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Abstract. In a recent paper the authors developed and tested two novel

computational algorithms for predicting the mean linear response of a chaotic

dynamical system to small changes in external forcing via the fluctuation-dissipation

theorem (FDT): the short-time FDT (ST-FDT), and the hybrid Axiom A FDT

(hA-FDT). Unlike the earlier work in developing fluctuation-dissipation theorem-type

computational strategies for chaotic nonlinear systems with forcing and dissipation,

these two new methods are based on the theory of Sinai-Ruelle-Bowen probability

measures, which commonly describe the equilibrium state of such dynamical systems.

These two algorithms take into account the fact that the dynamics of chaotic nonlinear

forced-dissipative systems often reside on chaotic fractal attractors, where the classical

quasi-Gaussian (qG-FDT) approximation of the fluctuation-dissipation theorem often

fails to produce satisfactory response prediction, especially in dynamical regimes with

weak and moderate degrees of chaos. It has been discovered that the ST-FDT

algorithm is an extremely precise linear response approximation for short response

times, but numerically unstable for longer response times. On the other hand, the

hA-FDT method is numerically stable for all times, but is less accurate for short

times. Here we develop blended linear response algorithms, by combining accurate

prediction of the ST-FDT method at short response times with numerical stability

of qG-FDT and hA-FDT methods at longer response times. The new blended linear

response algorithms are tested on the nonlinear Lorenz 96 model with 40 degrees

of freedom, chaotic behavior, forcing, dissipation, and mimicking large-scale features

of real-world geophysical models in a wide range of dynamical regimes varying from

weakly to strongly chaotic, and to fully turbulent. The results below for the blended

response algorithms have a high level of accuracy for the linear response of both mean

state and variance throughout all the different chaotic regimes of the 40-mode model.

These results point the way toward the potential use of the blended response algorithms

in operational long-term climate change projection.
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1. Introduction

The fluctuation-dissipation theorem (FDT) is one of the cornerstones of modern

statistical physics, discovered about eighty years ago. Roughly speaking, the fluctuation-

dissipation theorem states that for dynamical systems at statistical equilibrium the

average response to small external perturbations can be calculated through the

knowledge of suitable correlation functions of the unperturbed dynamical system.

The fluctuation-dissipation theorem has great practical use in traditional settings

involving statistical equilibrium of baths of identical gas or liquid molecules, Ornstein-

Uhlenbeck Brownian motion, motion of electric charges, turbulence, quantum field

theory, chemical physics, physical chemistry and other areas. The general advantage

provided by the fluctuation-dissipation theorem is that one can successfully predict the

response of a dynamical system at statistical equilibrium to an arbitrary small external

perturbation without ever observing the behavior of the perturbed system, which offers

great versatility and insight in understanding behavior of dynamical processes near

equilibrium in numerous scientific applications [7, 13]. Typically, the linear response

in the fluctuation-dissipation theorem is given as the time convolution of an external

perturbation with the linear response operator in the form of a specially crafted time

correlation function, which is computed through the long-term observation of the

unperturbed dynamical system at statistical equilibrium. The latter fact explains

the interest towards the fluctuation-dissipation theorem among the computational

community, because one can often compute a long-time trajectory of a dynamical system

near statistical equilibrium through a direct numerical simulation, and calculate the

linear response “on the fly” as the numerical solution evolves by averaging its time

series.

The fact that the fluctuation-dissipation theorem provides an approximation to

the response of a dynamical system to a small change of its parameters by observing

equilibrium statistical behavior of the unperturbed system makes it a convenient

framework for studying long term global climate changes on the planetary scale. The

response of climate dynamics on the planetary scale to changes of various global physical

parameters is an area which is being extensively studied in contemporary atmosphere

ocean science. The physical parameters controlling planetary climate dynamics range

from solar radiation, to volcanic activity, greenhouse gases, ozone, polar ice melting

and many others, which are normally computed via direct numerical simulation for

an appropriate climate model. In the context of the fluctuation-dissipation theorem,

one observes climatology of a model for a sufficiently long time under the tacit

assumption that the dynamics is close to its statistical equilibrium, and then applies

the fluctuation-dissipation theorem to predict mean climate response to small changes

of the physical parameters of the dynamics without actually simulating an appropriate

scenario of climate development for those changes of parameters, which usually poses a

computational problem of substantial complexity.

Despite the fact that the climate system is a complex chaotic multiscale problem
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with forcing, dissipation, and the equilibrium state structure has significant complexity,

there has been a profound interest among the atmospheric/ocean science community to

apply the fluctuation-dissipation theorem to predict global climate changes responding

to variation of certain physical parameters. In the mid 1970s Leith [14] suggested

the possibility that, despite the absence of the classical Gaussian equilibrium state,

the fluctuation-dissipation theorem might constitute a sensible approximation for

appropriate variables in the complex climate system. Leith’s approximation has

been called the quasi-Gaussian (qG-FDT) approximation in [17], where it is studied

theoretically and computationally. Leith’s suggestion has inspired others such as Bell [3],

Carnevale et al. [4], and Dymnikov, Gritsoun and Branstator [8, 10, 12] to apply the

quasi-Gaussian fluctuation-dissipation theorem for idealized climate models with various

approximations and numerical procedures. Bell [3] considered a special truncation of

the barotropic vorticity equation and studied the response of this truncation to small

kick of trajectory at initial time, reporting that the predictions of classical FDT for the

response of the system hold extremely well. Carnevale et al. [4] generalize the Gaussian

FDT formula to a non-Gaussian, although smooth, equilibrium state, also documenting

reasonably high precision of the classical Gaussian FDT formula for one model [18], but

also its poor approximation for the classical Lorenz 63 model. Dymnikov, Gritsoun and

Branstator [8, 10, 12] developed a systematic procedure to compute the complete linear

response operator in the matrix form for different response times, and also present a

robust algorithm of verification for the FDT response prediction through a series of direct

numerical simulations with the actual perturbed system. Gritsoun and Branstator [9],

and Gritsoun, Branstator and Majda [11] for computing the response of the mean

state and variance, respectively, have applied the quasi-Gaussian approximation to a

comprehensive general circulation model with interesting results. Craig and Cohen [5]

applied the ideas of the classical FDT to the unresolved features of tropical convection

and cloud formation.

The linear response of the forced-dissipative 40-mode Lorenz 96 model [1, 15, 16]

within the framework of the quasi-Gaussian FDT has also been studied by the authors

in [17]. It has been found in [17] that although the quasi-Gaussian FDT works reasonably

well for the forced-dissipative Lorenz 96 model in strongly chaotic dynamical regimes, for

weakly chaotic regimes the predictions of the classical FDT become much worse. While

suitable for dynamical systems with a nearly canonical Gaussian equilibrium state, the

fluctuation-dissipation theorem in its classical formulation is only partially successful for

nonlinear dynamical systems with forcing and dissipation. The major difficulty in this

situation is that the probability measure in the limit as time approaches infinity in this

case is typically a Sinai-Ruelle-Bowen probability measure which is supported on a large-

dimensional (often fractal) set and is usually not absolutely continuous with respect to

the Lebesgue measure [6, 22]. In the context of Axiom A attractors, Ruelle [20, 21] has

adapted the classical calculations for FDT to this setting.

