 4.4

Lo-errors between the energy autocorrelation functions of the slow variables of the full two-scale
Lorenz model and the two reduced models. Notations: “Red.” stands for “Reduced” (that is, (3.10)),
and “Z.0.” stands for “Zero-order”, the poor man’s version of (3.10).

lation function for the fast dynamics with a fixed state of the slow variables, which
is located in the region where the slow dynamics evolve (here, the mean state of the
slow dynamics is used). The method is based on the first-order Taylor expansion of
the averaged coupling term with respect to the slow variables, which is computed
using the linear fluctuation-dissipation theorem. We demonstrate through the com-
putations with the appropriately rescaled two-scale Lorenz 96 model [4] that, with
simple linear coupling in both slow and fast variables, the developed reduced model
produces quite comparable statistics to what is exhibited by the complete two-scale
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Lorenz model. Below we outline the main advantages of the new method:

e The reduced model is simple. It requires only the mean state, covariance
and the time autocorrelation function for the fast variables, computed for a
single fixed state of the slow variables. Since only the statistics of the time
series of the fast dynamics are needed, the structure of the right-hand side
of the equations for the fast variables need not be known explicitly — this
part of dynamics can be provided as a “black box”. Also, the structure of
the nonlinear x-dependent part of the right-hand side of the equations for
the slow variables need not be known to construct the approximation, and
existing computational routines can be used for it. The only correction in the
forward time-stepping routine is the linear correction term.

e The reduced model is a priori. It lacks parameters which have to be adjusted
a posteriori to “fit” the statistical properties of the full multiscale dynamics.
In fact, statistical properties of the full multiscale dynamics need not be
known to construct the reduced model (although certain statistics of the fast
variables with an appropriate fixed slow state need to be computed).

e The reduced model is parsimonious. It requires only a simple linear correction
to achieve consistently better performance than that of a corresponding zero-
order model.

e The reduced model is practical. It can be implemented even when the statis-
tics for the slow variables of the complete multiscale dynamics cannot be
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obtained due to its computational complexity (although a rough estimate of
the mean state, or a nearby state is needed), which makes the approach po-
tentially suitable for comprehensive global circulation models in geophysics.
Additionally, existing zero-order models (such as the T21 barotropic model
[7,14,30]) can be retrofitted with the linear correction term.
In the future work, the author intends to collaborate with geophysicists to create
more realistic reduced models for geophysical dynamics, including retrofitting existing
closed models for slow dynamics with the linear correction term.
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