MATH 320: HOMEWORK 4

Due on Friday, October 11

Question Zero: Give the precise mathematical definition of a basis of a vector space. If this is not done perfectly, this homework will be assigned a grade of zero and no other problems will be considered.

1) Find a general formula for the inverse of a 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

satisfying $a d-b c \neq 0$.
2) Consider the followings bases of \mathbb{R}^{2} :

$$
\mathfrak{B}:=\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

and

$$
\mathfrak{B}^{\prime}:=\left\{\binom{1}{1},\binom{-1}{1}\right\} .
$$

(1) Prove that \mathfrak{B} and \mathfrak{B}^{\prime} are bases.
(2) Compute the change of basis matrix Ψ from \mathfrak{B} to \mathfrak{B}^{\prime}.
(3) Write the linear transformation

$$
\begin{aligned}
L: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(x, y) & \longmapsto(2 x+y, 3 x-2 y)
\end{aligned}
$$

with respect to the bases \mathfrak{B} and \mathfrak{B}^{\prime}.
(4) Verify the change of basis formula, namely that $[L]_{\mathfrak{B}}$ and $[L]_{\mathfrak{B}^{\prime}}$ are related by conjugation by Ψ.
3) Let $\mathbb{R}_{2}[t]$ be the vector space of polynomials of degree two with real coefficients.
(1) Compute the span of the subset $S=\left\{1+t, 1+t^{2}, 2+t+t^{2}\right\}$. Show that the elements of S are not linearly independent.
(2) Find a subspace $M \subset \mathbb{R}_{2}[t]$ such that $\mathbb{R}_{2}[t] \simeq \operatorname{Span}(S) \oplus M$.
(3) Compute the kernel and image of the linear map,

$$
\begin{aligned}
L: \mathbb{R}_{2}[t] & \rightarrow \mathbb{R}_{2}[t] \\
\left(a_{0}+a_{1} t+a_{2} t^{2}\right) & \longmapsto a_{0}+\left(a_{0}+a_{1}+a_{2}\right) t^{2} .
\end{aligned}
$$

(4) Verify the rank-nullity theorem, namely that $\operatorname{Dim}\left(\mathbb{R}_{2}[t]\right)=$ $\operatorname{Dim}(\operatorname{Ker}(L))+\operatorname{Dim}(\operatorname{Im}(L))$.
4) Let V be a vector space. Prove that elements $v_{1}, \ldots, v_{n} \in V$ are linearly independent if and only if

$$
\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{Span}\left(v_{1}\right) \oplus \ldots \oplus \operatorname{Span}\left(v_{n}\right) .
$$

5) Assume that $L: V \rightarrow V$ is a linear map and $v_{1}, \ldots, v_{k} \in V$ are linearly dependent. Prove that $L\left(v_{1}\right), \ldots, L\left(v_{k}\right)$ are linearly dependent.
6) Find the kernel and image of the linear map,

$$
\begin{aligned}
L: \mathbb{R}^{4} & \rightarrow \mathbb{R}^{4} \\
(x, y, z, w) & \longmapsto(x+y+z+w, y-z+w, x, x+2 y+2 w) .
\end{aligned}
$$