In a recent paper [2], the authors develop and test two novel computational

algorithms for predicting the mean linear response of a chaotic dynamical system to
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small change in external forcing via the fluctuation-dissipation theorem (FDT): the

short-time FDT (ST-FDT), and the hybrid Axiom A FDT (hA-FDT). Unlike the earlier

work in developing fluctuation-dissipation theorem-type computational strategies for

chaotic nonlinear systems with forcing and dissipation, the new FDT methods in [2]

are based on the theory of Sinai-Ruelle-Bowen probability measures, which commonly

describe the equilibrium state of such dynamical systems. The two algorithms take into

account the fact that the dynamics of chaotic nonlinear forced-dissipative systems often

reside on chaotic fractal attractors, where the classical quasi-Gaussian formula of the

fluctuation-dissipation theorem often fails to produce satisfactory response prediction,

especially in dynamical regimes with weak and moderate degrees of chaos. It has been

discovered in [2] that the ST-FDT algorithm is an extremely precise linear response

approximation for short response times, but numerically unstable for longer response

times. On the other hand, the hA-FDT method is numerically stable for all times;

however its derivation requires the dynamical system to satisfy Smale’s Axiom A to

constitute formally correct approximation, and at short times hA-FDT is not as precise

as ST-FDT even for a simple nonlinear chaotic model with 5 degrees of freedom. Here

we develop two blended algorithms which combine the precision of the ST-FDT method

and numerical stability of either the classical qG-FDT or the hA-FDT approaches. The

new algorithms are tested for the complex nonlinear Lorenz 96 model with 40 degrees of

freedom [15–17] and large-scale features of real-world geophysical models in a wide range

of dynamical regimes varying from weakly to strongly chaotic, and to fully turbulent.

The results below demonstrate a sufficient level of precision for the blended response

algorithms to be potentially useful in operational long-term climate change predictions

for both linear and nonlinear response functions.

The current work is organized as follows. In Section 2 we introduce the ST-FDT

and hA-FDT algorithms, as well as the classical quasi-Gaussian FDT formula (qG-

FDT) from [17]. The ST-FDT and hA-FDT methods have opposing strengths and

weaknesses: the ST-FDT method applies for a largely arbitrary dynamical system,

and is a perfect approach to evaluate linear response of an arbitrary system for short

times but suffers from numerical instability for longer times; the hA-FDT method is

a rational approximation of Ruelle’s FDT formula for an Axiom A attractor and is

a better approximation for longer times in weakly and moderately chaotic dynamical

regimes, where the quasi-Gaussian FDT approximation does not work well, as shown

in [2]. Section 3 introduces the 40-mode nonlinear forced-dissipative Lorenz 96 (L96)

model with remarkable mixing properties and an adjustable degree of chaos through

a variable external forcing parameter. The Lorenz 96 model is developed by Lorenz

and Emanuel in [15,16] as a relatively simple (by atmospheric/ocean science standards)

nonlinear model with forcing and dissipation which mimics behavior of Rossby waves

in complex geophysical models. In Section 4 we demonstrate the performance of the

ST-FDT, hA-FDT and qG-FDT methods for the L96 model in a variety of weakly

and strongly chaotic dynamical regimes. Section 5 features the new blended ST/hA-

FDT and ST/qG-FDT algorithms which combine the precision of the ST-FDT method
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and numerical stability of hA-FDT and qG-FDT algorithms. In Section 5 we also

systematically test the new blended ST/hA-FDT and ST/qG-FDT algorithms for the

L96 model in a variety of dynamical regimes and compare their performance to the

ST-FDT, hA-FDT and qG-FDT methods for a simple linear response function. Section

6 contains the results of the testing of the blended ST/qG-FDT algorithm with a simple

quadratic response function. In Section 7 we have concluding remarks on the results of

the current work.

2. Approximate algorithms for linear response

Here we start with the fluctuation-dissipation theorem in its classical formulation for a

dynamical system of chaotic ODEs for a vector ~x ∈ R
N , given by

d~x

dt
= ~f(~x), (2.1)

where ~f is a vector field of dimension N . As discussed in [19], and also in Chapter 2

of [17], in the statistical dynamics of complex systems one is interested in the evolution

of probability densities, p(t, ~x), associated with (2.1) rather than individual solutions.

It is well-known that the evolution of these probability densities, p(t, ~x), satisfies the

Liouville equation [19]

∂

∂t
p(t, ~x) = LLp(t, ~x),

p(t, ~x)|t=0 = p0(~x),
(2.2)

with LLp = − div(~fp) being the Liouville operator.

The dynamical system in (2.1) is perturbed by small external forcing, δ ~f(t, ~x), as

d~x

dt
= ~f(~x) + δ ~f(t, ~x). (2.3)

Then, similar to (2.2), the probability density pδ(t, ~x) of the perturbed system in (2.3)

satisfies an appropriately perturbed Liouville equation,

∂

∂t
pδ(t, ~x) = LLpδ(t, ~x) + δLLpδ(t, ~x),

pδ(0, ~x) = pδ
0(~x),

(2.4)

with δLLp = − div(δ ~f(t, ~x)p) being the part of the Liouville operator corresponding

to small perturbation δ ~f in (2.3). By peq(~x) we denote smooth rapidly decreasing (as

‖~x‖ → ∞) equilibrium probability density for the unperturbed system in (2.2), so that

LLpeq = 0. (2.5)

Further we assume a natural explicit time-space separable structure for the perturbation

δ ~f(t, ~x) in (2.3):

δ ~f(t, ~x) = a(~x)δ ~f(t), (2.6)
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with a(~x) being an ~x-dependent matrix, and δ ~f(t) being the time-dependent part of

external forcing. Then, the Liouville operator δLL in (2.4) can be written concisely as

δLLp = ~Lap · δ ~f(t) (2.7)

with operator ~La given by

~Lap = − div(a(~x)p). (2.8)

In (2.8), the divergence of the matrix a(~x)p is a vector. In the case of space-independent

external forcing δ ~f(t, ~x) = δ ~f(t) (so that a(~x) is the identity matrix) ~La assumes a simple

form

~Lap = −∇p. (2.9)

Let A(~x) be a linear or nonlinear function whose mean response to small external forcing

is to be predicted by the fluctuation-dissipation theorem. Here we assume that A is a

scalar, however generalization to the vector-valued A is straightforward. The mean

state, or expected value, of A(~x) with respect to the equilibrium probability density in

(2.5) is, by definition, given by

E[A(~x)] =

∫

RN

A(~x)peq(~x)d~x. (2.10)

The main statement of the fluctuation-dissipation theorem provides a formal procedure

to calculate the change in expected value δE[A(~x)](t) for the perturbed system in (2.4)

as

δE[A(~x)](t) =

∫

RN

A(~x)δp(t, ~x)d~x =

∫ t

0

~R(t − t′) · δ ~f(t′)dt′, (2.11)

where the vector linear response operator is given by

~R(t) =

∫

RN

A(~x)
(

exp[tLL][~Lapeq]
)

(~x)d~x. (2.12)

Note that the formula (2.12) depends only on the equilibrium state density peq, which

means that behavior of the perturbed system from (2.4) does not need to be observed to

compute (2.12). Formal systematic derivation of (2.11) and (2.12) is given in [19], and

also Chapter 2 of [17]). For the special case with constant external forcing δ ~f = const

the linear response formula is simplified to

δE[A(~x)](t) = ~R(t) · δ ~f, ~R(t) =

∫ t

0

~R(t′)dt′, (2.13)

where ~R(t) is taken from (2.12). The general formula in (2.12) serves as the starting

point for further approximations under various assumptions, leading to different versions

of the fluctuation-dissipation theorem.
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2.1. Short-time FDT (ST-FDT)

A wide variety of practical geophysical models are complex nonlinear chaotic forced-

dissipative dynamical systems, whose solutions live on strange attractors. The

equilibrium states on such attractors do not even possess densities peq with respect to

Lebesgue measure. Here and below we assume that the dynamical system is ergodic and

mixing [22] with decay of time correlation functions so that averages over the equilibrium

measure can be replaced by a long time average [2, 17]. The authors in [2] rework the

classical FDT formula in (2.12) and (2.13) in such a way that an approximation to

the density peq of the equilibrium probability measure is not required to compute the

linear response. This method is called short-time FDT (ST-FDT), due to its inherent

numerical instability at longer times for chaotic dynamical systems, and is given by the

formula

~RST−FDT (τ) = lim
r→∞

1

r

∫ r

0

∇A (~x(t + τ)) T τ
~x(t)a(~x(t))dt, (2.14)

where T τ
~x is a tangent map at ~x to τ

T τ
~x(t) = exp

(
∫ t+τ

t

∇~f(~x(s))ds

)

, (2.15)

which can be obtained by solving the equation

dT τ
~x(t)

dτ
= ∇~f(~x(t + τ))T τ

~x(t). (2.16)

For constant external forcing δf , the formula (2.13) is written here as

δE[A(~x)]ST−FDT (t) = ~RST−FDT (t) · δ ~f,

~RST−FDT (s) = lim
r→∞

1

r

∫ r

0

dt

∫ s

0

∇A (~x(t + τ)) T τ
~x(t)dτ.

