MATH 320: HOMEWORK 6

Due on Friday, November 22

1) Let $A \in M_n(\mathbb{R})$ be an $n \times n$ matrix satisfying $A^t = A$ and such that there exists an invertible matrix $S \in M_n(\mathbb{R})$ satisfying $A = S^t S$. A matrix satisfying these properties is *symmetric* and *positive definite*. Given column vectors $v, w \in \mathbb{R}^n$, define a pairing,

$$\langle v, w \rangle_A := v^t A w,$$

where the right hand side is defined using matrix multiplication.

- (1) Prove that $\langle v, w \rangle_A$ defines an inner product on \mathbb{R}^n .
- (2) Suppose that A is given by

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}.$$

Find a basis of \mathbb{R}^2 which is orthonormal with respect to \langle , \rangle_A . 2) Let $A \in M_n(\mathbb{C})$ be an $n \times n$ matrix satisfying $A^* = A$ and such that there exists an invertible matrix $S \in M_n(\mathbb{C})$ satisfying $A = S^*S$. A matrix satisfying these properties is *Hermitian* and *positive definite*. Given column vectors $v, w \in \mathbb{C}^n$, define a pairing,

$$\langle v, w \rangle_A := v^t A \overline{w},$$

where the right hand side is defined using matrix multiplication.

- (1) Prove that $\langle v, w \rangle_A$ defines an inner product on \mathbb{C}^n .
- (2) Suppose that A is given by

$$A = \begin{pmatrix} 1 & 2i \\ -2i & 5 \end{pmatrix}.$$

Find a basis of \mathbb{C}^2 which is orthonormal with respect to \langle , \rangle_A . 3) Consider the following basis \mathfrak{B} of \mathbb{R}^3 ,

$$\mathfrak{B} := \left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\2 \end{pmatrix} \right\}.$$

(1) Using Gram-Schmidt orthogonalization, use the above basis to construct an orthonormal basis of \mathbb{R}^3 with respect to the usual dot product.

- (2) Find an inner product \langle , \rangle on \mathbb{R}^3 such that the basis \mathfrak{B} is orthonormal with respect to \langle , \rangle .
- 4) Consider the matrix,

$$O = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}.$$

- (1) Compute Det(O).
- (2) Show that $OO^t = \mathbb{I}$ where \mathbb{I} is the 3×3 identity matrix.
- (3) Show that for all column vectors $v, w \in \mathbb{R}^3$,

$$O(v) \cdot O(w) = v \cdot w,$$

where $v \cdot w$ is the usual Euclidean dot product of the vectors v and w.

- (4) If e_1, e_2 and e_3 is any orthogonal basis of \mathbb{R}^3 with respect to the Euclidean dot product, show that $O(e_1), O(e_2)$ and $O(e_3)$ is also an orthogonal basis.
- 5) Consider the determinant on 2×2 matrices as a map,

$$Det : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
$$(v, w) \mapsto Det(v \ w),$$

where $v, w \in \mathbb{R}^2$ are column vectors and (v w) is the 2×2 matrix whose columns are given by the vectors v and w.

- (1) Which of the properties of an inner product does Det satisfy?
- (2) Find a 2×2 matrix D such that

$$Det(v, w) = v^t D w.$$

(3) Consider the matrix

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Show that,

defines an inner product on \mathbb{R}^2 . Do you recognize which inner product this is?

Remarks: the mapping Det is a special example of a symplectic form on a vector space. The matrix J is a special case of a complex structure on a vector space. The vector space \mathbb{R}^2 equipped with J and Det, hence also with an inner product by (3), is the simplest example of something known as a Hermitian vector space. These are an incredibly important and very special type of vector space, and form the basis of something

 $\mathbf{2}$

known as the study of *Kähler* geometry. Much of my personal research concerns the study of these types of objects; in fact, one of the Clay Millennium problems in mathematics (whose solution is worth 1 million USD) is concerned with the structure of certain geometrical objects which arise in Kähler geometry.