MATH 320: HOMEWORK 6

Due on Friday, November 22

1) Let $A \in M_{n}(\mathbb{R})$ be an $n \times n$ matrix satisfying $A^{t}=A$ and such that there exists an invertible matrix $S \in M_{n}(\mathbb{R})$ satisfying $A=S^{t} S$. A matrix satisfying these properties is symmetric and positive definite. Given column vectors $v, w \in \mathbb{R}^{n}$, define a pairing,

$$
\langle v, w\rangle_{A}:=v^{t} A w,
$$

where the right hand side is defined using matrix multiplication.
(1) Prove that $\langle v, w\rangle_{A}$ defines an inner product on \mathbb{R}^{n}.
(2) Suppose that A is given by

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right)
$$

Find a basis of \mathbb{R}^{2} which is orthonormal with respect to \langle,\rangle_{A}. 2) Let $A \in M_{n}(\mathbb{C})$ be an $n \times n$ matrix satisfying $A^{*}=A$ and such that there exists an invertible matrix $S \in M_{n}(\mathbb{C})$ satisfying $A=S^{*} S$. A matrix satisfying these properties is Hermitian and positive definite. Given column vectors $v, w \in \mathbb{C}^{n}$, define a pairing,

$$
\langle v, w\rangle_{A}:=v^{t} A \bar{w},
$$

where the right hand side is defined using matrix multiplication.
(1) Prove that $\langle v, w\rangle_{A}$ defines an inner product on \mathbb{C}^{n}.
(2) Suppose that A is given by

$$
A=\left(\begin{array}{cc}
1 & 2 i \\
-2 i & 5
\end{array}\right)
$$

Find a basis of \mathbb{C}^{2} which is orthonormal with respect to \langle,\rangle_{A}. 3) Consider the following basis \mathfrak{B} of \mathbb{R}^{3},

$$
\mathfrak{B}:=\left\{\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)\right\} .
$$

(1) Using Gram-Schmidt orthogonalization, use the above basis to construct an orthonormal basis of \mathbb{R}^{3} with respect to the usual dot product.
(2) Find an inner product \langle,$\rangle on \mathbb{R}^{3}$ such that the basis \mathfrak{B} is orthonormal with respect to \langle,$\rangle .$
4) Consider the matrix,

$$
O=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right)
$$

(1) Compute $\operatorname{Det}(O)$.
(2) Show that $O O^{t}=\mathbb{I}$ where \mathbb{I} is the 3×3 identity matrix.
(3) Show that for all column vectors $v, w \in \mathbb{R}^{3}$,

$$
O(v) \cdot O(w)=v \cdot w,
$$

where $v \cdot w$ is the usual Euclidean dot product of the vectors v and w.
(4) If e_{1}, e_{2} and e_{3} is any orthogonal basis of \mathbb{R}^{3} with respect to the Euclidean dot product, show that $O\left(e_{1}\right), O\left(e_{2}\right)$ and $O\left(e_{3}\right)$ is also an orthogonal basis.
5) Consider the determinant on 2×2 matrices as a map,

$$
\begin{aligned}
\operatorname{Det}: \mathbb{R}^{2} \times \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
(v, w) & \mapsto \operatorname{Det}(v w),
\end{aligned}
$$

where $v, w \in \mathbb{R}^{2}$ are column vectors and $(v w)$ is the 2×2 matrix whose columns are given by the vectors v and w.
(1) Which of the properties of an inner product does Det satisfy?
(2) Find a 2×2 matrix D such that

$$
\operatorname{Det}(v, w)=v^{t} D w
$$

(3) Consider the matrix

$$
J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Show that,

$$
\operatorname{Det}(v, J(w))
$$

defines an inner product on \mathbb{R}^{2}. Do you recognize which inner product this is?
Remarks: the mapping Det is a special example of a symplectic form on a vector space. The matrix J is a special case of a complex structure on a vector space. The vector space \mathbb{R}^{2} equipped with J and Det, hence also with an inner product by (3), is the simplest example of something known as a Hermitian vector space. These are an incredibly important and very special type of vector space, and form the basis of something
known as the study of Kähler geometry. Much of my personal research concerns the study of these types of objects; in fact, one of the Clay Millennium problems in mathematics (whose solution is worth 1 million USD) is concerned with the structure of certain geometrical objects which arise in Kähler geometry.