(2.17)

Note that the linear response formulas in (2.14) and (2.17) do not include the equilibrium

probability density peq. The latter property makes them suitable for computing the

linear response for an arbitrary equilibrium state, even if it does not possess probability

density with respect to the Lebesgue measure. The main drawback of (2.14) and (2.17)

is that the tangent map in (2.15) undergoes exponential blow-up in time due to the

presence of positive Lyapunov characteristic exponents in chaotic dynamical systems,

and thus (2.14) and (2.17) can only be used for limited time intervals.

2.2. Classical quasi-Gaussian FDT (qG-FDT)

Following the derivation in [19] or Chapter 2 of [17], the classical FDT formula for the

linear response vector ~R(t) in (2.12) is expressed as the time autocorrelation function

~R(τ) = 〈A(~x(t + τ)) ~B(~x(t))〉, (2.18)

where the long-term trajectory ~x(t) is observed for the unperturbed system, with the

special function ~B(~x),

~B(~x) =
~La(~x)peq(~x)

peq(~x)
, (2.19)



Blended Response Algorithms for Linear Fluctuation-Dissipation 8

where the correlation vector on the right hand size of (2.18) is evaluated at the

unperturbed state. The quasi-Gaussian FDT (qG-FDT) approximation is obtained from

(2.18) and (2.19) by replacing the equilibrium probability density peq with its Gaussian

approximation pG

pG(~x) =
1

(2π det σ2)N/2
exp

(

−
1

2
(~x − ~̄x)σ−2(~x − ~̄x)

)

, (2.20)

with the mean state ~̄x and covariance matrix σ2 matching those of peq. Additionally, here

it is assumed that the external forcing δ ~f is ~x-independent such that ~La has the simplified

form in (2.9). Under these assumptions, the function B(~x) from (2.19) becomes

BG(~x) = σ−2(~x − ~̄x), (2.21)

and the formula for the kernel ~R(τ) of the linear response operator becomes a simple

time autocorrelation function

~RqG−FDT (τ) = lim
r→∞

1

r

∫ r

0

A(~x(t + τ))σ−2(~x(t) − ~̄x)dt. (2.22)

For constant external forcing δ ~f , the formula (2.13) is written here as

δE[A(~x)]qG−FDT (t) = ~RqG−FDT (t) · δ ~f,

~RqG−FDT (s) = lim
r→∞

1

r

∫ r

0

dt

∫ s

0

A(~x(t + τ))σ−2(~x(t) − ~̄x)dτ.
(2.23)

The prefix “quasi” in the name of the quasi-Gaussian FDT formula comes from the fact

that although the equilibrium density peq in the linear response operator is simplified

by the Gaussian approximation, the time averaging process in (2.22) corresponds to

the phase space averaging with respect to the true equilibrium state, rather than its

Gaussian approximation. For details, see Chapter 2 of [17]. This is the form of FDT

advocated by Leith [14] in his seminal paper. Section 2.7 of [17] contains a rigorous

analysis of the validity of this approximation for short times.

2.3. Hybrid Axiom A FDT (hA-FDT)

The main drawback of the ST-FDT formula in (2.14) is that it can only be used

for limited time intervals of τ , due to the fact that the tangent map T τ
~x undergoes

exponential blow-up in the directions associated with positive Lyapunov characteristic

exponents. Here, under the assumption of an Axiom A flow ~X(t, ~x) which settles onto

a strange attractor κ, we avoid numerical instability in the short-time FDT approach

in (2.14) by following the directions given in [21].

With help of Axiom A, one can uniformly decompose the small perturbation δ ~f(t, ~x)

into the sum of three components at each point of the trajectory x(t) on the attractor:

δ ~f(t, ~x) = P+
~x δ ~f(t, ~x) + P−

~x δ ~f(t, ~x) + P 0
~x δ ~f(t, ~x), (2.24)

where P+
~x , P−

~x and P 0
~x are the projection operators onto the expanding subspace E+

~x ,

contracting subspace E−

~x and neutrally stable subspace E0, consisting of only one vector
~f(~x) (which is tangent to the direction of trajectory ~x(t)), of the tangent bundle Tκ
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over the strange attractor κ at ~x. From a practical standpoint, P +
~x projects onto the

span of the eigenvectors for positive Lyapunov exponents at ~x, and P−

~x projects onto the

span of the eigenvectors for negative Lyapunov exponents at ~x. The neutral direction

corresponds to zero Lyapunov exponent. For rigorous definition and detailed description

of E+
~x and E−

~x see [6]. All projection operators in (2.24) are computed from the tangent

map T τ
~x (see [2] for numerical algorithm).

With (2.24), (2.14) becomes

~RA−FDT (τ) = ~R+(τ) + ~R0−(τ), (2.25)

with the corresponding expanding and neutral-contracting response operators

~R+(τ) = lim
r→∞

1

r

∫ r

0

∇A(~x(t + τ))T τ
~x(t)P

+
~x(t)a(~x(t))dt, (2.26a)

~R0−(τ) = lim
r→∞

1

r

∫ r

0

∇A(~x(t + τ))T τ
~x(t)(P

0
~x(t) + P−

~x(t))a(~x(t))dt. (2.26b)

A rational approximation to the expanding response operator, ~R+(τ) in the Axiom

A FDT formula in (2.26a) is developed by the authors in [2]. One reason for this

is the numerical difficulty noted above in reliably calculating the unstable divergence.

A second, more fundamental reason is that it is doubtful that most realistic physical

systems have Axiom A attractors anyway, so an exact solution formula for A-FDT

would still involve an approximation, and, therefore, a different rational approximation

might be appropriate. For the hA-FDT approximation, we replace the ST-FDT

approximation projected onto the uniformly expanding directions in (2.26a) with the qG-

FDT approximation, using the fact that an SRB measure is smooth along the uniformly

expanding directions [6,22]. The result is the hybrid A-FDT (hA-FDT) approximation

~R+
hA−FDT (τ) = lim

r→∞

1

r

∫ r

0

A(~x(t + τ))P+
~x(t)σ

−2(~x(t) − ~̄x)dt. (2.27)

If this formula is combined with the formula in (2.26b) for ~R0−(τ) involving the response

for the contracting directions, for constant external forcing we obtain the hybrid A-FDT

approximation:

δE[A(~x)]hA−FDT (t) = ~RhA−FDT (t) · δ ~f, (2.28a)

~RhA−FDT (t) = ~R+
hA−FDT (t) + ~R0−

hA−FDT (t), (2.28b)

~R+
hA−FDT (s) = lim

r→∞

1

r

∫ r

0

dt

∫ s

0

A(~x(t + τ))P+
~x(t)σ

−2(~x(t) − ~̄x)dτ, (2.28c)

~R0−
hA−FDT (s) = lim

r→∞

1

r

∫ r

0

dt

∫ s

0

∇A(~x(t + τ))T τ
~x(t)(P

0
~x(t) + P−

~x(t))dτ. (2.28d)
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2.4. Validation of linear response approximations

In order to assess advantages and drawbacks of various linear response approximations,

one has to verify correctness of the results they provide. We validate the performance of

the linear response approximations against the so-called “ideal response” operator, ~RI ,

which is the actual directly measured response of the model, perturbed by series of small

external forcing perturbations. To compute the ideal response, these small perturbations

are applied to a large statistical ensemble of solutions (∼ 100000 members) to ensure

sufficient precision in measuring the mean linear response. This algorithm for the ideal

response operator has been developed by Gritsoun and Dymnikov [12], and has been

used for validation of classical FDT response for various chaotic dynamical systems

in [17].

