MATH 320: HOMEWORK 5

Due on Friday, October 25

1) Find the determinant of the following matrices:

$$
\left(\begin{array}{lll}
1 & 3 & 5 \\
2 & 7 & 2 \\
1 & 1 & 7
\end{array}\right),\left(\begin{array}{cccc}
1 & 2 & 13 & 4 \\
2 & 1 & 4 & 7 \\
1 & 1 & 7 & 2 \\
0 & 2 & 4 & 1
\end{array}\right)
$$

2) Let $L: \mathbb{R}_{1}[t] \rightarrow \mathbb{R}_{1}[t]$ be the linear map defined by

$$
L\left(a_{0}+a_{1} t\right)=a_{0}+a_{1}+a_{0} t .
$$

Consider the two bases $\mathcal{B}=\{1, t\}$ and $\mathcal{B}^{\prime}=\left\{\sqrt{2}+t, e^{\pi}+t\right\}$. Compute the determinant of $[L]_{\mathcal{B}}$ and $[L]_{\mathcal{B}^{\prime}}$.
3) Let V be a finite dimensional vector space. Let $L: V \rightarrow V$ be a linear transformation. Suppose \mathcal{B} and \mathcal{B}^{\prime} are two bases of V. Prove that

$$
\operatorname{Det}\left([L]_{\mathcal{B}}\right)=\operatorname{Det}\left([L]_{\mathcal{B}^{\prime}}\right) .
$$

4) Suppose A is an $n \times n$ matrix such that $\operatorname{Det}(\mathrm{A})=0$. Consider the matrix

$$
B=A^{4}+3 A^{2}+73 A .
$$

Compute $\operatorname{Det}(B)$.
5) Use the adjugate matrix to compute the inverse of

$$
\left(\begin{array}{llll}
1 & 2 & 6 & 4 \\
2 & 8 & 4 & 7 \\
1 & 2 & 7 & 1 \\
0 & 2 & 1 & 1
\end{array}\right) .
$$

6) An $n \times n$ matrix A is skew symmetric if and only if $A=-A^{t}$, where A^{t} is the transpose of A. If A is a skew symmetric matrix such that $\operatorname{Det}(A) \neq 0$, prove that n is even.
