PRACTICE EXAM

Due on Friday, September 27

1)

(1) Find all solutions of the linear system

$$
\begin{aligned}
& x+y-z=3 \\
& x-y-z=1 .
\end{aligned}
$$

(2) Find all solutions of the homogeneous system

$$
\begin{aligned}
& x+y-z=0 \\
& x-y-z=0 .
\end{aligned}
$$

(3) Write down a basis for the vector space of solutions to the homogeneous linear system above. What is the dimension of this vector space?
2) Using elementary row operations, put the following matrix A in row reduced echelon form:

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

3) Consider the vector space V of degree 2 polynomials with real coefficients:

$$
V:=\left\{a_{0}+a_{1} t+a_{2} t^{2} \mid a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\} .
$$

(1) Write down two different bases of V. You must verify that what you produce are bases!
(2) Let $\mathcal{B}:=\left\{1, t, t^{2}\right\}$ be an ordered basis of V. Define a map

$$
\begin{aligned}
L: V & \rightarrow V \\
a_{0}+a_{1} t+a_{2} t^{2} & \mapsto a_{0}+a_{1} t^{2}
\end{aligned}
$$

Prove that L is a linear map. Write down the matrix representation of L with respect to the basis \mathcal{B}.
4) Suppose $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear map such that

$$
L((1,0))=(2,0)
$$

and

$$
L((0,1))=(1,1)
$$

Write down a formula for $L((x, y))$ for any $(x, y) \in \mathbb{R}^{2}$.