3. The L96 model: A testbed for linear response in complex dynamical

systems

The 40-mode Lorenz 96 model (L96) has been introduced by Lorenz and Emanuel [15,16]

as a simple model with large scale features of complex nonlinear geophysical systems.

The L96 model is given by

dxj

dt
= (xj+1 − xj−2)xj−1 − xj + F, j = 1 . . . 40 (3.1)

with periodic boundary conditions. As mentioned before, the L96 model possesses

some general properties of geophysical models, namely energy-preserving nonlinear term

mimicking advection, linear damping −xj and constant forcing F . The model in (3.1)

is designed to mimic midlatitude weather and climate behavior, so periodic boundary

conditions are appropriate. The unit spatial scale between discrete nodes is regarded

as a non-dimensional midlatitude Rossby radius ≈ 800 km; the discrete system with 40

modes corresponds to a midlatitude belt of roughly 30000 km. In midlatitude weather

systems, the main “weather waves”, the Rossby waves, have westward (toward negative

x) phase velocity, but eastward group velocity. For the values of constant forcing F

ranging from 5 to 32 the Lorenz 96 model has the band of linearly unstable wave,

located roughly between the Fourier wavenumbers 3 and 12 (which slightly varies with

different values of F ). It is shown in [15, 16] and Chapter 2 of [17] that this band of

linearly unstable wavenumbers has westward phase and eastward group velocities, just

like actual Rossby waves. The complete list of parameters and numerical techniques for

these models follows below.

It is demonstrated in Chapter 2 of [17] that the dynamical regime of the L96 model

varies with changing the value of constant forcing F : weakly chaotic dynamical regimes

with F = 5, 6, strongly chaotic regime with F = 8, and turbulent regimes F = 12, 16, 24

with self-similar time autocorrelation decay. In this section we demonstrate the following

dynamical properties of the L96 model:

• λ1 – the value of the largest Lyapunov exponent, which indicates the rate with

which two nearby trajectories ~x(t) diverge from each other,
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• N+ – the dimension of the uniformly expanding subspace of the tangent bundle over

the chaotic attractor, which is also the number of positive Lyapunov exponents,

• KS – the Kolmogorov-Sinai entropy, which is a sum of all positive Lyapunov

exponents, constituting a basic measure of chaos in the system,

• Tc – the autocorrelation function decay time, which is computed as a time integral

of the absolute value of the time autocorrelation function for xj(t) in (3.1)

C(τ) = 〈(xj(t) − x̄)(xj(t + τ) − x̄)〉t, Tc =

∫

∞

0

|C(τ)|dτ. (3.2)

In practice, the integral is computed for sufficiently large (but not infinite) values

of τ . Tc is rescaled by the mean energy of perturbations of the L96 model like in

Chapter 2 of [17] to reveal self-similarity of time autocorrelation functions for the

turbulent regimes F = 12, 16, 24. Small values of Tc indicate mixing dynamical

regime and rapidly decaying time autocorrelation functions, whereas large values

of Tc typically signify quasi-periodic weakly mixing dynamical regime.

We compute the above dynamical properties through direct numerical simulations with

the L96 model and the following numerical parameters:

• Number of degrees of freedom N = 40;

• 4th-order Runge-Kutta time integrator;

• Numerical time step ∆t = 1/64;

• Values of constant forcing F = 5, 6, 8, 12, 16, 24;

• Averaging time window for computing long-term time averages is T = 500000 time

units;

• Initial spin-up time T0 = 10000 is skipped before computing averages to let the

numerical trajectory land on the attractor.

For details on computing the Lyapunov characteristic exponents and correlation times,

see [2] and the Chapter 2 of [17].

Here in Table 1 we show the dynamical properties of the L96 model in the dynamical

regimes F = 5, 6, 8, 12, 16, 24. Observe that the largest Lyapunov exponent λ1, the

dimension of uniformly expanding subspace N+ and Kolmogorov-Sinai entropy KS

systematically grow with increasing F , which indicates the increasing strength of chaos

for dynamical regimes with larger F . On the other hand, the energy-rescaled correlation

time Tc tends to decay while F increases from F = 5 to F = 12, but stays roughly same

for the regimes F = 12, 16 and 24, which indicates strongly turbulent dynamical regimes

with self-similar decay of time autocorrelation functions.

3.1. Ideal response of the L96 model for long times

It has been demonstrated in Chapter 2 of [17] that the relatively simple classical qG-

FDT approximation can be remarkably precise for strongly chaotic turbulent regimes

with large values of F , where L96 model in energy-rescaled variables approaches its
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unforced undamped energy conserving counterpart with canonical Gaussian equilibrium

probability state. On the other hand, observe that for for the simple response function

A(~x) = ~x, the qG-FDT approximation in (2.23) is essentially the time integral of the

simple time autocorrelation function in (3.2). These two facts suggest that for strongly

chaotic turbulent regimes F = 12, 16, 24, the time when the response of the L96 model to

constant external forcing “saturates” and becomes constant should be of the same order

as the autocorrelation time Tc. The latter means that the ideal response for times much

longer than the autocorrelation time is essentially the ideal response at infinite time.

Also, self-similarity of the time autocorrelation functions for the regimes F = 12, 16, 24

suggests self-similarity of the ideal response of the L96 model for the same regimes.

Here we show the results of comparison for the ideal responses for the response

function A(~x) = ~x at energy-rescaled times T = 40 and T = 80, which far exceed the

autocorrelation times in Table 1. We quantify are two distinct aspects of error.

• The first aspect, which is the most obvious, is a bulk error between responses

computed at different coordinates xj for a given forcing, which can be quantified

by a simple error norm, for example, Euclidean L2-norm. The relative L2-error

between two response operators ~R1 and ~R2 is defined as

L2-error =
‖ ~R1 − ~R2‖

‖ ~R1‖
, (3.3)

where ‖ · ‖ denotes the norm generated by the standard Euclidean inner product.

• The second, less obvious aspect, is the similarity, or physical correlation between

two response operators, which signifies the error in location of a response, rather

than its strength. In a number of practical geophysical applications, predicting the

correct location of some phenomena is often more important than predicting their

magnitude at the same location [10]. In order to address the physical correlation,

or similarity, between the two responses, we introduce a special physical space

correlation function, which is defined as

Corr =
( ~R1, ~R2)

‖ ~R1‖‖ ~R2‖
, (3.4)

where (·, ·) is the standard Euclidean inner product. Thus, the L2-error as defined in

(3.3) indicates the bulk discrepancy between the FDT and ideal operators, whereas

the Corr function as defined in (3.4) signifies the collinearity of the two operators.

The value of 1 of the Corr function indicates complete collinearity between the two

operators (without the regard of their magnitudes, which could be very different),

and the value of 0 indicates complete decorrelation. Negative values of the physical

correlation function provide the evidence that the two responses are anti-correlated.

In Table 1 we show the L2-errors and physical space correlation functions between the

ideal response operators at times T = 40 and T = 80. These times are chosen so

that they exceed the autocorrelation times for turbulent self-similar dynamical regimes

F = 12, 16, 24 roughly by an order of magnitude. Observe that the L2-errors are small
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for the regimes F = 8, 12, 16, 24, which essentially means that time T = 80 for these

regimes can be considered equivalent to infinite time. On the other hand, the L2-errors

are not small for the weakly chaotic regimes F = 5, 6, which is expected, since the decay

of correlation functions does not necessarily indicate the saturation of the ideal response,

due to poor connection between the qG-FDT and ideal response for these regimes [17].

The physical space correlation functions confirm the same trend, with ideal responses

for turbulent regimes being better correlated than those for weakly chaotic regimes.

In Table 2 and Figures 1 and 2 we show the physical space correlation and self-

similarity of the ideal response in the regimes F = 5, 6, 8, 12, 16 directly compared with

the most turbulent regime F = 24. Observe that the turbulent regimes F = 12, 16

correlate with the regime F = 24 remarkably well, also being visually very similar for

both times T = 40 and T = 80, which confirms observations in [17] for turbulent self-

similar regimes and good connection between simple time autocorrelation functions and

the response of the L96 system to small constant external forcing for these regimes.

On the other hand, the weakly chaotic regimes F = 5, 6 exhibit poor physical space

correlations and visual similarity, which is also expected. The strongly chaotic regime

F = 8, which is not yet fully turbulent, is better correlated with F = 24 than regimes

with F = 5, 6, but not as good as the regimes with F = 12, 16.

4. Performance of the FDT algorithms on the testbed

Here we study the linear response of the three FDT methods, qG-FDT, ST-FDT and

hA-FDT, and validate their performance against the ideal response operator, Rideal,

which is the actual directly measured response of the model, perturbed by series of small

external forcing perturbations. To compute the ideal response, these small perturbations

are applied to a large statistical ensemble of solutions (∼ 100000 members) to ensure

40-mode L96 model

F λ1 N+ KS TC L2(40, 80) Corr(40, 80)

5 0.4726 9 1.811 14 0.2859 0.9584

6 1.02 12 5.547 8.23 0.2528 0.9675

8 1.74 13 10.94 6.704 0.1812 0.9834

12 2.937 15 20.12 5.9 0.1475 0.991

16 3.945 16 27.94 5.594 0.1683 0.9879

24 5.683 17 41.82 5.312 0.173 0.9851

Table 1. Dynamical properties of the L96 model in the regimes F = 5, 6, 8, 12, 16, 24.

λ1 – largest Lyapunov exponent, N+ – dimension of the expanding subspace of the

attractor, KS – Kolmogorov-Sinai entropy (sum of positive Lyapunov exponents), Tc –

correlation time of energy-rescaled time correlation function, L2(40, 80) – relative L2-

error between ~RI(40) and ~RI(80), Corr(40, 80) – physical space correlation function

between ~RI(40) and ~RI(80).
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40-mode L96 model, physical space correlations

of the ideal response for different values of F

5 vs 24 6 vs 24 8 vs 24 12 vs 24 16 vs 24

T = 40 0.5927 0.8111 0.8937 0.9581 0.9811

T = 80 0.5403 0.7721 0.8897 0.9449 0.9761

Table 2. Physical space correlations of ideal responses between the most turbulent

regime F = 24 and the regimes F = 5, 6, 8, 12, 16. Time T = 40 and T = 80.
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Figure 1. The self-similarity of ideal response profiles at T = 40.
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sufficient precision in measuring the mean linear response. This ideal response operator

has been developed by Gritsoun and Dymnikov [12], and has been used for validation

of classical FDT response for various chaotic dynamical systems in [17]. For extensive

description and numerical algorithms for the ideal response operator, see [12, 17]. The

numerical parameters for FDT simulations for the L96 model essentially follow those

used in Section 3:

• Number of degrees of freedom N = 40;

• 4th-order Runge-Kutta time integrator;

• Numerical time step ∆t = 1/64;

• Values of constant forcing F = 5, 6, 8, 12, 16, 24;

• A simple linear vector-valued response function ~A(~x) = ~x;

• Averaging time window for computing long-term time averages is T = 500000 time

units;

• Initial spin-up time T0 = 10000 is skipped before computing averages to let the

numerical trajectory land on the attractor;

• The response is measured for constant small external forcing.

As stated above, all response operators are computed for constant small external

perturbations, and therefore we display the ST-FDT, qG-FDT and hA-FDT linear

response operators from formulas (2.17), (2.23) and (2.28), respectively, rather than their

convolution kernels in more general formulas for arbitrary time- and space-dependent

external perturbations. Also observe that while the theory in Section 2 is developed for a

scalar response function A(~x), the tested response functions above are vector-valued. As

a result, the linear response operator R(τ) becomes a matrix, rather than being vector

in Section (2), which is a simple and straightforward generalization of scalar linear

response function onto vector-valued response. However, since the 40-mode L96 model

is translationally invariant (given its periodic boundary conditions), the columns of all

linear response operators translate into each other along the main diagonal. Thus, rather

than displaying linear response operators as matrices with translationally invariant

columns, we show their middle (i.e. 20th for N = 40) columns, which correspond

for response to unit external forcing at the middle coordinate. This is done to aid

visualization and simplify comparative analysis of performance for different response

operators. Additionally, validation of ideal response operators is done at the end of

Section 4. The time scale for linear response measurements is appropriately rescaled by

the energy of perturbations like in Chapter 2 of [17], to ensure consistent response time

scales for different dynamical regimes regardless of their mean energy.

In Figure 3 we show the singular values 1,3,5,7 of the linear response operator for the

linear response function A(~x) = ~x in the weakly chaotic dynamical regime F = 5. Due

to translational invariance, singular values 2,4,6,8 are identical to the singular values

1,3,5,7, respectively, and the associated singular vectors are Fourier modes [2]. Note

that the singular values of the qG-FDT response operator systematically overshoot the
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Figure 3. The singular values of the linear response operators for the regime F = 5,

response function A(~x) = ~x.

corresponding singular values of the ideal operator, while the hA-FDT singular values

undershoot them. On the other hand, all displayed singular values of the ST-FDT

operator closely follow the corresponding singular values of the ideal response operator,

until a numerical instability manifests itself about time T = 80. As discussed before

in Section 2, this numerical instability occurs due to the presence of positive Lyapunov

exponents, which let the tangent map grow exponentially fast along uniformly expanding

directions on the attractor.

In Figures 4 and 5 we demonstrate the snapshots of the linear response operators

in the physical space (Figure 4) and Fourier space (Figure 5) in the weakly chaotic

dynamical regime F = 5 at time T = 40 and T = 80. By sight, the hA-FDT response

is more precise than the qG-FDT response for both times, T = 40 and T = 80, which is

also confirmed in Tables 3 and 5 in Section 5 below, where the L2-errors and physical

space correlations for both the qG-FDT and hA-FDT response operators are shown. The

ST-FDT response operator is very precise at T = 40 (much better than either qG-FDT

or hA-FDT), however it is completely inaccurate at T = 80 due to numerical instability.

Figure 5 explains why the hA-FDT operator is superior to qG-FDT; it turns out that

the hA-FDT operator in Figure 5 is a reasonably good approximation for linearly stable

Fourier modes with low wavenumbers k < 3, where the qG-FDT operator is the most

erroneous.
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Figure 4. Profiles of the linear response operators for the regime F = 5, time T = 40

and T = 80, response function A(~x) = ~x.

In Figures 6 and 7 we show the linear response operators in the physical space for

the dynamical regimes with F = 6 and F = 8 at times T = 2, 5, 10, 20, 40, 80. Note

that for short times T ≤ 10 the qG-FDT linear response operator is better than the

hA-FDT approximation. Theorem 2.3 in Chapter 2 of [17] guarantees that the error

for linear response function in qG-FDT develops as O(t3), and what we observe here

is presumably a manifestation of this fact. Nonetheless, the hA-FDT is better than

the qG-FDT for longer times, T = 40, 80. These observations are confirmed below in

Section 5 in Tables 3 and 5, where the L2-errors and physical space correlations between

the ideal operator and its FDT approximations are documented. The ST-FDT response
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Figure 5. Profiles of the linear response operators in the Fourier space for the regime

F = 5, time T = 40 and T = 80, response function A(~x) = ~x.

operator is vastly superior to all other FDT approximations until the numerical blow-up,

which is expected.

Although we do not show the plots with linear response operators for the turbulent

self-similar regimes F = 12, 16, 24, the results for these dynamical regimes are

summarized in Tables 4 and 6 below in Section 5, where the L2-errors and physical

space correlations are documented. For these dynamical regimes, at short times the

situation is similar to that for F = 5, 6, 8, namely, the ST-FDT produces best results,

and the performance of qG-FDT is better than that of hA-FDT. However, for long times

the qG-FDT and hA-FDT approximations demonstrate comparable performance both

in errors and correlations. Finally, we note that for F = 5, 6, 8 the hA-FDT response for

the 40-mode L96 model is superior to the response in similar 5-mode models test in [2].

As listed in Table 1, the 40-mode models have a large-dimensional unstable manifold

which allows for much more quasi-Gaussian averaging for the unstable dimensions in

(2.28) compared to the 5-mode models in [2] with only two unstable directions.
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Figure 6. Profiles of the linear response operators for the regime F = 6, time

T = 2, 5, 10, 30, 40 and 80, response function A(~x) = ~x.

5. The blended response algorithms (BRA)

We observed in Section 4 that the ST-FDT linear response approximation and the qG-

FDT or hA-FDT approximations have somewhat opposite advantages and drawbacks.

Namely, while the ST-FDT is superior in all respects to both the qG-FDT and hA-

FDT operators for short times, it eventually blows up for longer times due to inherent

numerical instability. On the other hand, the qG-FDT and hA-FDT are free of numerical

instabilities, but produce larger errors at short times. However, there is a simple way to

avoid the blowup by blending the ST-FDT response with either qG-FDT or hA-FDT
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Figure 7. Profiles of the linear response operators for the regime F = 8, time

T = 2, 5, 10, 30, 40 and 80, response function A(~x) = ~x.
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at later times before the numerical blow-up occurs, thus combining the best properties

of both responses via the following formula:

RST/qG = (1 − ξ)RST + ξRqG,

RST/hA = (1 − ξ)RST + ξRhA,
(5.1)

where ξ = ξ(t) is a blending function, chosen so that it is zero for small values of t (thus

the response at early times is computed through the highly accurate RST operator), and

assumes the value of 1 shortly before the numerical instability manifests itself in RST .

The simplest and most straightforward choice of the blending function is the Heaviside

step-function

ξ(t) = H (t − Tcutoff) , (5.2)

where Tcutoff is the cutoff time chosen just before the numerical instability occurs in RST .

The blended linear response operators RST/qG and RST/hA combine the advantages of

the ST-FDT for shorter times, and qG-FDT and hA-FDT for longer times. For constant

small external forcing δf = const and the Heaviside blending step-function the blended

response operators become

RST/qG(T ) =

∫ Tcutoff

0

RST (t)dt +

∫ T

Tcutoff

RqG(t)dt, (5.3a)

RST/hA(T ) =

∫ Tcutoff

0

RST (t)dt +

∫ T

Tcutoff

RhA(t)dt. (5.3b)

The Heaviside step-function (5.2) will be used as a blending function for (5.1) throughout

the paper. Note, however, that the choice of the blending function ξ(t) is not limited to

the Heaviside function, and in fact, can be chosen systematically to minimize errors

between observed test ideal response and linear response. A systematic adaptive

algorithm for choosing optimal blending function ξ(t) in a given particular setting will

be developed by the authors in the near future.

With the choice of Heaviside step-function for blending, at this point the key

question is to determine an appropriate cutoff time Tcutoff for a given dynamical regime.

We know that the numerical instability occurs in ST-FDT due to certain subspaces

of the tangent map growing exponentially fast, with the growth rate set forth by the

largest Lyapunov exponent λ1. Therefore, the blowup time Tblowup must be roughly

proportional to the characteristic time of the largest Lyapunov exponent Tλ,

Tblowup ≈ αTλ, (5.4)

where the proportionality coefficient α depends on many factors, including details of

numerical implementation of linear response correlation function, machine platform

and type of floating point arithmetic used, but can be heuristically measured

through direct numerical simulation. Here in Figure 8 we heuristically determine the

proportionality coefficient between Lyapunov characteristic time and ST-FDT blowup

time by superimposing these times on the graph for all tested dynamical regimes

F = 5, 6, 8, 12, 16, 24 for the 40-mode Lorenz 96 model. As we can see in Figure 8, the
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Figure 8. The plot with blowup time vs Lyapunov characteristic time and heuristically

computed cutoff times as Tcutoff = 3Tλ. The table shows computed rescaled cutoff

times for each dynamical regime F = 5, 6, 8, 12, 16, 24.

scatter plot of blow-up time vs Lyapunov characteristic time for all dynamical regimes

is nearly a straight line, as should be expected, with α slightly exceeding the value of 3.

Thus, for the cutoff time Tcutoff computation we heuristically choose the formula

Tcutoff = 3Tλ, (5.5)

such that each cutoff time is just below the blowup time (also shown in Figure 8). The

table in Figure 8 shows heuristically computed rescaled times Tcutoff via the formula in

(5.5).

In Figure 9 we show the snapshots of the blended ST/qG-FDT and ST/hA-FDT

linear response approximations for the weakly chaotic dynamical regime F = 6, with

cutoff time taken from the table in Figure 8, and compare them with the ideal response

operator at the response time T = 2, 5, 10, 20, 40, 80. Observe that visually there is a

remarkable improvement over the results in Figure 6, where the standalone qG-FDT, hA-
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Figure 9. Profiles of the mixed linear response operators for the regime F = 6, time

T = 2, 5, 10, 30, 40 and 80, response function A(~x) = ~x.

FDT and ST-FDT approximations are displayed for the same dynamical regime. Also,

in Figure 10 we demonstrate the snapshots of the blended ST/qG-FDT and ST/hA-

FDT operators at time T = 80 for all studied dynamical regimes F = 5, 6, 8, 12, 16, 24.

Taking into account that at T = 80 the response is roughly equivalent to the infinite time

response (as established in Section 3), observe that there is again a remarkable visual

improvement over the standalone qG-FDT and hA-FDT approximations, displayed in

Section 4.

We summarize the results for all studied FDT approximations, all times and

dynamical regimes in Tables 3, 4, 5 and 6, where Tables 3 and 4 contain the L2-errors,
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Figure 10. Profiles of the mixed linear response operators for the regimes F =

5, 6, 8, 12, 16, 24, time T = 80, response function A(~x) = ~x.

and Tables 5 and 6 contain the physical space correlations between the ideal responses

and various FDT approximations. Observe that the blended response approximations

ST/qG-FDT and ST/hA-FDT are the same as the ST-FDT approximations before

the cutoff time, but after the cutoff time the ST/qG-FDT and ST/hA-FDT blended

response operators are vastly superior to any other FDT linear response approximations

for all times and all dynamical regimes. Both ST/hA-FDT and ST/qG-FDT blended

approximations provide comparable error reduction for longer times (roughly by a

factor of 2-3 compared to standalone qG-FDT and hA-FDT) with relative L2-errors

not exceeding 30% for dynamical regimes with F ≥ 6, and diminishing to 14-18%
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for turbulent self-similar regimes F = 16, 24. A remarkable improvement can also be

observed for physical space correlations: for the dynamical regimes with F ≥ 6 the

physical space correlations exceed 0.97 for all times, reaching values of 0.99 at T = 80

for turbulent regimes F = 16, 24.

6. The blended response algorithm: Nonlinear response functions

All linear response approximations, developed in Section 2, are designed to work with

an arbitrary (although differentiable) response function. So far in Sections 4 and 5

we demonstrated the ability of the new linear response approximations to predict the

response of a simple linear function A(~x) = ~x, which corresponds to the response of

the long-term mean state of the dynamical system to small changes in external forcing.

Response L2-error values of 40-mode L96, F=5

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 1.832 · 10−2 0.2058 0.6041 1.832 · 10−2 1.832 · 10−2

5 2.013 · 10−2 0.4901 0.7851 2.013 · 10−2 2.013 · 10−2

10 3.055 · 10−2 0.8194 0.7805 3.055 · 10−2 3.055 · 10−2

20 0.05841 0.9949 0.3447 0.05841 0.05841

40 0.09481 1.083 0.4336 0.09481 0.09481

80 1.157 1.252 0.522 0.4274 0.4752

Response L2-error values of 40-mode L96, F=6

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 1.399 · 10−2 0.1587 0.391 1.399 · 10−2 1.399 · 10−2

5 1.651 · 10−2 0.2937 0.5012 1.651 · 10−2 1.651 · 10−2

10 3.078 · 10−2 0.5198 0.6178 3.078 · 10−2 3.078 · 10−2

20 0.07751 0.8485 0.5304 0.07751 0.07751

40 0.1386 0.9245 0.5548 0.1852 0.1679

80 −− 0.8872 0.5784 0.2399 0.2396

Response L2-error values of 40-mode L96, F=8

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 1.003 · 10−2 0.1285 0.3216 1.003 · 10−2 1.003 · 10−2

5 1.432 · 10−2 0.2334 0.4139 1.432 · 10−2 1.432 · 10−2

10 0.03735 0.3827 0.5557 0.03735 0.03735

20 0.122 0.6877 0.6104 0.122 0.122

40 0.4549 0.7383 0.5726 0.3525 0.3047

80 −− 0.7826 0.5686 0.3072 0.2513

Table 3. The L2-errors between the linear response approximations and the ideal

response, dynamical regimes F = 5, 6, 8, response function A(~x) = ~x.
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Response L2-error values of 40-mode L96, F=12

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 1.432 · 10−2 0.1041 0.2785 1.432 · 10−2 1.432 · 10−2

5 1.401 · 10−2 0.1825 0.3405 1.401 · 10−2 1.401 · 10−2

10 3.048 · 10−2 0.2819 0.4538 3.048 · 10−2 3.048 · 10−2

20 0.0977 0.5245 0.572 0.0977 0.0977

40 0.5547 0.5328 0.5531 0.2531 0.2

80 −− 0.5181 0.5188 0.2766 0.2684

Response L2-error values of 40-mode L96, F=16

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 1.224 · 10−2 0.09162 0.2502 1.224 · 10−2 1.224 · 10−2

5 1.274 · 10−2 0.1614 0.3017 1.274 · 10−2 1.274 · 10−2

10 3.065 · 10−2 0.241 0.3959 3.065 · 10−2 3.065 · 10−2

20 0.1062 0.4208 0.4858 0.1062 0.1062

40 1.827 0.4927 0.5459 0.1343 0.1519

80 −− 0.4486 0.5175 0.1805 0.1899

Response L2-error values of 40-mode L96, F=24

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 1.019 · 10−2 0.07962 0.2144 1.019 · 10−2 1.019 · 10−2

5 1.199 · 10−2 0.1424 0.2572 1.199 · 10−2 1.199 · 10−2

10 2.787 · 10−2 0.2028 0.338 2.787 · 10−2 2.787 · 10−2

20 0.1051 0.3085 0.3992 0.09308 0.09934

40 1.767 0.3978 0.4699 0.1494 0.2049

80 −− 0.3708 0.4449 0.14 0.1796

Table 4. The L2-errors between the linear response approximations and the ideal

response, dynamical regimes F = 12, 16, 24, response function A(~x) = ~x.



Blended Response Algorithms for Linear Fluctuation-Dissipation 28

Response Corr values of 40-mode L96, F=5

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 0.9999 0.9812 0.8068 0.9999 0.9999

5 0.9998 0.9087 0.6777 0.9998 0.9998

10 0.9999 0.7746 0.6621 0.9999 0.9999

20 0.9996 0.7439 0.9655 0.9996 0.9996

40 0.9983 0.7231 0.937 0.9983 0.9983

80 0.8012 0.6467 0.8771 0.9346 0.9217

Response Corr values of 40-mode L96, F=6

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 0.9999 0.9895 0.9294 0.9999 0.9999

5 0.9999 0.966 0.8745 0.9999 0.9999

10 0.9999 0.888 0.8068 0.9999 0.9999

20 0.9994 0.753 0.8932 0.9994 0.9994

40 0.995 0.7633 0.8767 0.9884 0.9911

80 −− 0.787 0.8708 0.9827 0.9736

Response Corr values of 40-mode L96, F=8

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 1 0.9931 0.964 1 1

5 0.9999 0.979 0.9319 0.9999 0.9999

10 0.9999 0.9387 0.8636 0.9999 0.9999

20 0.9976 0.7935 0.8328 0.9976 0.9976

40 0.9337 0.7895 0.8536 0.9696 0.9673

80 −− 0.7498 0.8535 0.9741 0.9804

Table 5. The physical space correlations between the linear response approximations

and the ideal response, dynamical regimes F = 5, 6, 8, response function A(~x) = ~x.
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Response Corr values of 40-mode L96, F=12

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 1 0.9951 0.9815 1 1

5 0.9999 0.9867 0.9658 0.9999 0.9999

10 0.9999 0.968 0.9248 0.9999 0.9999

20 0.9992 0.8753 0.8482 0.9992 0.9992

40 0.8998 0.8635 0.8596 0.9791 0.9907

80 −− 0.8808 0.8766 0.9812 0.9864

Response Corr values of 40-mode L96, F=16

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 1 0.9962 0.988 1 1

5 0.9999 0.9898 0.976 0.9999 0.9999

10 0.9999 0.9776 0.9467 0.9999 0.9999

20 0.9982 0.9236 0.8993 0.9982 0.9982

40 0.4928 0.8799 0.8624 0.9917 0.9915

80 −− 0.9091 0.8748 0.9892 0.9902

Response Corr values of 40-mode L96, F=24

Time ST-FDT qG-FDT hA-FDT ST/qG-FDT ST/hA-FDT

2 1 0.9971 0.9933 1 1

5 0.9999 0.9921 0.9849 0.9999 0.9999

10 0.9999 0.9853 0.9657 0.9999 0.9999

20 0.9986 0.9635 0.94 0.9989 0.9988

40 0.5567 0.9255 0.8997 0.9889 0.9842

80 −− 0.9366 0.9121 0.9906 0.9901

Table 6. The physical space correlations between the linear response approximations

and the ideal response, dynamical regimes F = 12, 16, 24, response function A(~x) = ~x.
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However, in geophysical applications such as climate change prediction, the response

of the local variance, which is a quadratic function of phase space coordinates, is also

important [11]. In this section we present the study of the linear response of a simple

vector-valued quadratic function Ai(~x) = x2
i to small external forcing, where ~x is a

vector of phase space coordinates.

Recall from Section 2 that the hA-FDT approximation is vastly more expensive to

compute than the qG-FDT approximation, and even more expensive than the ST-FDT

approximation. However, previously in Section 5 we found that the blended ST/qG

and ST/hA FDT approximations yield roughly comparable results for a simple linear

response function. With that in mind, here we abandon the ST/hA-FDT approximation

as excessively computationally costly, and instead study the ST/qG-FDT blended

approximation, which is of comparable precision yet cheap to compute.

In Figure 11 we show the snapshots of the blended ST/qG-FDT linear response

approximations to the quadratic response function for the weakly chaotic dynamical

regime F = 6, with cutoff time taken from the table in Figure 8, and compare them with

the ideal response operator at the response time T = 2, 5, 10, 20, 40, 80. Observe that

visually there is a remarkable precision achieved with the blended ST/qG-FDT response

operator. Also, in Figure 12 we demonstrate the snapshots of the blended ST/qG-FDT

operator at time T = 80 for all studied dynamical regimes F = 5, 6, 8, 12, 16, 24. Taking

into account that at T = 80 the response is roughly equivalent to the infinite time

response (as established in Section 3), observe that there is again a remarkable precision

achieved for long-time linear response of the quadratic function in a variety of different

dynamical regimes.

We summarize the results for all studied FDT approximations, all times and

dynamical regimes in Tables 7 and 8, which contain the L2-errors and physical space

correlations between the ideal responses and various FDT approximations. Observe

that the blended response approximation ST/qG-FDT is the same as the ST-FDT

approximations before the cutoff time, but after the cutoff time the ST/qG-FDT blended

response operator is vastly superior to any other FDT linear response approximation for

all times and all dynamical regimes. The ST/hA-FDT blended approximation provides

substantial error reduction for longer times (roughly by a factor of 2-3 compared to the

standalone qG-FDT) with relative L2-errors not exceeding 28% for dynamical regimes

with F ≥ 6, and diminishing to 14-18% for turbulent self-similar regimes F = 16, 24.

A remarkable improvement can also be observed for physical space correlations: for the

dynamical regimes with F ≥ 6 the physical space correlations exceed 0.97 for all times,

reaching values of 0.99 at T = 80 for turbulent regimes F = 16, 24.

7. Summary

In a recent paper [2] we developed two new approaches, the short-time FDT (ST-FDT)

and the hybrid Axiom A FDT (hA-FDT), for predicting linear response of a nonlinear

chaotic forced-dissipative system to small external forcing. In the current work we
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Figure 11. Profiles of the mixed linear response operators for the regime F = 6, time

T = 2, 5, 10, 30, 40 and 80, quadratic response function Ai(~x) = x2
i
.
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Figure 12. Profiles of the mixed linear response operators for the regimes F =

5, 6, 8, 12, 16, 24, time T = 80, quadratic response function Ai(~x) = ~x2
i
.
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Response L2-error of 40-mode L96

F=5, quadratic response function

Time ST qG ST/qG

2 2.283 · 10−2 0.5336 2.283 · 10−2

5 1.899 · 10−2 0.5649 1.899 · 10−2

10 2.723 · 10−2 0.6482 2.723 · 10−2

20 5.645 · 10−2 0.8883 5.645 · 10−2

40 0.1021 1.068 0.1021

80 2.064 1.123 0.6943

Response Corr of 40-mode L96

F=5, quadratic response function

Time ST qG ST/qG

2 0.9998 0.8882 0.9998

5 0.9998 0.8735 0.9998

10 0.9997 0.8854 0.9997

20 0.9991 0.8571 0.9991

40 0.9977 0.7926 0.9977

80 0.4923 0.7485 0.8465

Response L2-error of 40-mode L96

F=6, quadratic response function

Time ST qG ST/qG

2 1.597 · 10−2 0.3014 1.597 · 10−2

5 1.94 · 10−2 0.2984 1.94 · 10−2

10 3.442 · 10−2 0.3886 3.442 · 10−2

20 6.776 · 10−2 0.6866 6.776 · 10−2

40 0.1896 0.8312 0.1841

80 −− 0.8267 0.2777

Response Corr of 40-mode L96

F=6, quadratic response function

Time ST qG ST/qG

2 0.9999 0.9595 0.9999

5 0.9998 0.9586 0.9998

10 0.9995 0.9424 0.9995

20 0.9987 0.8595 0.9987

40 0.9891 0.8422 0.9891

80 −− 0.8459 0.9747

Response L2-error of 40-mode L96

F=8, quadratic response function

Time ST qG ST/qG

2 1.142 · 10−2 0.2481 1.142 · 10−2

5 1.514 · 10−2 0.2278 1.514 · 10−2

10 3.244 · 10−2 0.2761 3.244 · 10−2

20 9.782 · 10−2 0.5234 9.782 · 10−2

40 0.3684 0.5757 0.2819

80 −− 0.5914 0.2869

Response Corr of 40-mode L96

F=8, quadratic response function

Time ST qG ST/qG

2 0.9999 0.9725 0.9999

5 0.9999 0.9759 0.9999

10 0.9996 0.9675 0.9996

20 0.9977 0.8872 0.9977

40 0.9467 0.8733 0.9735

80 −− 0.8633 0.9704

Table 7. The L2-errors between the linear response approximations and the ideal

response, dynamical regimes F = 5, 6, 8, quadratic response function Ai(~x) = ~x2
i
.
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Response L2-error of 40-mode L96

F=12, quadratic response function

Time ST qG ST/qG

2 1.55 · 10−2 0.2175 1.55 · 10−2

5 1.512 · 10−2 0.1976 1.512 · 10−2

10 2.998 · 10−2 0.2058 2.998 · 10−2

20 9.725 · 10−2 0.3354 9.725 · 10−2

40 1.084 0.3711 0.1674

80 −− 0.3862 0.186

Response Corr of 40-mode L96

F=12, quadratic response function

Time ST qG ST/qG

2 0.9999 0.9807 0.9999

5 0.9999 0.9833 0.9999

10 0.9996 0.9818 0.9996

20 0.997 0.9493 0.997

40 0.7306 0.9372 0.9902

80 −− 0.93 0.9859

Response L2-error of 40-mode L96

F=16, quadratic response function

Time ST qG ST/qG

2 1.686 · 10−2 0.2089 1.686 · 10−2

5 1.691 · 10−2 0.1923 1.691 · 10−2

10 2.705 · 10−2 0.1915 2.705 · 10−2

20 6.755 · 10−2 0.2487 6.755 · 10−2

40 1.156 0.2809 0.1471

80 −− 0.2899 0.1818

Response Corr of 40-mode L96

F=16, quadratic response function

Time ST qG ST/qG

2 0.9999 0.9833 0.9999

5 0.9999 0.9851 0.9999

10 0.9997 0.9849 0.9997

20 0.9983 0.9713 0.9983

40 0.6379 0.962 0.9901

80 −− 0.9642 0.9883

Response L2-error of 40-mode L96

F=24, quadratic response function

Time ST qG ST/qG

2 9.594 · 10−3 0.2176 9.594 · 10−3

5 9.824 · 10−3 0.2045 9.824 · 10−3

10 2.125 · 10−2 0.1969 2.125 · 10−2

20 7.839 · 10−2 0.1867 7.03 · 10−2

40 1.979 0.2194 0.1427

80 −− 0.214 0.1458

Response Corr of 40-mode L96

F=24, quadratic response function

Time ST qG ST/qG

2 1 0.9842 1

5 1 0.9847 1

10 0.9998 0.9847 0.9998

20 0.9976 0.9838 0.998

40 0.4941 0.9773 0.9911

80 −− 0.9799 0.9922

Table 8. The L2-errors between the linear response approximations and the ideal

response, dynamical regimes F = 12, 16, 24, quadratic response function Ai(~x) = ~x2
i
.



Blended Response Algorithms for Linear Fluctuation-Dissipation 35

design and test a new accurate and numerically stable strategy for predicting linear

response of a chaotic nonlinear dynamical system with forcing and dissipation to small

external perturbation through long-term observations of behavior of the unperturbed

model. The approach is based on blending the general linear response formula at short

time, which is suitable for predicting the linear response for an arbitrary dynamical

system, with different approximations of the fluctuation-dissipation theorem at longer

times. The cutoff time for blended linear response operators is computed via a simple

universal formula, which is based on the characteristic time of the largest Lyapunov

exponent.

In Sections 5 and 6, the blended methods are tested for a simple linear and

quadratic response functions, compared with the classical quasi-Gaussian FDT (qG-

FDT) and standalone short-time FDT (ST-FDT) and hybrid Axiom A FDT (hA-FDT)

formulas, described in Section 2 and verified in Section 4 against the ideal directly

measured response for the 40-mode Lorenz 96 system, described in Section 3, in a

variety of weakly, moderately and strongly chaotic dynamical regimes. It is found

that the blended ST/qG-FDT and ST/hA-FDT algorithms are vastly superior to the

standalone ST-FDT, qG-FDT and hA-FDT algorithms even for long-term and infinite

time linear response. Also, the blended ST/qG-FDT algorithm is found to be moderately

computationally expensive, compared to the standalone qG-FDT. Furthermore, the

accuracy of the ST/qG-FDT blended algorithm did not deteriorate for the response

of linear and quadratic functions through all regimes of chaotic behavior. All of these

facts suggest the implementation of the ST/qG-FDT blended response algorithm in

more sophisticated nonlinear models.

Future research in this direction will be centered at developing systematic adaptive

algorithms for choosing optimal blending function for linear response in a variety

of practical settings, as well as testing the blended response algorithms for more

sophisticated models with large-scale features of the real atmosphere and climate, like

the T21 truncation of the barotropic quasigeostrophic equations on the sphere with

realistic orography and forcing, or the 1.5-layer quasigeostrophic double-gyre model,

which describes the wind-stress driven large-scale oceanic flows.
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